diff --git a/main.tex b/main.tex index d5a630208e593676e3e6e811831474bed575681f..f279fad9665b61d000980acb1859faf41831b9e8 100644 --- a/main.tex +++ b/main.tex @@ -918,21 +918,21 @@ radius of the pseudo-wall being positive \end{equation} \begin{sagesilent} -var("delta Delta", domain="real") # placeholder for the specific values of 1/epsilon +var("nu", domain="real") # placeholder for the specific values of 1/epsilon -assymptote_gap_condition1 = (1/Delta < bgmlv2_d_upperbound_exp_term) -assymptote_gap_condition2 = (1/Delta < bgmlv3_d_upperbound_exp_term_alt2) +assymptote_gap_condition1 = (1/nu < bgmlv2_d_upperbound_exp_term) +assymptote_gap_condition2 = (1/nu < bgmlv3_d_upperbound_exp_term_alt2) r_upper_bound1 = ( assymptote_gap_condition1 - * r * Delta + * r * nu ) assert r_upper_bound1.lhs() == r r_upper_bound2 = ( assymptote_gap_condition2 - * (r-R) * Delta + R + * (r-R) * nu + R ) assert r_upper_bound2.lhs() == r @@ -946,7 +946,7 @@ assert r_upper_bound2.lhs() == r are bounded above by the following expression. \bgroup - \def\Delta{\lcm(m,2n^2)} + \def\nu{\lcm(m,2n^2)} \def\psi{\chern_1^{\beta}(F)} \begin{align*} \min @@ -1017,7 +1017,7 @@ This is equivalent to: \bgroup \def\psi{\chern_1^{\beta}(F)} -\def\Delta{\lcm(m,2n^2)} +\def\nu{\lcm(m,2n^2)} \begin{equation} \label{eqn:thm-bound-for-r-impossible-cond-for-r} r \leq @@ -1036,29 +1036,32 @@ This is equivalent to: \end{proof} +\begin{sagesilent} +var("Delta", domain="real") +q_sol = solve(r_upper_bound1.rhs() == r_upper_bound2.rhs(), q)[0].rhs() +r_upper_bound_all_q = ( + r_upper_bound1.rhs() + .expand() + .subs(q==q_sol) + .subs(psi**2 == Delta) + .subs(1/psi**2 == 1/Delta) +) +\end{sagesilent} + \begin{corrolary}[Bound on $r$ \#2] -\label{cor:direct_rmax_with_uniform_eps} + \label{cor:direct_rmax_with_uniform_eps} Let $v$ be a fixed Chern character and $R:=\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2)\Delta(v)$. Then the ranks of the pseudo-semistabilizers for $v$ are bounded above by the following expression. \bgroup - \begin{equation} - \frac{1}{2} \lcm(m,2n^2) - \left( - \frac{\chern_1^{\beta}(v)}{2} - + \frac{R}{\chern_1^{\beta}(v)\lcm(m,2n^2)} - \right)^2 - \end{equation} - \egroup - \bgroup - \begin{equation} - \frac{1}{8} - \Delta(v) \lcm(m,2n^2) - + \frac{1}{2} R - + \frac{R^2}{ 2 \Delta(v) \lcm(m,2n^2) } - \end{equation} + \let\originalDelta\Delta + \def\nu{\lcm(m,2n^2)} + \renewcommand\Delta{{\originalDelta(v)}} + \begin{equation*} + \sage{r_upper_bound_all_q.expand()} + \end{equation*} \egroup \end{corrolary} @@ -1099,13 +1102,13 @@ That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to $n$, and so invertible mod $n$). \begin{sagesilent} -rhs_numerator = ( + rhs_numerator = ( positive_radius_condition .rhs() .subs([q_value_expr,beta_value_expr]) .factor() .numerator() -) + ) \end{sagesilent} \noindent @@ -1117,22 +1120,22 @@ proof of theorem \ref{thm:rmax_with_uniform_eps}: \begin{lemmadfn}[ Finding better alternatives to $\epsilon_F$: $\epsilon_{q,1}$ and $\epsilon_{q,2}$ -] -\label{lemdfn:epsilon_q} -Suppose $d \in \frac{1}{m}\ZZ$ satisfies the condition in -eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. -That is: - -\begin{equation*} - \sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()} -\end{equation*} - -\noindent -Then we have: - -\begin{equation*} - d - \frac{(\aa r + 2\bb)\aa}{2n^2} - \geq \epsilon_{q,2} \geq \epsilon_{q,1} > 0 + ] + \label{lemdfn:epsilon_q} + Suppose $d \in \frac{1}{m}\ZZ$ satisfies the condition in + eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. + That is: + + \begin{equation*} + \sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()} + \end{equation*} + + \noindent + Then we have: + + \begin{equation*} + d - \frac{(\aa r + 2\bb)\aa}{2n^2} + \geq \epsilon_{q,2} \geq \epsilon_{q,1} 0 \end{equation*} Where $\epsilon_{q,1}$ and $\epsilon_{q,2}$ are defined as follows: @@ -1222,7 +1225,8 @@ which also guarantees that the gap $\frac{k}{2mn^2}$ is at least $\epsilon_{q,2} are bounded above by the following expression (with $i=1$ or $2$). \begin{sagesilent} -eps_k_i_subs = Delta == (2*m*n^2)/delta +var("delta", domain="real") # placeholder symbol to be replaced by k_{q,i} +eps_k_i_subs = nu == (2*m*n^2)/delta \end{sagesilent} \bgroup