diff --git a/main.tex b/main.tex index fa38665ee136d766b5fb7e8406b98a9f97ed1526..f124e7726a645d9953a769a31f103ede0a741d53 100644 --- a/main.tex +++ b/main.tex @@ -1327,10 +1327,6 @@ These give bounds with the same assymptotes when we take $r\to\infty$ \end{align} \egroup -Furthermore, we get an extra bound for $d$ resulting from the condition that the -radius of the circular wall must be positive. As discussed in (TODO ref), this -is equivalent to $\chern^{\beta}_2(E) > 0$, which yields: - \begin{sagesilent} positive_radius_condition = ( ( @@ -1340,13 +1336,7 @@ positive_radius_condition = ( .subs(solve(q == u.twist(beta).ch[1], c)[0]) # express c in term of q .expand() ) -\end{sagesilent} -\begin{equation} - \label{eqn:positive_rad_d_bound_betamin} - \sage{positive_radius_condition} -\end{equation} -\begin{sagesilent} def beta_min(chern): ts = stability.Tilt() return min( @@ -1462,10 +1452,10 @@ weak lower bounds, (implying no possible destabilizers $E$ with $\chern_0(E)=\vcentcolon r>R\coloneqq\chern_0(F)$ for these $q$-values). This indeed happens in general since the right hand sides of (eqn \ref{eqn:bgmlv2_d_bound_betamin}) and -(eqn \ref{eqn:positive_rad_d_bound_betamin}) match when $q=0$. +(eqn \ref{eqn:radiuscond_d_bound_betamin}) match when $q=0$. In the other case, $q=\chern^{\beta}_1(F)$, it is the right hand sides of (eqn \ref{eqn:bgmlv3_d_bound_betamin}) and -(eqn \ref{eqn:positive_rad_d_bound_betamin}) which match. +(eqn \ref{eqn:radiuscond_d_bound_betamin}) which match. The more generic case, when $0 < q\coloneqq\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$ @@ -1480,7 +1470,7 @@ blue and green (ensuring $\Delta(E), \Delta(G) > 0$). These lines have the same assymptote at $r \to \infty$ (eqns \ref{eqn:bgmlv2_d_bound_betamin}, \ref{eqn:bgmlv3_d_bound_betamin}, -\ref{eqn:positive_rad_d_bound_betamin}). +\ref{eqn:radiuscond_d_bound_betamin}). As mentioned in the introduction (sec \ref{sec:intro}), the finiteness of these solutions is entirely determined by whether $\beta$ is rational or irrational. Some of the details around the associated numerics are explored next.