From 885d60070f98d5cbf131ae091cd74cf0a8da4f94 Mon Sep 17 00:00:00 2001
From: Luke Naylor <l.naylor@sms.ed.ac.uk>
Date: Wed, 21 Jun 2023 12:34:16 +0100
Subject: [PATCH] Remove useage of m in refinement section

---
 main.tex | 95 ++++++++++++++++++++++++++++----------------------------
 1 file changed, 48 insertions(+), 47 deletions(-)

diff --git a/main.tex b/main.tex
index dd9bc22..8197ab1 100644
--- a/main.tex
+++ b/main.tex
@@ -458,6 +458,7 @@ Component-wise, this is:
 \\
 	\chern^\beta_2(E) &= \chern_2(E) - \beta \chern_1(E) + \frac{\beta^2}{2} \chern_0(E)
 \end{align*}
+where $\chern_i$ is the coefficient of $\ell^i$ in $\chern$.
 
 % TODO I think this^ needs adjusting for general Surface with $\ell$
 \end{dfn}
@@ -504,7 +505,7 @@ var("m") # Initialize symbol for variety parameter
 \end{sagesilent}
 
 This is where the rationality of $\beta_{-}$ comes in. If
-$\beta_{-} = \frac{*}{n}$ for some $*,n \in \ZZ$. Then
+$\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$. Then
 $\chern^{\beta_-}_2(E) \in \frac{1}{\lcm(m,2n^2)}\ZZ$ where $m$ is the integer
 which guarantees $\chern_2(E) \in \frac{1}{m}\ZZ$ (determined by the variety).
 In particular, since $\chern_2^{\beta_-}(E) > 0$ (by using 	$P=(\beta_-,0)$ in
@@ -590,8 +591,8 @@ corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what
 was implicitly happening before).
 
 First, let us fix a Chern character for $F$,
-$\chern(F) = (R,C,D)$, and consider the possible Chern characters
-$\chern(E) = (r,c,d)$ of some semistabilizer $E$.
+$\chern(F) = (R,C\ell,D\ell^2)$, and consider the possible Chern characters
+$\chern(E) = (r,c\ell,d\ell^2)$ of some semistabilizer $E$.
  
 \begin{sagesilent}
 # Requires extra package:
@@ -1217,7 +1218,7 @@ for the bounds on $d$ in terms of $r$ is illustrated in figure
 (\ref{fig:d_bounds_xmpl_gnrc_q}).
 The question of whether there are pseudo-destabilizers of arbitrarily large
 rank, in the context of the graph, comes down to whether there are points
-$(r,d) \in \ZZ \oplus \frac{1}{m} \ZZ$ (with large $r$)
+$(r,d) \in \ZZ \oplus \frac{1}{2} \ZZ$ (with large $r$)
 % TODO have a proper definition for pseudo-destabilizers/walls
 that fit above the yellow line (ensuring positive radius of wall) but below the
 blue and green (ensuring $\Delta(E), \Delta(G) > 0$).
@@ -1253,7 +1254,11 @@ $(r,c,d)$ that satisfy all inequalities to give a pseudowall.
 \subsubsection{All Semistabilizers Left of Vertical Wall for Rational Beta min}
 
 
-The strategy here is similar to what was shown in (sect \ref{sec:twisted-chern}),
+The strategy here is similar to what was shown in (sect
+\ref{sec:twisted-chern}).
+One specialization here is to use that $\ell:=c_1(H)$ generates $NS(X)$, so that
+in fact, any Chern character can be written as
+$\left(r,c\ell,\frac{e}{2}\ell^2\right)$ for $r,c,e\in\ZZ$.
 % ref to Schmidt?
 
