From 554b3cec07c5b4413202ee022ceea56fd385b8cb Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Wed, 10 Jan 2024 18:13:48 +0000 Subject: [PATCH] Add main lemmas around bounds in problem 1 --- main.tex | 42 +++++++++++++++++++++++++++++++++++++++++- other_P_choice.ipynb | 40 +++++++++++++++++++++++++++++++++++++++- 2 files changed, 80 insertions(+), 2 deletions(-) diff --git a/main.tex b/main.tex index 51ee9e3..d54c4f1 100644 --- a/main.tex +++ b/main.tex @@ -1340,7 +1340,47 @@ A generic example of this is plotted in figure \label{fig:problem1:d_bounds_xmpl_gnrc_q} \end{figure} -\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{r} in Problem +\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem +\ref{problem:problem-statement-1}} + +As discussed at the end of subsection \ref{subsubsect:all-bounds-on-d-prob1} +(and illustrated in figure \ref{fig:problem1:d_bounds_xmpl_gnrc_q}), +there are no solutions $u$ to problem \ref{problem:problem-statement-1} +with large $r=\chern_0(u)$, since the lower bound on $d=\chern_2(u)$ is larger +than the upper bounds. +Therefore, we can calculate upper bounds on $r$ by calculating for which values, +the lower bound on $d$ is equal to one of the upper bounds on $d$ +(i.e. finding certain intersection points of the graph in figure +\ref{fig:problem1:d_bounds_xmpl_gnrc_q}). + +\begin{lemma}[Problem \ref{problem:problem-statement-1} upper Bound on $r$] + Let $u$ be a solution to problem \ref{problem:problem-statement-1} + and $q\coloneqq\chern_1^{\beta}(u)$. + Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression: + \begin{equation} + \sage{problem1.r_bound_expression} + \end{equation} +\end{lemma} + +\begin{proof} + qed + +\end{proof} + +\begin{lemma} + Let $u$ be a solution to problem \ref{problem:problem-statement-1}. + Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression: + \begin{equation} + \sage{problem1.r_max} + \end{equation} +\end{lemma} + +\begin{proof} + qed + +\end{proof} + +\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem \ref{problem:problem-statement-2}} Now, the inequalities from the above subsubsection diff --git a/other_P_choice.ipynb b/other_P_choice.ipynb index 9ad201e..a59bbfe 100644 --- a/other_P_choice.ipynb +++ b/other_P_choice.ipynb @@ -907,7 +907,9 @@ "cell_type": "code", "execution_count": 33, "id": "e4fb002a", - "metadata": {}, + "metadata": { + "scrolled": true + }, "outputs": [ { "data": { @@ -933,6 +935,42 @@ ").factor()" ] }, + { + "cell_type": "code", + "execution_count": 55, + "id": "0347bc71", + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "<html>\\(\\displaystyle \\frac{\\sqrt{2} \\sqrt{R} \\min\\left(q, \\sqrt{2} \\sqrt{R} \\sqrt{{\\mathrm{ch}_2^B(v)}} - q + {\\mathrm{ch}_1^B(v)}\\right)}{2 \\, \\sqrt{{\\mathrm{ch}_2^B(v)}}}\\)</html>" + ], + "text/latex": [ + "$\\displaystyle \\frac{\\sqrt{2} \\sqrt{R} \\min\\left(q, \\sqrt{2} \\sqrt{R} \\sqrt{{\\mathrm{ch}_2^B(v)}} - q + {\\mathrm{ch}_1^B(v)}\\right)}{2 \\, \\sqrt{{\\mathrm{ch}_2^B(v)}}}$" + ], + "text/plain": [ + "1/2*sqrt(2)*sqrt(R)*min(q, sqrt(2)*sqrt(R)*sqrt(twisted_v2) - q + twisted_v1)/sqrt(twisted_v2)" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "_common_factor = sqrt(R)/sqrt(twisted_v2)/sqrt(2)\n", + "( r_bound_expression :=\n", + " min_symbolic(\n", + " positive_intersection_bgmlv2 / _common_factor,\n", + " positive_intersection_bgmlv3 / _common_factor\n", + " )\n", + " .__mul__(_common_factor)\n", + " .expand()\n", + " .simplify()\n", + ")" + ] + }, { "cell_type": "markdown", "id": "6acd7233", -- GitLab