diff --git a/main.tex b/main.tex
index 14d9cbb12f64d9065c7b9e768cd58c41eb17837f..f3e6e333478c40ab7474c1ef9096658304cb5668 100644
--- a/main.tex
+++ b/main.tex
@@ -1403,8 +1403,8 @@ r_upper_bound_all_q = (
 \let\originalDelta\Delta
 \renewcommand\Delta{{\psi^2}}
 The ranks of the pseudo-semistabilizers for $v$ are bounded above by the
-maximum over $q\in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ of the
-expression in theorem \ref{thm:rmax_with_uniform_eps}.
+maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem
+\ref{thm:rmax_with_uniform_eps}.
 Noticing that the expression is a maximum of two quadratic functions in $q$:
 \begin{equation*}
 	f_1(q):=\sage{r_upper_bound1.rhs()} \qquad
@@ -1429,7 +1429,7 @@ stated in the corollary.
 
 %% refinements using specific values of q and beta
 
-This bound can be refined a bit more by considering restrictions from the
+These bound can be refined a bit more by considering restrictions from the
 possible values that $r$ take.
 Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact
 that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of