From 9a91722ea07b587d183dfe06ef3ebf38184ac1f9 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Mon, 24 Jul 2023 17:02:19 +0100 Subject: [PATCH] Correct corrolary to corollary --- main.tex | 28 ++++++++++++++-------------- 1 file changed, 14 insertions(+), 14 deletions(-) diff --git a/main.tex b/main.tex index 52e2334..14e8b49 100644 --- a/main.tex +++ b/main.tex @@ -33,7 +33,7 @@ sorting=ynt \newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}} \newtheorem{theorem}{Theorem}[section] -\newtheorem{corrolary}{Corrolary}[section] +\newtheorem{corollary}{Corollary}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{fact}{Fact}[section] \newtheorem{example}{Example}[section] @@ -730,7 +730,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \end{proof} -\begin{corrolary}[Numerical Tests for All `left' Pseudo-walls] +\begin{corollary}[Numerical Tests for All `left' Pseudo-walls] \label{cor:num_test_prob2} Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$. @@ -750,7 +750,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \item $\chern_2^{\beta_{-}}(u)>0$ \label{item:radiuscond:lem:num_test_prob2} \end{enumerate} -\end{corrolary} +\end{corollary} \begin{proof} This is a specialization of the previous lemma, using $P=(\beta_{-},0)$. @@ -996,7 +996,7 @@ u = Chern_Char(*var("r c d", domain="real")) Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in lemma \ref{lem:num_test_prob1} -(or corrolary \ref{cor:num_test_prob2}) +(or corollary \ref{cor:num_test_prob2}) that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$, and so we can write: @@ -1030,7 +1030,7 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. This section studies the numerical conditions that $u$ must satisfy as per lemma \ref{lem:num_test_prob1} -(or corrolary \ref{cor:num_test_prob2}) +(or corollary \ref{cor:num_test_prob2}) \subsubsection{Size of pseudo-wall: $\chern_2^P(u)>0$ } \label{subsect-d-bound-radiuscond} @@ -1038,7 +1038,7 @@ lemma \ref{lem:num_test_prob1} This condition refers to condition \ref{item:radiuscond:lem:num_test_prob1} from lemma \ref{lem:num_test_prob1} -(or corrolary \ref{cor:num_test_prob2}). +(or corollary \ref{cor:num_test_prob2}). In the case where we are tackling problem \ref{problem:problem-statement-2} (with $\beta = \beta_{-}$), this condition, when expressed as a bound on $d$, @@ -1061,7 +1061,7 @@ amounts to: This condition refers to condition \ref{item:bgmlvu:lem:num_test_prob1} from lemma \ref{lem:num_test_prob1} -(or corrolary \ref{cor:num_test_prob2}). +(or corollary \ref{cor:num_test_prob2}). \begin{sagesilent} @@ -1089,7 +1089,7 @@ bgmlv2_with_q = ( \noindent This can be rearranged to express a bound on $d$ as follows (recall from condition \ref{item:rankpos:lem:num_test_prob1} -in lemma \ref{lem:num_test_prob1} or corrolary +in lemma \ref{lem:num_test_prob1} or corollary \ref{cor:num_test_prob2} that $r>0$): \begin{sagesilent} @@ -1156,7 +1156,7 @@ for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}. This condition refers to condition \ref{item:bgmlvv-u:lem:num_test_prob1} from lemma \ref{lem:num_test_prob1} -(or corrolary \ref{cor:num_test_prob2}). +(or corollary \ref{cor:num_test_prob2}). Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on $d$ yields: @@ -1297,7 +1297,7 @@ $d=\chern^{\beta_{-}}_2(u)$ induced by conditions \ref{item:bgmlvu:lem:num_test_prob2}, \ref{item:bgmlvv-u:lem:num_test_prob2}, and \ref{item:radiuscond:lem:num_test_prob1} -from corrolary \ref{cor:num_test_prob2} have the same constant and linear +from corollary \ref{cor:num_test_prob2} have the same constant and linear terms in $r$, but different hyperbolic terms. These give bounds with the same assymptotes when we take $r\to\infty$ (for any fixed $q=\chern_1^{\beta_{-}}(u)$). @@ -1685,7 +1685,7 @@ r_upper_bound_all_q = ( ) \end{sagesilent} -\begin{corrolary}[Bound on $r$ \#2] +\begin{corollary}[Bound on $r$ \#2] \label{cor:direct_rmax_with_uniform_eps} Let $v$ be a fixed Chern character and $R\coloneqq\chern_0(v) \leq n^2\Delta(v)$. @@ -1700,7 +1700,7 @@ r_upper_bound_all_q = ( \sage{r_upper_bound_all_q.expand()} \end{equation*} \egroup -\end{corrolary} +\end{corollary} \begin{proof} \bgroup @@ -1749,7 +1749,7 @@ corrolary_bound = ( .subs(n==recurring.n) ) \end{sagesilent} -Using the above corrolary \ref{cor:direct_rmax_with_uniform_eps}, we get that +Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that the ranks of tilt semistabilizers for $v$ are bounded above by $\sage{corrolary_bound} \approx \sage{float(corrolary_bound)}$, which is much closer to real maximum 25 than the original bound 144. @@ -1772,7 +1772,7 @@ corrolary_bound = ( .subs(n==extravagant.n) ) \end{sagesilent} -Using the above corrolary \ref{cor:direct_rmax_with_uniform_eps}, we get that +Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that the ranks of tilt semistabilizers for $v$ are bounded above by $\sage{corrolary_bound} \approx \sage{float(corrolary_bound)}$, which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the -- GitLab