diff --git a/main.tex b/main.tex index 3003b47d6cfc0bf506d3ed2ca8600bb671e8741e..48d1122a713e8c609d0cb29df43dea358c955b68 100644 --- a/main.tex +++ b/main.tex @@ -612,6 +612,8 @@ After introducing the characteristic curves of stability conditions associated to a fixed Chern character $v$, we can now formally state the problems that we are trying to solve for. +\subsection{Problem statements} + \begin{problem}[sufficiently large `left' pseudo-walls] \label{problem:problem-statement-1} @@ -664,6 +666,53 @@ The $\beta_{-}(v) \in \QQ$ condition is to ensure that there are finitely many solutions. As mentioned in the introduction (\ref{sec:intro}), this is known, however this will also be proved again in passing in this article. +\subsection{Numerical Formulations of the Problems} + +The problems introduced in this section are phrased in the context of stability +conditions. However, these can be reduced down completely to purely numerical +problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. + +\begin{lemma}[Numerical Tests for Sufficiently Large `left' Pseudo-walls] + Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, + and a choice of point $P$ on $\Theta_v^-$. + Solutions $u=(r,c\ell,d\frac{1}{2}\ell^2)$ + to problem \ref{problem:problem-statement-1}. + Are precisely given by integers $r,c,d$ satisfying the following conditions: + \begin{enumerate} + \item $r > 0$ + \item $\Delta(u) \geq 0$ + \item $\Delta(v-u) \geq 0$ + \item $\beta(P)<\mu(u)=\frac{c}{r}<\mu(v)$ + \item $\chern_1^{\beta(P)}(v-u)\geq0$ + \item $\chern_2^{P}(u)>0$ + \end{enumerate} +\end{lemma} + +\begin{proof} + % TODO complete + Use main lemma \ref{lem:pseudo_wall_numerical_tests} TODO +\end{proof} + +\begin{corrolary}[Numerical Tests for All `left' Pseudo-walls] + Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, + such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$. + Solutions $u=(r,c\ell,d\frac{1}{2}\ell^2)$ + to problem \ref{problem:problem-statement-2}. + Are precisely given by integers $r,c,d$ satisfying the following conditions: + \begin{enumerate} + \item $r > 0$ + \item $\Delta(u) \geq 0$ + \item $\Delta(v-u) \geq 0$ + \item $\beta(P)<\mu(u)=\frac{c}{r}<\mu(v)$ + \item $\chern_1^{\beta_{-}}(v-u)\geq0$ + \item $\chern_2^{\beta_{-}}(u)>0$ + \end{enumerate} +\end{corrolary} + +\begin{proof} + This is a specialization of the previous lemma, using $P=(\beta_{-},0)$. +\end{proof} + \section{B.Schmidt's Solutions to the Problems}