From 53ffe34442cb6127cb909aa0c0e651e3e62ebac9 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Wed, 3 Jul 2024 17:55:38 +0100 Subject: [PATCH] Sort out statements and introduction leading up to bounds on d --- tex/bounds-on-semistabilisers.tex | 63 +++++++++++++++++++------------ 1 file changed, 38 insertions(+), 25 deletions(-) diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index 3239093..b536737 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -161,27 +161,8 @@ corresponding $\chern_1^{\beta}(u)$ fail one of the inequalities (which is what was implicitly happening before in the proof of Theorem \ref{thm:loose-bound-on-r}). - -First, let us fix a Chern character $v$ with $\Delta(v)\geq 0$, -$\chern_0(v)>0$, or $\chern_0(v)=0$ and $\chern_1(v)>0$, -and some solution $u$ to the Problem -\ref{problem:problem-statement-1} or -\ref{problem:problem-statement-2}. -Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem -\ref{problem:problem-statement-1} -(or $\beta_0 = \beta_{-}$ for problem \ref{problem:problem-statement-2}). - -\begin{align} - \chern(F) =\vcentcolon\: v \:=& \:(R,C\ell,D\ell^2) - && \text{where $R,C\in \ZZ$ and $D\in \frac{1}{\lcm(m,2)}\ZZ$} - \nonumber - \\ - u \coloneqq& \:(r,c\ell,d\ell^2) - && \text{where $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$} - \label{eqn:u-coords} -\end{align} - \begin{lemma} +\label{lem:fixed-q-semistabs-criterion} Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}), and $\beta_{0}\coloneqq \beta(P)$ (or $\beta_{-}(v)$ resp.). @@ -214,6 +195,7 @@ Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem \end{proof} \begin{corollary} +\label{cor:rational-beta:fixed-q-semistabs-criterion} Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}), and suppose that $\beta_{0}\coloneqq \beta(P)$ (or $\beta_{-}(v)$ resp.) is rational, and written $\beta_0=\frac{a_v}{n}$ for @@ -248,11 +230,40 @@ Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem \subsection{Bounds on \texorpdfstring{`$d$'}{d}-values for Solutions of Problems} -This section studies the numerical conditions that $u$ must satisfy as per -lemma \ref{lem:num_test_prob1} -(or corollary \ref{cor:num_test_prob2}) -and reformulates them as bounds on $d$ from Equation \ref{eqn:u-coords}. -This is done to determine which $r$ values lead to no possible values for $d$. +Let $v$ be a Chern character with $\Delta(v)\geq 0$, +$\chern_0(v)>0$, or $\chern_0(v)=0$ and $\chern_1(v)>0$, +and consider Problem +\ref{problem:problem-statement-1} or +\ref{problem:problem-statement-2}. +Take $\beta_0 = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem +\ref{problem:problem-statement-1} +(or $\beta_0 = \beta_{-}$ for problem \ref{problem:problem-statement-2}). +Lemma \ref{lem:fixed-q-semistabs-criterion} states that any solution +\[ + u \coloneqq \:(r,c\ell,d\ell^2) + \qquad + \text{where $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$} + \label{eqn:u-coords} +\] +to the Problem satisfies +\[ + q \coloneqq \chern_1^{\beta_0}(u) + \in + \left( + 0, \chern_1^{\beta_0}(v) + \right) +\] +and also gives a lower bound for $r$ when considering $u$ with a fixed $q$. +This Section studies the extra numerical conditions that such $u$ must satisfy +as per that Lemma, and will express them as bounds on $d$ in terms of $r$ (for a +fixed $q$). +These bounds will later be used in Subsections +\ref{subsec:bounds-on-semistab-rank-prob-1} and +\ref{subsec:bounds-on-semistab-rank-prob-2} +to construct upper bounds on $r$ +(in a similar way to how a bound on $\chern_0(u)$ was found in the proof of +Theorem \ref{thm:loose-bound-on-r} by considering bounds on +$\chern^{\beta_0}_0(u)$ in terms of the former). \subsubsection{Size of pseudo-wall\texorpdfstring{: $\chern_2^P(u)>0$}{}} \label{subsect-d-bound-radiuscond} @@ -594,6 +605,7 @@ A generic example of this is plotted in Figure \subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem \ref{problem:problem-statement-1}} +\label{subsec:bounds-on-semistab-rank-prob-1} As discussed at the end of subsection \ref{subsubsect:all-bounds-on-d-prob1} (and illustrated in Figure \ref{fig:problem1:d_bounds_xmpl_gnrc_q}), @@ -671,6 +683,7 @@ following Lemma \ref{lem:prob1:convenient_r_bound}. \subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem \ref{problem:problem-statement-2}} +\label{subsec:bounds-on-semistab-rank-prob-2} Now, the inequalities from the above subsubsection \ref{subsubsect:all-bounds-on-d-prob2} will be used to find, for -- GitLab