From 9a91722ea07b587d183dfe06ef3ebf38184ac1f9 Mon Sep 17 00:00:00 2001
From: Luke Naylor <l.naylor@sms.ed.ac.uk>
Date: Mon, 24 Jul 2023 17:02:19 +0100
Subject: [PATCH] Correct corrolary to corollary

---
 main.tex | 28 ++++++++++++++--------------
 1 file changed, 14 insertions(+), 14 deletions(-)

diff --git a/main.tex b/main.tex
index 52e2334..14e8b49 100644
--- a/main.tex
+++ b/main.tex
@@ -33,7 +33,7 @@ sorting=ynt
 \newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}}
 
 \newtheorem{theorem}{Theorem}[section]
-\newtheorem{corrolary}{Corrolary}[section]
+\newtheorem{corollary}{Corollary}[section]
 \newtheorem{lemma}{Lemma}[section]
 \newtheorem{fact}{Fact}[section]
 \newtheorem{example}{Example}[section]
@@ -730,7 +730,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
 
 \end{proof}
 
-\begin{corrolary}[Numerical Tests for All `left' Pseudo-walls]
+\begin{corollary}[Numerical Tests for All `left' Pseudo-walls]
 \label{cor:num_test_prob2}
 	Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$,
 	such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$.
@@ -750,7 +750,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}.
 		\item $\chern_2^{\beta_{-}}(u)>0$
 			\label{item:radiuscond:lem:num_test_prob2}
 	\end{enumerate}
-\end{corrolary}
+\end{corollary}
 
 \begin{proof}
 	This is a specialization of the previous lemma, using $P=(\beta_{-},0)$.
@@ -996,7 +996,7 @@ u = Chern_Char(*var("r c d", domain="real"))
 
 Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in
 lemma \ref{lem:num_test_prob1}
-(or corrolary \ref{cor:num_test_prob2})
+(or corollary \ref{cor:num_test_prob2})
 that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$,
 and so we can write:
 
@@ -1030,7 +1030,7 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
 
 This section studies the numerical conditions that $u$ must satisfy as per
 lemma \ref{lem:num_test_prob1}
-(or corrolary \ref{cor:num_test_prob2})
+(or corollary \ref{cor:num_test_prob2})
 
 \subsubsection{Size of pseudo-wall: $\chern_2^P(u)>0$ }
 \label{subsect-d-bound-radiuscond}
@@ -1038,7 +1038,7 @@ lemma \ref{lem:num_test_prob1}
 This condition refers to condition
 \ref{item:radiuscond:lem:num_test_prob1}
 from lemma \ref{lem:num_test_prob1}
-(or corrolary \ref{cor:num_test_prob2}).
+(or corollary \ref{cor:num_test_prob2}).
 
 In the case where we are tackling problem \ref{problem:problem-statement-2}
 (with $\beta = \beta_{-}$), this condition, when expressed as a bound on $d$,
@@ -1061,7 +1061,7 @@ amounts to:
 This condition refers to condition
 \ref{item:bgmlvu:lem:num_test_prob1}
 from lemma \ref{lem:num_test_prob1}
-(or corrolary \ref{cor:num_test_prob2}).
+(or corollary \ref{cor:num_test_prob2}).
 
 
 \begin{sagesilent}
@@ -1089,7 +1089,7 @@ bgmlv2_with_q = (
 \noindent
 This can be rearranged to express a bound on $d$ as follows
 (recall from condition \ref{item:rankpos:lem:num_test_prob1}
-in lemma \ref{lem:num_test_prob1} or corrolary
+in lemma \ref{lem:num_test_prob1} or corollary
 \ref{cor:num_test_prob2} that $r>0$):
 
 \begin{sagesilent}
@@ -1156,7 +1156,7 @@ for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}.
 This condition refers to condition
 \ref{item:bgmlvv-u:lem:num_test_prob1}
 from lemma \ref{lem:num_test_prob1}
-(or corrolary \ref{cor:num_test_prob2}).
+(or corollary \ref{cor:num_test_prob2}).
 
 Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on
 $d$ yields:
@@ -1297,7 +1297,7 @@ $d=\chern^{\beta_{-}}_2(u)$ induced by conditions
 \ref{item:bgmlvu:lem:num_test_prob2},
 \ref{item:bgmlvv-u:lem:num_test_prob2}, and
 \ref{item:radiuscond:lem:num_test_prob1}
-from corrolary \ref{cor:num_test_prob2} have the same constant and linear
+from corollary \ref{cor:num_test_prob2} have the same constant and linear
 terms in $r$, but different hyperbolic terms.
 These give bounds with the same assymptotes when we take $r\to\infty$
 (for any fixed $q=\chern_1^{\beta_{-}}(u)$).
@@ -1685,7 +1685,7 @@ r_upper_bound_all_q = (
 )
 \end{sagesilent}
 
-\begin{corrolary}[Bound on $r$ \#2]
+\begin{corollary}[Bound on $r$ \#2]
 \label{cor:direct_rmax_with_uniform_eps}
 	Let $v$ be a fixed Chern character and
 	$R\coloneqq\chern_0(v) \leq n^2\Delta(v)$.
@@ -1700,7 +1700,7 @@ r_upper_bound_all_q = (
 		\sage{r_upper_bound_all_q.expand()}
 	\end{equation*}
 	\egroup
-\end{corrolary}
+\end{corollary}
 
 \begin{proof}
 \bgroup
@@ -1749,7 +1749,7 @@ corrolary_bound = (
   .subs(n==recurring.n)
 )
 \end{sagesilent}
-Using the above corrolary \ref{cor:direct_rmax_with_uniform_eps}, we get that
+Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
 the ranks of tilt semistabilizers for $v$ are bounded above by
 $\sage{corrolary_bound} \approx  \sage{float(corrolary_bound)}$,
 which is much closer to real maximum 25 than the original bound 144.
@@ -1772,7 +1772,7 @@ corrolary_bound = (
   .subs(n==extravagant.n)
 )
 \end{sagesilent}
-Using the above corrolary \ref{cor:direct_rmax_with_uniform_eps}, we get that
+Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that
 the ranks of tilt semistabilizers for $v$ are bounded above by
 $\sage{corrolary_bound} \approx  \sage{float(corrolary_bound)}$,
 which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the
-- 
GitLab