From 963400e5fe90a422d2d08a57c51077329722cb05 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Fri, 14 Jul 2023 22:03:55 +0100 Subject: [PATCH] Adjust plots and rephrase problem statement --- main.tex | 44 ++++++++++++++++++++++++++++---------------- 1 file changed, 28 insertions(+), 16 deletions(-) diff --git a/main.tex b/main.tex index d2147e2..73f2fc5 100644 --- a/main.tex +++ b/main.tex @@ -38,6 +38,7 @@ sorting=ynt \newtheorem{lemma}{Lemma}[section] \newtheorem{fact}{Fact}[section] \newtheorem{example}{Example}[section] +\newtheorem{problem}{Problem Statement} \begin{document} @@ -642,22 +643,33 @@ finding all pseudo-walls when $\beta_{-}\in\QQ$. In section [ref], a different algorithm will be presented making use of the later theorems in this article, with the goal of cutting down the run time. -\subsection*{Problem statement} -\label{subsect:problem-statement} +\begin{problem}[sufficiently large `left' pseudo-walls] +\label{problem:problem-statement-1} Fix a Chern character $v$ with positive rank, $\Delta(v) \geq 0$, and $\beta_{-}(v) \in \QQ$. -The goal is to find all Chern characters $u=(r,c\ell,d\ell^2)$ which satisfy the -conditions of lemma \ref{lem:pseudo_wall_numerical_tests} using -$P=(\beta_{-},0)$, $\chern_1^{\beta_{-}}(v-u)\geq 0$, as well as the Bogomolov inequalities: -$\Delta(u),\Delta(v-u) \geq 0$ and $\Delta(u)+\Delta(v-u) \leq \Delta(v)$. -We want to restrict our attention to pseudo-walls left of $V_v$ (condition (a) of -lemma), because this is the side of $V_v$ containing the chamber for Gieseker -stable objects, and the picture on the other side should be symmetric. -Condition (c) of the lemma is there to restrict to objects most likely to -semistabilizers of actual sheaves. The Chern characters which destabilize -`outwards' can be recovered as $v-u$ for each solution $u$ to the current -problem. +The goal is to find all pseudo-semistabilizers $u=(r,c\ell,d\ell^2)$ +which give circular pseudo-walls containing some fixed point +$P\in\Theta_v^-$. +With the added restriction that $u$ `destabilizes' $v$ moving `inwards', that is, +$\nu(u)>\nu(v)$ inside the circular pseudo-wall +(`outward' destabilizers can be recovered as $v-u$). + +This will give all pseudo-walls between the chamber corresponding to Gieseker +stability and the stability condition corresponding to $P$. +\end{problem} + +\begin{problem}[all `left' pseudo-walls] +\label{problem:problem-statement-1} + +Fix a Chern character $v$ with positive rank, $\Delta(v) \geq 0$, +and $\beta_{-}(v) \in \QQ$. +The goal is to find all solutions $u=(r,c\ell,d\ell^2)$ +to problem \ref{problem:problem-statement-1} with the choice +$P=(\beta_{-},0)$. + +This will give all circular pseudo-walls left of $V_v$. +\end{problem} \subsection*{Algorithm} @@ -1310,14 +1322,14 @@ def plot_d_bound( \centering \begin{subfigure}{.45\textwidth} \centering - \sageplot[width=\linewidth]{plot_d_bound(v_example, 0)} + \sageplot[width=\linewidth]{plot_d_bound(v_example, 0, ymin=-0.5)} \caption{$q = 0$ (all bounds other than green coincide on line)} \label{fig:d_bounds_xmpl_min_q} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \centering - \sageplot[width=\linewidth]{plot_d_bound(v_example, 4, ymin=-3)} + \sageplot[width=\linewidth]{plot_d_bound(v_example, 4, ymin=-3, ymax=3)} \caption{$q = \chern^{\beta}(F)$ (all bounds other than blue coincide on line)} \label{fig:d_bounds_xmpl_max_q} \end{subfigure} @@ -1365,7 +1377,7 @@ Some of the details around the associated numerics are explored next. \centering \sageplot[ width=\linewidth -]{plot_d_bound(v_example, 2, ymax=6, ymin=-2, aspect_ratio=1)} +]{plot_d_bound(v_example, 2, ymax=4, ymin=-2, aspect_ratio=1)} \caption{ Bounds on $d:=\chern_2(E)$ in terms of $r:=\chern_0(E)$ for a fixed value $\chern_1^{\beta}(F)/2$ of $q:=\chern_1^{\beta}(E)$. -- GitLab