From 9179ff76d1a16fa52a77ffe24496bb5590bea1f4 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Wed, 19 Apr 2023 23:31:56 +0100 Subject: [PATCH] Second Bogomolov inequality --- main.tex | 47 +++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 47 insertions(+) diff --git a/main.tex b/main.tex index 63d5c71..d5d6d1a 100644 --- a/main.tex +++ b/main.tex @@ -230,6 +230,53 @@ This can be rearranged to express a bound on $d$ as follows: \end{dmath} +\noindent +In the case $\beta = \beta_{-}$ (or $\beta_{+}$) this can be simplified. + +\subsection{$\Delta(E) \geq 0$} + +This condition expressed in terms of $R,C,D,r,c,d$ looks as follows: + +\begin{sagesilent} + # First Bogomolov-Gieseker form expression that must be non-negative: + bgmlv2 = Δ(u) +\end{sagesilent} + +\begin{equation} + \sage{0 <= bgmlv2.expand() } +\end{equation} + + +\noindent +Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) +we get the following: + +\begin{sagesilent} + bgmlv2_with_q = bgmlv2.expand().subs(c == c_in_terms_of_q) +\end{sagesilent} + +\begin{equation} + \sage{0 <= bgmlv2_with_q} +\end{equation} + + +\noindent +This can be rearranged to express a bound on $d$ as follows: + +\begin{sagesilent} + bgmlv2_d_ineq = ( + ((0 <= bgmlv2_with_q)/2/r + d) # Rearrange for d + .expand() + ) + + bgmlv2_d_lowerbound = bgmlv2_d_ineq.rhs() # Keep hold of lower bound for d +\end{sagesilent} + +\begin{equation} + \sage{bgmlv2_d_ineq} +\end{equation} + + \noindent In the case $\beta = \beta_{-}$ (or $\beta_{+}$) this can be simplified. -- GitLab