diff --git a/tex/setting-and-problems.tex b/tex/setting-and-problems.tex index c87f151752473a4c7e9aa4551be5dc4b009d4195..284483292a573768bb8bbb9ce3aa9481379b2ff0 100644 --- a/tex/setting-and-problems.tex +++ b/tex/setting-and-problems.tex @@ -29,6 +29,12 @@ affect the results. \end{itemize} \end{definition} +\begin{remark} + We could introduce a slightly stronger definition including an extra condition on $e$ + in terms of $r$ and $c$ to ensure that $u$ could arise from integral Chern classes. + However, this will not affect finiteness questions considered later and this also + condition turns out to be vacuous for principally polarised abelian surfaces. +\end{remark} \begin{remark} Note $u$ does not need to be a Chern character of an actual sub-object of some object in the stability condition's heart with Chern character $v$. @@ -65,9 +71,10 @@ $d \in \frac{1}{\lcm(m,2)}\ZZ$. \label{lem:sanity-check-for-pseudo-semistabilizers} Given a stability condition $\sigma_{\alpha,\beta}$, - if $E\hookrightarrow F\twoheadrightarrow G$ is a semistabilising sequence in - $\firsttilt\beta$ for $F$. - Then $\chern(E)$ is a pseudo-semistabiliser of $\chern(F)$ + and a semistabilising sequence + $E\hookrightarrow F\twoheadrightarrow G$ + in $\firsttilt\beta$ for $F$, + then $\chern(E)$ is a pseudo-semistabiliser of $\chern(F)$ \end{lemma} \begin{proof} @@ -368,8 +375,8 @@ Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0) and $\Delta(v) \geq 0$. The goal is to find all pseudo-semistabilisers $u$ which give circular pseudo-walls containing some fixed point -$P\in\Theta_v^-$. -With the added restriction that $u$ `destabilises' $v$ moving `inwards', that is, +$P\in\Theta_v^-$ +with the added restriction that $u$ `destabilises' $v$ moving `inwards', that is, $\nu(u)>\nu(v)$ inside the circular pseudo-wall. \end{problem} This will give all pseudo-walls between the chamber corresponding to Gieseker @@ -438,8 +445,8 @@ problem using Lemma \ref{lem:pseudo_wall_numerical_tests}. and $\Delta(v) \geq 0$, and a choice of point $P=(\alpha_0, \beta_0)$ on $\Theta_v^-$. Solutions $u=(r,c\ell,d\ell^2)$ - to Problem \ref{problem:problem-statement-1}. - Are precisely given by $r,c \in \ZZ$, $d \in \frac{1}{\lcm(m,2)}$ + to Problem \ref{problem:problem-statement-1} + are precisely given by $r,c \in \ZZ$, $d \in \frac{1}{\lcm(m,2)}$ satisfying the following conditions: \begin{enumerate} \begin{multicols}{2} @@ -479,8 +486,8 @@ problem using Lemma \ref{lem:pseudo_wall_numerical_tests}. and $\Delta(v) \geq 0$, such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$. Solutions $u=(r,c\ell,d\ell^2)$ - to Problem \ref{problem:problem-statement-2}. - Are precisely given by $r,c \in \ZZ$, $d\in\frac{1}{\lcm(m,2)}\ZZ$ satisfying + to Problem \ref{problem:problem-statement-2} + are precisely given by $r,c \in \ZZ$, $d\in\frac{1}{\lcm(m,2)}\ZZ$ satisfying the following conditions: \begin{enumerate} \begin{multicols}{2}