 \begin{sagesilent}
@@ -1281,7 +1286,7 @@ radius of the pseudo-wall being positive
 
 \begin{equation}
 \label{eqn:positive_rad_condition_in_terms_of_q_beta}
-	\frac{1}{m}\ZZ
+	\frac{1}{2}\ZZ
 	\ni
 	\qquad
 	\sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()}
@@ -1293,19 +1298,19 @@ radius of the pseudo-wall being positive
 \begin{sagesilent}
 var("nu", domain="real") # placeholder for the specific values of 1/epsilon
 
-assymptote_gap_condition1 = (1/nu < bgmlv2_d_upperbound_exp_term)
-assymptote_gap_condition2 = (1/nu < bgmlv3_d_upperbound_exp_term_alt2)
+assymptote_gap_condition1 = (1/(2*n^2) < bgmlv2_d_upperbound_exp_term)
+assymptote_gap_condition2 = (1/(2*n^2) < bgmlv3_d_upperbound_exp_term_alt2)
 
 r_upper_bound1 = (
 	assymptote_gap_condition1
-	* r * nu
+	* r * 2*n^2
 )
 
 assert r_upper_bound1.lhs() == r
 
 r_upper_bound2 = (
 	assymptote_gap_condition2
-	* (r-R) * nu + R
+	* (r-R) * 2*n^2 + R
 )
 
 assert r_upper_bound2.lhs() == r
@@ -1313,13 +1318,12 @@ assert r_upper_bound2.lhs() == r
 
 \begin{theorem}[Bound on $r$ \#1]
 \label{thm:rmax_with_uniform_eps}
-	Let $v = (R,C,D)$ be a fixed Chern character. Then the ranks of the
+	Let $v = (R,C\ell,D\ell^2)$ be a fixed Chern character. Then the ranks of the
 	pseudo-semistabilizers for $v$ with
 	$\chern_1^\beta = q$
 	are bounded above by the following expression.
 
 	\bgroup
-	\def\nu{\lcm(m,2n^2)}
 	\def\psi{\chern_1^{\beta}(F)}
 	\begin{align*}
 		\min
@@ -1340,9 +1344,9 @@ assert r_upper_bound2.lhs() == r
 \noindent
 Both $d$ and the lower bound in
 (eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta})
-are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$.
+are elements of $\frac{1}{2n^2}\ZZ$.
 So, if any of the two upper bounds on $d$ come to within
-$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for
+$\frac{1}{2n^2}$ of this lower bound, then there are no solutions for
 $d$.
 Hence any corresponding $r$ cannot be a rank of a
 pseudo-semistabilizer for $v$.
@@ -1381,7 +1385,7 @@ bounds_too_tight_condition2 = (
 		\sage{bgmlv2_d_upperbound_exp_term},
 		\sage{bgmlv3_d_upperbound_exp_term_alt2}
 	\right)
-	\geq \epsilon := \frac{1}{\lcm(m,2n^2)}
+	\geq \epsilon := \frac{1}{2n^2}
 \end{equation}
 \egroup
 
@@ -1390,7 +1394,6 @@ This is equivalent to:
 
 \bgroup
 \def\psi{\chern_1^{\beta}(F)}
-\def\nu{\lcm(m,2n^2)}
 \begin{equation}
 	\label{eqn:thm-bound-for-r-impossible-cond-for-r}
 	r \leq
@@ -1410,27 +1413,27 @@ This is equivalent to:
 \end{proof}
 
 \begin{sagesilent}
-var("Delta", domain="real")
+var("Delta nu", domain="real")
 q_sol = solve(r_upper_bound1.rhs() == r_upper_bound2.rhs(), q)[0].rhs()
 r_upper_bound_all_q = (
 	r_upper_bound1.rhs()
 	.expand()
 	.subs(q==q_sol)
-	.subs(psi**2 == Delta)
-	.subs(1/psi**2 == 1/Delta)
+	.subs(psi**2 == Delta/nu^2)
+	.subs(1/psi**2 == nu^2/Delta)
 )
 \end{sagesilent}
 
 \begin{corrolary}[Bound on $r$ \#2]
 \label{cor:direct_rmax_with_uniform_eps}
 	Let $v$ be a fixed Chern character and
-	$R:=\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2)\Delta(v)$.
+	$R:=\chern_0(v) \leq n^2\Delta(v)$.
 	Then the ranks of the pseudo-semistabilizers for $v$
 	are bounded above by the following expression.
 
