From 79f9d3fa1f2f5c0babba8f96f7a262293a49279c Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Mon, 29 May 2023 17:40:19 +0100 Subject: [PATCH] Simplify expression in proof of theorem 6.1 --- main.tex | 43 +++++++++++++++++++++++-------------------- 1 file changed, 23 insertions(+), 20 deletions(-) diff --git a/main.tex b/main.tex index 6bbe39e..44b5f6d 100644 --- a/main.tex +++ b/main.tex @@ -919,15 +919,18 @@ radius of the pseudo-wall being positive \begin{sagesilent} var("Delta", domain="real") # placeholder for the specific values of 1/epsilon +assymptote_gap_condition1 = (1/Delta < bgmlv2_d_upperbound_exp_term) +assymptote_gap_condition2 = (1/Delta < bgmlv3_d_upperbound_exp_term_alt2) + r_upper_bound1 = ( - (1/Delta < bgmlv2_d_upperbound_exp_term) + assymptote_gap_condition1 * r * Delta ) assert r_upper_bound1.lhs() == r r_upper_bound2 = ( - (1/Delta < bgmlv3_d_upperbound_exp_term_alt2) + assymptote_gap_condition2 * (r-R) * Delta + R ) @@ -951,7 +954,6 @@ assert r_upper_bound2.lhs() == r \sage{r_upper_bound2.rhs()} \right) \end{align*} - \egroup Taking the maximum of this expression over $q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ @@ -967,12 +969,14 @@ are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. So, if any of the two upper bounds on $d$ come to within $\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for $d$. +Hence any corresponding $r$ cannot be a rank of a +pseudo-semistabilizer for $v$. -Considering equations +To avoid this, we must have, +considering equations \ref{eqn:bgmlv2_d_bound_betamin}, \ref{eqn:bgmlv3_d_bound_betamin}, -\ref{eqn:positive_rad_d_bound_betamin}, -this happens when: +\ref{eqn:positive_rad_d_bound_betamin}. \bgroup @@ -995,13 +999,16 @@ bounds_too_tight_condition2 = ( ) \end{sagesilent} +\bgroup +\def\psi{\chern_1^{\beta}(F)} \begin{equation} \min\left( \sage{bgmlv2_d_upperbound_exp_term}, - \sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)} + \sage{bgmlv3_d_upperbound_exp_term_alt2} \right) - < \epsilon := \frac{1}{\lcm(m,2n^2)} + \geq \epsilon := \frac{1}{\lcm(m,2n^2)} \end{equation} +\egroup \begin{sagesilent} # rearrange the "tightness" conditions in terms of r @@ -1023,26 +1030,22 @@ assert bounds_too_tight_condition2.rhs() == r \noindent This is equivalent to: +\bgroup +\def\psi{\chern_1^{\beta}(F)} +\def\Delta{\lcm(m,2n^2)} \begin{equation} - r > + \label{eqn:thm-bound-for-r-impossible-cond-for-r} + r \leq \min\left( \sage{ - bounds_too_tight_condition1.lhs() - .expand() - .factor() + r_upper_bound1.rhs() } , \sage{ - bounds_too_tight_condition2.lhs() - .expand() - .factor() + r_upper_bound2.rhs() } \right) \end{equation} - -If this condition holds for all $q$, then there are no solutions for $d$, -and therefore $r$ cannot satisfy this condition for all $q$. -Taking the maximum of all these expressions over $q$, and substituting the value -for $\epsilon$ gives the result. +\egroup \egroup % end scope where epsilon redefined -- GitLab