From 8ba0438a0fe2941a7d96680c77c36a8b38de6e4b Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Wed, 13 Sep 2023 22:53:50 +0100 Subject: [PATCH] Extend numerical formulations to rank 0 --- main.tex | 18 ++++++++++++------ 1 file changed, 12 insertions(+), 6 deletions(-) diff --git a/main.tex b/main.tex index fcfcac8..504b0fe 100644 --- a/main.tex +++ b/main.tex @@ -506,7 +506,8 @@ semistabilizing sequence. \begin{lemma}[Numerical tests for left-wall pseudo-semistabilizers] \label{lem:pseudo_wall_numerical_tests} Let $v$ and $u$ be Chern characters with $\Delta(v), -\Delta(u)\geq 0$, and $v$ has non-negative rank. Let $P$ be a point on $\Theta_v^-$. +\Delta(u)\geq 0$, and $v$ has non-negative rank (and $\chern_1(v)>0$ if rank 0). +Let $P$ be a point on $\Theta_v^-$. \noindent The following conditions: @@ -635,7 +636,8 @@ are trying to solve for. \begin{problem}[sufficiently large `left' pseudo-walls] \label{problem:problem-statement-1} -Fix a Chern character $v$ with non-negative rank, and $\Delta(v) \geq 0$. +Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0), +and $\Delta(v) \geq 0$. The goal is to find all pseudo-semistabilizers $u$ which give circular pseudo-walls containing some fixed point $P\in\Theta_v^-$. @@ -670,8 +672,8 @@ $v-u$ for each solution $u$ of the problem. \begin{problem}[all `left' pseudo-walls] \label{problem:problem-statement-2} -Fix a Chern character $v$ with non-negative rank, $\Delta(v) \geq 0$, -and $\beta_{-}(v) \in \QQ$. +Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0), +$\Delta(v) \geq 0$, and $\beta_{-}(v) \in \QQ$. The goal is to find all pseudo-semistabilizers $u$ which give circular pseudo-walls on the left side of $V_v$. \end{problem} @@ -697,7 +699,9 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \begin{lemma}[Numerical Tests for Sufficiently Large `left' Pseudo-walls] \label{lem:num_test_prob1} - Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, + Given a Chern character $v$ with non-negative rank + (with $\chern_1(v)>0$ if rank 0) + and $\Delta(v) \geq 0$, and a choice of point $P$ on $\Theta_v^-$. Solutions $u=(r,c\ell,\frac{e}{\lcm(m,2)}\ell^2)$ to problem \ref{problem:problem-statement-1}. @@ -718,7 +722,9 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \end{lemma} \begin{proof} - Consider the context of $v$ being a Chern character with positive rank and + Consider the context of $v$ being a Chern character with non-negative rank + (and $\chern_1(v)>0$ if rank 0) + and $\Delta \geq 0$, and $u$ being a Chern character with $\Delta(u) \geq 0$. Lemma \ref{lem:pseudo_wall_numerical_tests} gives that the remaining conditions for $u$ being a solution to problem -- GitLab