 	\bgroup
 	\let\originalDelta\Delta
-	\def\nu{\lcm(m,2n^2)}
+	\let\nu\ell
 	\renewcommand\Delta{{\originalDelta(v)}}
 	\begin{equation*}
 		\sage{r_upper_bound_all_q.expand()}
@@ -1441,9 +1444,7 @@ r_upper_bound_all_q = (
 \begin{proof}
 \bgroup
 \def\psi{\chern_1^{\beta}(F)}
-\def\nu{\lcm(m,2n^2)}
 \let\originalDelta\Delta
-\renewcommand\Delta{{\psi^2}}
 The ranks of the pseudo-semistabilizers for $v$ are bounded above by the
 maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem
 \ref{thm:rmax_with_uniform_eps}.
@@ -1459,12 +1460,12 @@ and evaluating on of the $f_i$ there.
 The intersection exists, provided that
 $f_1(\chern_1^{\beta}(F))>f_2(\chern_1^{\beta}(F))=R$,
 or equivalently,
-$R \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$.
+$R \leq n^2{\chern_1^{\beta}(F)}^2$.
 Setting $f_1(q)=f_2(q)$ yields
 $q=\sage{q_sol.expand()}$.
 And evaluating $f_1$ at this $q$-value gives:
-$\sage{r_upper_bound_all_q.expand()}$.
-Finally, noting that $\originalDelta(v)=\psi^2$, we get the bound as
+$\sage{r_upper_bound_all_q.expand().subs([nu==1,Delta==psi^2])}$.
+Finally, noting that $\originalDelta(v)=\psi^2\ell^2$, we get the bound as
 stated in the corollary.
 \egroup
 \end{proof}
@@ -1498,7 +1499,7 @@ These bound can be refined a bit more by considering restrictions from the
 possible values that $r$ take.
 Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact
 that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of
-$\frac{1}{m}\ZZ$ is at least $\frac{1}{\lcm(m,2n^2)}$ away. However this a
+$\frac{1}{2}\ZZ$ is at least $\frac{1}{2n^2}$ away. However this a
 conservative estimate, and a larger gap can sometimes be guaranteed if we know
 this value of $\frac{1}{2n^2}\ZZ$ explicitly. 
 
@@ -1547,7 +1548,7 @@ proof of theorem \ref{thm:rmax_with_uniform_eps}:
 	$\epsilon_{q,1}$ and $\epsilon_{q,2}$
 	]
 	\label{lemdfn:epsilon_q}
-	Suppose $d \in \frac{1}{m}\ZZ$ satisfies the condition in
+	Suppose $d \in \frac{1}{2}\ZZ$ satisfies the condition in
 	eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}.
 	That is:
 
@@ -1567,27 +1568,27 @@ Where $\epsilon_{q,1}$ and $\epsilon_{q,2}$ are defined as follows:
 
 \begin{equation*}
 	\epsilon_{q,1} :=
-	\frac{k_{q,1}}{2mn^2}
+	\frac{k_{q,1}}{2n^2}
 	\qquad
 	\epsilon_{q,2} :=
-	\frac{k_{q,2}}{2mn^2}
+	\frac{k_{q,2}}{2n^2}
 \end{equation*}
 \begin{align*}
 	\text{where }
 	&k_{q,1} \text{ is the least }
 	k\in\ZZ_{>0}\: s.t.:\:
-	k \equiv -\aa\bb m \mod n
+	k \equiv -\aa\bb \mod n
 \\
 	&k_{q,2} \text{ is the least }
 	k\in\ZZ_{>0}\: s.t.:\:
-	k \equiv \aa\bb m (\aa\aa^{'}-2)
-	\mod n\gcd(2n,\aa^2 m)
+	k \equiv \aa\bb (\aa\aa^{'}-2)
+	\mod n\gcd(n,\aa^2)
 \end{align*}
 	
 \end{lemmadfn}
 
 It is worth noting that $\epsilon_{q,2}$ is potentially larger than
-$\epsilon_{q,2}$
+$\epsilon_{q,1}$
 but calculating it involves a $\gcd$, a modulo reduction, and a modulo $n$
 inverse, for each $q$ considered.
 
