diff --git a/main.tex b/main.tex index 2ff26cd1a83e093fffd6ddf1c03a418501563fcd..6c06bb69e5d6be4f524a938d7faa6966ef8b1fae 100644 --- a/main.tex +++ b/main.tex @@ -45,7 +45,6 @@ sorting=ynt \begin{document} - \title{Tighter Bounds for Ranks of Tilt Semistabilizers on Picard Rank 1 Surfaces \\[1em] \large Practical Methods for Narrowing Down Possible Walls} @@ -434,7 +433,7 @@ and rank zero cases. \end{definition} -\subsection{Relevance of $V_v$} +\subsection{Relevance of \texorpdfstring{$V_v$}{V_v}} \label{subsect:relevance-of-V_v} For the positive rank case, by definition of the first tilt $\firsttilt\beta$, objects of Chern character @@ -455,7 +454,7 @@ $\firsttilt{\beta}$ for all $\beta$ -\subsection{Relevance of $\Theta_v$} +\subsection{Relevance of \texorpdfstring{$\Theta_v$}{Θ_v}} Since $\chern_2^{\alpha, \beta}$ is the numerator of the tilt slope $\nu_{\alpha, \beta}$. The curve $\Theta_v$, where this is 0, firstly divides the @@ -766,7 +765,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \section{B.Schmidt's Solutions to the Problems} -\subsection{Bound on $\chern_0(u)$ for Semistabilizers} +\subsection{Bound on \texorpdfstring{$\chern_0(u)$}{ch0(u)} for Semistabilizers} \label{subsect:loose-bound-on-r} The proof for the following theorem \ref{thm:loose-bound-on-r} was hinted at in @@ -876,7 +875,8 @@ In section [ref], a different algorithm will be presented making use of the later theorems in this article, with the goal of cutting down the run time. -\subsubsection{Finding possible $r$ and $c$} +\subsubsection{Finding possible \texorpdfstring{$r$}{r} and +\texorpdfstring{$c$}{c}} To do this, first calculate the upper bound $r_{max}$ on the ranks of tilt semistabilizers, as given by theorem \ref{thm:loose-bound-on-r}. @@ -898,7 +898,8 @@ the Bogomolov inequalities and consequence 3 of lemma \ref{lem:pseudo_wall_numerical_tests} ($\chern_2^{\beta_{-}}(u)>0$). -\subsubsection{Finding $d$ for fixed $r$ and $c$} +\subsubsection{Finding \texorpdfstring{$d$}{d} for fixed \texorpdfstring{$r$}{r} +and \texorpdfstring{$c$}{c}} $\Delta(u) \geq 0$ induces an upper bound $\frac{c^2}{2r}$ on $d$, and the $\chern_2^{\beta_{-}}(u)>0$ condition induces a lower bound on $d$. @@ -1000,7 +1001,7 @@ This section studies the numerical conditions that $u$ must satisfy as per lemma \ref{lem:num_test_prob1} (or corollary \ref{cor:num_test_prob2}) -\subsubsection{Size of pseudo-wall: $\chern_2^P(u)>0$ } +\subsubsection{Size of pseudo-wall\texorpdfstring{: $\chern_2^P(u)>0$}{}} \label{subsect-d-bound-radiuscond} This condition refers to condition @@ -1040,8 +1041,7 @@ Expressing this as a bound on $d$, then yields: \end{equation} -\subsubsection{ - Semistability of the Semistabilizer: +\subsubsection{Semistability of the Semistabilizer: \texorpdfstring{ $\Delta(u) \geq 0$ }{ @@ -1098,8 +1098,7 @@ Notice that in the context of problem \ref{problem:problem-statement-2} the constant and linear terms match up with the ones for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}. -\subsubsection{ - Semistability of the Quotient: +\subsubsection{Semistability of the Quotient: \texorpdfstring{ $\Delta(v-u) \geq 0$ }{ @@ -1147,8 +1146,8 @@ However, when specializing to problem \ref{problem:problem-statement-2} again And so in this context, the linear and constant terms do match up with the previous subsubsections. -\subsubsection{All Bounds on $d$ Together for Problem -\ref{problem:problem-statement-2}} +\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem +\texorpdfstring{\ref{problem:problem-statement-2}}{2}} \label{subsubsect:all-bounds-on-d-prob2} %% RECAP ON INEQUALITIES TOGETHER @@ -1272,8 +1271,8 @@ from plots_and_expressions import typical_bounds_on_d \label{fig:d_bounds_xmpl_gnrc_q} \end{figure} -\subsubsection{All Bounds on $d$ Together for Problem -\ref{problem:problem-statement-1}} +\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem +\texorpdfstring{\ref{problem:problem-statement-1}}{1}} \label{subsubsect:all-bounds-on-d-prob1} Unlike for problem \ref{problem:problem-statement-2}, @@ -1874,7 +1873,7 @@ Goals: \item calculate intersection of bounds? \end{itemize} -\subsection{Irrational $\beta_{-}$} +\subsection{Irrational \texorpdfstring{$\beta_{-}$}{ꞵ_}} Goals: \begin{itemize} @@ -1894,7 +1893,8 @@ above. The way it works, is by yielding solutions to the problem $u=(r,c\ell,\frac{e}{2}\ell^2)$ as follows. -\subsection{Iterating Over Possible $q=\chern^{\beta_{-}}(u)$} +\subsection{Iterating Over Possible +\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}} Given a Chern character $v$, the domain of the problem are first verified: that $v$ has positive rank, that it satisfies $\Delta(v) \geq 0$, and that @@ -1908,7 +1908,11 @@ $\chern_1^{\beta_{-}}(u)=q$ for one of the $q$ considered is equivalent to satisfying condition \ref{item:chern1bound:lem:num_test_prob2} in corollary \ref{cor:num_test_prob2}. -\subsection{Iterating Over Possible $r=\chern_0(u)$ for Fixed $q=\chern^{\beta_{-}}(u)$} +\subsection{Iterating Over Possible +\texorpdfstring{$r=\chern_0(u)$}{r} +for Fixed +\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} +} Let $q=\frac{b_q}{n}$ be one of the values of $\chern_1^{\beta_{-}}(u)$ that we have fixed. As mentioned before, the only values of $r$ which can @@ -1947,8 +1951,13 @@ Iterate over such $r$ so that we are guarenteed to satisfy conditions in corollary \ref{cor:num_test_prob2}, and have a chance at satisfying the rest. -\subsection{Iterating Over Possible $d=\chern_2(u)$ for Fixed $r=\chern_0(u)$ -and $q=\chern^{\beta_{-}}(u)$} +\subsection{Iterating Over Possible +\texorpdfstring{$d=\chern_2(u)$}{d} +for Fixed +\texorpdfstring{$r=\chern_0(u)$}{r} +and +\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} +} At this point we have fixed $\chern_0(u)=r$ and $\chern_1(u)=c=q+r\beta_{-}$.