diff --git a/tex/content.tex b/tex/content.tex index eed348e9639809eac921e735ab3ef1b85d16adc4..5d888bd245b283bbbaa66c59df4de42f62e4c2ef 100644 --- a/tex/content.tex +++ b/tex/content.tex @@ -217,7 +217,7 @@ Considering the stability conditions with two parameters $\alpha, \beta$ on Picard rank 1 surfaces. We can draw 2 characteristic curves for any given Chern character $v$ with $\Delta(v) \geq 0$ and positive rank. -These are given by the equations $\chern_i^{\alpha,\beta}(v)=0$ for $i=1,2$. +These are given by the Equations $\chern_i^{\alpha,\beta}(v)=0$ for $i=1,2$. \begin{definition}[Characteristic Curves $V_v$ and $\Theta_v$] Given a Chern character $v$, with positive rank and $\Delta(v) \geq 0$, we @@ -300,7 +300,7 @@ degenerate_characteristic_curves \] \noindent In particular, this means $\beta_\pm(v)$ are the two roots of the quadratic - equation $\chern_2^{\beta}(v)=0$. + Equation $\chern_2^{\beta}(v)=0$. This definition will be extended to the rank 0 case in definition \ref{dfn:beta_-_rank0}. \end{definition} @@ -1028,7 +1028,7 @@ from plots_and_expressions import bgmlv2_d_ineq \begin{sagesilent} from plots_and_expressions import bgmlv2_d_upperbound_terms \end{sagesilent} -Viewing equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term +Viewing Equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term of $r$ again, there is a constant term $\sage{bgmlv2_d_upperbound_terms.const}$, a linear term @@ -1077,7 +1077,7 @@ from plots_and_expressions import bgmlv3_d_upperbound_terms For $r=R$, $\Delta(v-u)\geq 0$ is always true, and for $r<R$ it gives a lower bound on $d$, but it is weaker than the one given by the lower bound in subsubsection \ref{subsect-d-bound-radiuscond}. -Viewing the right hand side of equation \ref{eqn-bgmlv3_d_upperbound} +Viewing the right hand side of Equation \ref{eqn-bgmlv3_d_upperbound} as a function of $r$, the linear and constant terms almost match up with the ones in the previous section, up to the $\chern_2^{\beta}(v)$ term. @@ -1251,7 +1251,7 @@ bounds do not share the same assymptote as the lower bound Notice that as a function in $r$, the linear term in equation \ref{eqn:prob1:radiuscond} is strictly greater than -those in equations \ref{eqn:prob1:bgmlv2} +those in Equations \ref{eqn:prob1:bgmlv2} and \ref{eqn:prob1:bgmlv3}. This is because $r$, $R$ and $\chern_2^B(v)$ are all strictly positive: \begin{itemize} @@ -1307,16 +1307,16 @@ the lower bound on $d$ is equal to one of the upper bounds on $d$ \begin{proof} Recall that $d\coloneqq\chern_2(u)$ has two upper bounds in terms of $r$: in - equations \ref{eqn:prob1:bgmlv2} and \ref{eqn:prob1:bgmlv3}; - and one lower bound: in equation \ref{eqn:prob1:radiuscond}. + Equations \ref{eqn:prob1:bgmlv2} and \ref{eqn:prob1:bgmlv3}; + and one lower bound: in Equation \ref{eqn:prob1:radiuscond}. - Solving for the lower bound in equation \ref{eqn:prob1:radiuscond} being - less than the upper bound in equation \ref{eqn:prob1:bgmlv2} yields: + Solving for the lower bound in Equation \ref{eqn:prob1:radiuscond} being + less than the upper bound in Equation \ref{eqn:prob1:bgmlv2} yields: \begin{equation} r<\sage{problem1.positive_intersection_bgmlv2} \end{equation} - Similarly, but with the upper bound in equation \ref{eqn:prob1:bgmlv3}, gives: + Similarly, but with the upper bound in Equation \ref{eqn:prob1:bgmlv3}, gives: \begin{equation} r<\sage{problem1.positive_intersection_bgmlv3} \end{equation} @@ -1446,7 +1446,7 @@ Hence any corresponding $r$ cannot be a rank of a pseudo-semistabilizer for $v$. To avoid this, we must have, -considering equations +considering Equations \ref{eqn:bgmlv2_d_bound_betamin}, \ref{eqn:bgmlv3_d_bound_betamin}, \ref{eqn:radiuscond_d_bound_betamin}.