From 885d60070f98d5cbf131ae091cd74cf0a8da4f94 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Wed, 21 Jun 2023 12:34:16 +0100 Subject: [PATCH] Remove useage of m in refinement section --- main.tex | 95 ++++++++++++++++++++++++++++---------------------------- 1 file changed, 48 insertions(+), 47 deletions(-) diff --git a/main.tex b/main.tex index dd9bc22..8197ab1 100644 --- a/main.tex +++ b/main.tex @@ -458,6 +458,7 @@ Component-wise, this is: \\ \chern^\beta_2(E) &= \chern_2(E) - \beta \chern_1(E) + \frac{\beta^2}{2} \chern_0(E) \end{align*} +where $\chern_i$ is the coefficient of $\ell^i$ in $\chern$. % TODO I think this^ needs adjusting for general Surface with $\ell$ \end{dfn} @@ -504,7 +505,7 @@ var("m") # Initialize symbol for variety parameter \end{sagesilent} This is where the rationality of $\beta_{-}$ comes in. If -$\beta_{-} = \frac{*}{n}$ for some $*,n \in \ZZ$. Then +$\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$. Then $\chern^{\beta_-}_2(E) \in \frac{1}{\lcm(m,2n^2)}\ZZ$ where $m$ is the integer which guarantees $\chern_2(E) \in \frac{1}{m}\ZZ$ (determined by the variety). In particular, since $\chern_2^{\beta_-}(E) > 0$ (by using $P=(\beta_-,0)$ in @@ -590,8 +591,8 @@ corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what was implicitly happening before). First, let us fix a Chern character for $F$, -$\chern(F) = (R,C,D)$, and consider the possible Chern characters -$\chern(E) = (r,c,d)$ of some semistabilizer $E$. +$\chern(F) = (R,C\ell,D\ell^2)$, and consider the possible Chern characters +$\chern(E) = (r,c\ell,d\ell^2)$ of some semistabilizer $E$. \begin{sagesilent} # Requires extra package: @@ -1217,7 +1218,7 @@ for the bounds on $d$ in terms of $r$ is illustrated in figure (\ref{fig:d_bounds_xmpl_gnrc_q}). The question of whether there are pseudo-destabilizers of arbitrarily large rank, in the context of the graph, comes down to whether there are points -$(r,d) \in \ZZ \oplus \frac{1}{m} \ZZ$ (with large $r$) +$(r,d) \in \ZZ \oplus \frac{1}{2} \ZZ$ (with large $r$) % TODO have a proper definition for pseudo-destabilizers/walls that fit above the yellow line (ensuring positive radius of wall) but below the blue and green (ensuring $\Delta(E), \Delta(G) > 0$). @@ -1253,7 +1254,11 @@ $(r,c,d)$ that satisfy all inequalities to give a pseudowall. \subsubsection{All Semistabilizers Left of Vertical Wall for Rational Beta min} -The strategy here is similar to what was shown in (sect \ref{sec:twisted-chern}), +The strategy here is similar to what was shown in (sect +\ref{sec:twisted-chern}). +One specialization here is to use that $\ell:=c_1(H)$ generates $NS(X)$, so that +in fact, any Chern character can be written as +$\left(r,c\ell,\frac{e}{2}\ell^2\right)$ for $r,c,e\in\ZZ$. % ref to Schmidt? \begin{sagesilent} @@ -1281,7 +1286,7 @@ radius of the pseudo-wall being positive \begin{equation} \label{eqn:positive_rad_condition_in_terms_of_q_beta} - \frac{1}{m}\ZZ + \frac{1}{2}\ZZ \ni \qquad \sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()} @@ -1293,19 +1298,19 @@ radius of the pseudo-wall being positive \begin{sagesilent} var("nu", domain="real") # placeholder for the specific values of 1/epsilon -assymptote_gap_condition1 = (1/nu < bgmlv2_d_upperbound_exp_term) -assymptote_gap_condition2 = (1/nu < bgmlv3_d_upperbound_exp_term_alt2) +assymptote_gap_condition1 = (1/(2*n^2) < bgmlv2_d_upperbound_exp_term) +assymptote_gap_condition2 = (1/(2*n^2) < bgmlv3_d_upperbound_exp_term_alt2) r_upper_bound1 = ( assymptote_gap_condition1 - * r * nu + * r * 2*n^2 ) assert r_upper_bound1.lhs() == r r_upper_bound2 = ( assymptote_gap_condition2 - * (r-R) * nu + R + * (r-R) * 2*n^2 + R ) assert r_upper_bound2.lhs() == r @@ -1313,13 +1318,12 @@ assert r_upper_bound2.lhs() == r \begin{theorem}[Bound on $r$ \#1] \label{thm:rmax_with_uniform_eps} - Let $v = (R,C,D)$ be a fixed Chern character. Then the ranks of the + Let $v = (R,C\ell,D\ell^2)$ be a fixed Chern character. Then the ranks of the pseudo-semistabilizers for $v$ with $\chern_1^\beta = q$ are bounded above by the following expression. \bgroup - \def\nu{\lcm(m,2n^2)} \def\psi{\chern_1^{\beta}(F)} \begin{align*} \min @@ -1340,9 +1344,9 @@ assert r_upper_bound2.lhs() == r \noindent Both $d$ and the lower bound in (eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) -are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. +are elements of $\frac{1}{2n^2}\ZZ$. So, if any of the two upper bounds on $d$ come to within -$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for +$\frac{1}{2n^2}$ of this lower bound, then there are no solutions for $d$. Hence any corresponding $r$ cannot be a rank of a pseudo-semistabilizer for $v$. @@ -1381,7 +1385,7 @@ bounds_too_tight_condition2 = ( \sage{bgmlv2_d_upperbound_exp_term}, \sage{bgmlv3_d_upperbound_exp_term_alt2} \right) - \geq \epsilon := \frac{1}{\lcm(m,2n^2)} + \geq \epsilon := \frac{1}{2n^2} \end{equation} \egroup @@ -1390,7 +1394,6 @@ This is equivalent to: \bgroup \def\psi{\chern_1^{\beta}(F)} -\def\nu{\lcm(m,2n^2)} \begin{equation} \label{eqn:thm-bound-for-r-impossible-cond-for-r} r \leq @@ -1410,27 +1413,27 @@ This is equivalent to: \end{proof} \begin{sagesilent} -var("Delta", domain="real") +var("Delta nu", domain="real") q_sol = solve(r_upper_bound1.rhs() == r_upper_bound2.rhs(), q)[0].rhs() r_upper_bound_all_q = ( r_upper_bound1.rhs() .expand() .subs(q==q_sol) - .subs(psi**2 == Delta) - .subs(1/psi**2 == 1/Delta) + .subs(psi**2 == Delta/nu^2) + .subs(1/psi**2 == nu^2/Delta) ) \end{sagesilent} \begin{corrolary}[Bound on $r$ \#2] \label{cor:direct_rmax_with_uniform_eps} Let $v$ be a fixed Chern character and - $R:=\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2)\Delta(v)$. + $R:=\chern_0(v) \leq n^2\Delta(v)$. Then the ranks of the pseudo-semistabilizers for $v$ are bounded above by the following expression. \bgroup \let\originalDelta\Delta - \def\nu{\lcm(m,2n^2)} + \let\nu\ell \renewcommand\Delta{{\originalDelta(v)}} \begin{equation*} \sage{r_upper_bound_all_q.expand()} @@ -1441,9 +1444,7 @@ r_upper_bound_all_q = ( \begin{proof} \bgroup \def\psi{\chern_1^{\beta}(F)} -\def\nu{\lcm(m,2n^2)} \let\originalDelta\Delta -\renewcommand\Delta{{\psi^2}} The ranks of the pseudo-semistabilizers for $v$ are bounded above by the maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem \ref{thm:rmax_with_uniform_eps}. @@ -1459,12 +1460,12 @@ and evaluating on of the $f_i$ there. The intersection exists, provided that $f_1(\chern_1^{\beta}(F))>f_2(\chern_1^{\beta}(F))=R$, or equivalently, -$R \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$. +$R \leq n^2{\chern_1^{\beta}(F)}^2$. Setting $f_1(q)=f_2(q)$ yields $q=\sage{q_sol.expand()}$. And evaluating $f_1$ at this $q$-value gives: -$\sage{r_upper_bound_all_q.expand()}$. -Finally, noting that $\originalDelta(v)=\psi^2$, we get the bound as +$\sage{r_upper_bound_all_q.expand().subs([nu==1,Delta==psi^2])}$. +Finally, noting that $\originalDelta(v)=\psi^2\ell^2$, we get the bound as stated in the corollary. \egroup \end{proof} @@ -1498,7 +1499,7 @@ These bound can be refined a bit more by considering restrictions from the possible values that $r$ take. Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of -$\frac{1}{m}\ZZ$ is at least $\frac{1}{\lcm(m,2n^2)}$ away. However this a +$\frac{1}{2}\ZZ$ is at least $\frac{1}{2n^2}$ away. However this a conservative estimate, and a larger gap can sometimes be guaranteed if we know this value of $\frac{1}{2n^2}\ZZ$ explicitly. @@ -1547,7 +1548,7 @@ proof of theorem \ref{thm:rmax_with_uniform_eps}: $\epsilon_{q,1}$ and $\epsilon_{q,2}$ ] \label{lemdfn:epsilon_q} - Suppose $d \in \frac{1}{m}\ZZ$ satisfies the condition in + Suppose $d \in \frac{1}{2}\ZZ$ satisfies the condition in eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. That is: @@ -1567,27 +1568,27 @@ Where $\epsilon_{q,1}$ and $\epsilon_{q,2}$ are defined as follows: \begin{equation*} \epsilon_{q,1} := - \frac{k_{q,1}}{2mn^2} + \frac{k_{q,1}}{2n^2} \qquad \epsilon_{q,2} := - \frac{k_{q,2}}{2mn^2} + \frac{k_{q,2}}{2n^2} \end{equation*} \begin{align*} \text{where } &k_{q,1} \text{ is the least } k\in\ZZ_{>0}\: s.t.:\: - k \equiv -\aa\bb m \mod n + k \equiv -\aa\bb \mod n \\ &k_{q,2} \text{ is the least } k\in\ZZ_{>0}\: s.t.:\: - k \equiv \aa\bb m (\aa\aa^{'}-2) - \mod n\gcd(2n,\aa^2 m) + k \equiv \aa\bb (\aa\aa^{'}-2) + \mod n\gcd(n,\aa^2) \end{align*} \end{lemmadfn} It is worth noting that $\epsilon_{q,2}$ is potentially larger than -$\epsilon_{q,2}$ +$\epsilon_{q,1}$ but calculating it involves a $\gcd$, a modulo reduction, and a modulo $n$ inverse, for each $q$ considered. @@ -1596,31 +1597,31 @@ inverse, for each $q$ considered. Consider the following: \begin{align} - \frac{ x }{ m } + \frac{ x }{ 2 } - \frac{ (\aa r+2\bb)\aa }{ 2n^2 } - = \frac{ k }{ 2mn^2 } + = \frac{ k }{ 2n^2 } \quad \text{for some } x \in \ZZ \span \span \span \span \span \label{eqn:finding_better_eps_problem} \\ &\Longleftrightarrow& - - (\aa r+2\bb)\aa m + - (\aa r+2\bb)\aa &\equiv k && - \mod 2n^2 + \mod n^2 \\ &\Longleftrightarrow& - - \aa^2 m r - 2\aa\bb m + - \aa^2 r - 2\aa\bb &\equiv k && - \mod 2n^2 + \mod n^2 \\ &\Longrightarrow& - \aa^2 \aa^{'}\bb m - 2\aa\bb m + \aa^2 \aa^{'}\bb - 2\aa\bb &\equiv k && - \mod \gcd(2n^2, \aa^2 mn) + \mod \gcd(n^2, \aa^2 n) \label{eqn:better_eps_problem_k_mod_gcd2n2_a2mn} \\ &\Longrightarrow& - -\aa\bb m + -\aa\bb &\equiv k && \mod n \label{eqn:better_eps_problem_k_mod_n} @@ -1631,12 +1632,12 @@ eqn \ref{eqn:finding_better_eps_problem}. Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n}, we can pick the smallest $k_{q,1} \in \ZZ_{>0}$ which satisfies this new condition (a computation only depending on $q$ and $\beta$, but not $r$). -We are then guaranteed that the gap $\frac{k}{2mn^2}$ is at least +We are then guaranteed that the gap $\frac{k}{2n^2}$ is at least $\epsilon_{q,1}$. Furthermore, $k$ also satisfies eqn \ref{eqn:better_eps_problem_k_mod_gcd2n2_a2mn} so we can also pick the smallest $k_{q,2} \in \ZZ_{>0}$ satisfying this condition, -which also guarantees that the gap $\frac{k}{2mn^2}$ is at least $\epsilon_{q,2}$. +which also guarantees that the gap $\frac{k}{2n^2}$ is at least $\epsilon_{q,2}$. \end{proof} @@ -1678,9 +1679,9 @@ eps_k_i_subs = nu == (2*m*n^2)/delta Just like in examples \ref{exmpl:recurring-first} and \ref{exmpl:recurring-second}, take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that -$m=2$, $\beta_-=\sage{recurring.b}$, giving $n=\sage{recurring.b.denominator()}$ +$m=2$, $\beta=\sage{recurring.b}$, giving $n=\sage{recurring.b.denominator()}$ and $\chern_1^{\sage{recurring.b}}(F) = \sage{recurring.twisted.ch[1]}$. -% TODO transcode notebook code +%% TODO transcode notebook code Using the above theorem \ref{thm:rmax_with_eps1}, TODO fill in values \end{example} -- GitLab