diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index 59030e9e293a52b3ab965b4553765a01b6484d6e..06fd0f65a61cf0a5fccdaf316fbab77838b33a47 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -979,7 +979,7 @@ Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_v$ in the proof of Theorem \ref{thm:rmax_with_uniform_eps}: \begin{lemmadfn}[% - Finding a better alternative to $\epsilon_v$: + A better alternative to $\epsilon_v$: $\epsilon_{v,q}$ ] \label{lemdfn:epsilon_q} diff --git a/tex/setting-and-problems.tex b/tex/setting-and-problems.tex index 9a6cf0820fee4828c924fefe2ee435303e7b1bc0..d9c8a3fb03bd9d8e0b9367bf1cde433abbbfc5da 100644 --- a/tex/setting-and-problems.tex +++ b/tex/setting-and-problems.tex @@ -167,7 +167,7 @@ are equivalent to the following more numerical conditions: \begin{proof} First, consider the case where $\chern_0(v)>0$. -Let $u,v$ be Chern characters with +Let $u,v$ be Chern characters such that $\Delta(u),\Delta(v) \geq 0$, and $v$ has positive rank. For the forwards implication, assume that the suppositions of the Lemma are @@ -461,7 +461,7 @@ problem using Lemma \ref{lem:pseudo_wall_numerical_tests}. \begin{proof} Consider the context of $v$ being a Chern character with non-negative rank - (and $\chern_1(v)>0$ if rank 0) + (and with $\chern_1(v)>0$ if rank 0) and $\Delta \geq 0$, and $u$ being a Chern character with $\Delta(u) \geq 0$. Lemma \ref{lem:pseudo_wall_numerical_tests} gives that the remaining