From 96ca695e5ae2a31d092cfb826b9e8e0a6d9139a2 Mon Sep 17 00:00:00 2001
From: Luke Naylor <l.naylor@sms.ed.ac.uk>
Date: Thu, 15 Jun 2023 23:58:33 +0100
Subject: [PATCH] Minor wording changes around main corrolary

---
 main.tex | 6 +++---
 1 file changed, 3 insertions(+), 3 deletions(-)

diff --git a/main.tex b/main.tex
index 14d9cbb..f3e6e33 100644
--- a/main.tex
+++ b/main.tex
@@ -1403,8 +1403,8 @@ r_upper_bound_all_q = (
 \let\originalDelta\Delta
 \renewcommand\Delta{{\psi^2}}
 The ranks of the pseudo-semistabilizers for $v$ are bounded above by the
-maximum over $q\in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ of the
-expression in theorem \ref{thm:rmax_with_uniform_eps}.
+maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem
+\ref{thm:rmax_with_uniform_eps}.
 Noticing that the expression is a maximum of two quadratic functions in $q$:
 \begin{equation*}
 	f_1(q):=\sage{r_upper_bound1.rhs()} \qquad
@@ -1429,7 +1429,7 @@ stated in the corollary.
 
 %% refinements using specific values of q and beta
 
-This bound can be refined a bit more by considering restrictions from the
+These bound can be refined a bit more by considering restrictions from the
 possible values that $r$ take.
 Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact
 that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of
-- 
GitLab