@@ -1596,31 +1597,31 @@ inverse, for each $q$ considered.
 Consider the following:
 
 \begin{align}
-	\frac{ x }{ m }
+	\frac{ x }{ 2 }
 	- \frac{
 		(\aa r+2\bb)\aa
 	}{
 		2n^2
 	}
-	= \frac{ k }{ 2mn^2 }
+	= \frac{ k }{ 2n^2 }
 	\quad \text{for some } x \in \ZZ
 	\span \span \span \span \span
 	\label{eqn:finding_better_eps_problem}
 \\ &\Longleftrightarrow& 
-	- (\aa r+2\bb)\aa m
+	- (\aa r+2\bb)\aa
 	&\equiv k &&
-	\mod 2n^2
+	\mod n^2
 \\ &\Longleftrightarrow&
-	- \aa^2 m r - 2\aa\bb m
+	- \aa^2 r - 2\aa\bb
 	&\equiv k &&
-	\mod 2n^2
+	\mod n^2
 \\ &\Longrightarrow&
-  \aa^2 \aa^{'}\bb m - 2\aa\bb m
+  \aa^2 \aa^{'}\bb - 2\aa\bb
 	&\equiv k &&
-	\mod \gcd(2n^2, \aa^2 mn)
+	\mod \gcd(n^2, \aa^2 n)
 	\label{eqn:better_eps_problem_k_mod_gcd2n2_a2mn}
 \\ &\Longrightarrow&
-  -\aa\bb m
+  -\aa\bb
 	&\equiv k &&
 	\mod n
 	\label{eqn:better_eps_problem_k_mod_n}
@@ -1631,12 +1632,12 @@ eqn \ref{eqn:finding_better_eps_problem}.
 Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n},
 we can pick the smallest $k_{q,1} \in \ZZ_{>0}$ which satisfies this new condition
 (a computation only depending on $q$ and $\beta$, but not $r$).
-We are then guaranteed that the gap $\frac{k}{2mn^2}$ is at least
+We are then guaranteed that the gap $\frac{k}{2n^2}$ is at least
 $\epsilon_{q,1}$.
 Furthermore, $k$ also satisfies
 eqn \ref{eqn:better_eps_problem_k_mod_gcd2n2_a2mn}
 so we can also pick the smallest $k_{q,2} \in \ZZ_{>0}$ satisfying this condition,
-which also guarantees that the gap $\frac{k}{2mn^2}$ is at least $\epsilon_{q,2}$.
+which also guarantees that the gap $\frac{k}{2n^2}$ is at least $\epsilon_{q,2}$.
 
 \end{proof}
 
@@ -1678,9 +1679,9 @@ eps_k_i_subs = nu == (2*m*n^2)/delta
 Just like in examples \ref{exmpl:recurring-first} and
 \ref{exmpl:recurring-second},
 take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that
-$m=2$, $\beta_-=\sage{recurring.b}$, giving $n=\sage{recurring.b.denominator()}$
+$m=2$, $\beta=\sage{recurring.b}$, giving $n=\sage{recurring.b.denominator()}$
 and $\chern_1^{\sage{recurring.b}}(F) = \sage{recurring.twisted.ch[1]}$.
-% TODO transcode notebook code
+%% TODO transcode notebook code
 Using the above theorem \ref{thm:rmax_with_eps1},
 TODO fill in values
 \end{example}
-- 
GitLab