diff --git a/main.tex b/main.tex index e66912c0606cc00408e002c939ad99907dcf6f2a..0065588d181069e9c5a6b3ea9861c56916ca646d 100644 --- a/main.tex +++ b/main.tex @@ -167,7 +167,11 @@ $\chern(F)$, and so we can write: \begin{sagesilent} ts = stability.Tilt beta_min = var("beta", domain="real") - c_lower_bound = -(ts(beta=beta_min).rank(u)/ts().alpha).expand() + c + + c_lower_bound = -( + ts(beta=beta_min).rank(u) + /ts().alpha + ).expand() + c var("q", domain="real") c_in_terms_of_q = c_lower_bound + q @@ -205,7 +209,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) we get the following: \begin{sagesilent} - bgmlv1_with_q = bgmlv1.expand().subs(c == c_in_terms_of_q) + bgmlv1_with_q = ( + bgmlv1 + .expand() + .subs(c == c_in_terms_of_q) + ) \end{sagesilent} \begin{equation} @@ -220,6 +228,7 @@ This can be rearranged to express a bound on $d$ as follows: var("r_alt",domain="real") # r_alt = r - R/2 temporary substitution bgmlv1_with_q_reparam = (bgmlv1_with_q.subs(r == r_alt + R/2)/r_alt).expand() + bgmlv1_d_ineq = ( ((0 >= -bgmlv1_with_q_reparam)/4 + d) # Rearrange for d .subs(r_alt == r - R/2) # Resubstitute r back in @@ -236,45 +245,47 @@ This can be rearranged to express a bound on $d$ as follows: \begin{sagesilent} # Seperate out the terms of the lower bound for d - bgmlv1_d_lowerbound_exp_term = (bgmlv1_d_lowerbound*(R-2*r)).expand().subs(r==2*R)/(R-2*r) - bgmlv1_d_lowerbound_const_term = bgmlv1_d_lowerbound.subs(1/(R-2*r) == 0).subs(r==0) - bgmlv1_d_lowerbound_linear_term = bgmlv1_d_lowerbound.subs(1/(R-2*r) == 0).subs(r==1)*r + bgmlv1_d_lowerbound_without_hyp = bgmlv1_d_lowerbound.subs(1/(R-2*r) == 0) - # Verify the simplified forms of the terms that will be mentioned in text - assert bgmlv1_d_lowerbound_const_term == v.twist(beta_min).ch[2]/2 + beta_min*q, "fail" - assert bgmlv1_d_lowerbound_linear_term == (v.twist(beta_min).ch[2]/2 + beta_min^2/2 + beta_min*q)*r, "fail" + bgmlv1_d_lowerbound_exp_term = ( + bgmlv1_d_lowerbound + - bgmlv1_d_lowerbound_without_hyp + ).expand() - assert bgmlv1_d_lowerbound_exp_term == ( - - 2*R*v.twist(beta_min).ch[2] - - 3*R^2*beta_min^2 - - 4*R*beta_min*q - + C*q - - q^2 - ).expand()/(R-2*r), "fail" + bgmlv1_d_lowerbound_const_term = bgmlv1_d_lowerbound_without_hyp.subs(r==0) - assert bgmlv1_d_lowerbound_exp_term == ( - - 2*D*R + (C^2)/4 - - ((C - 4*R*beta_min)/2 - q)^2 - ).expand()/(R-2*r), "fail" + bgmlv1_d_lowerbound_linear_term = ( + bgmlv1_d_lowerbound_without_hyp + - bgmlv1_d_lowerbound_const_term + ).expand() + + # Verify the simplified forms of the terms that will be mentioned in text + assert bgmlv1_d_lowerbound_const_term == ( + v.twist(beta_min).ch[2]/2 + + beta_min*q + ) assert bgmlv1_d_lowerbound_exp_term == ( - (2*R*beta_min + q) - *(2*R*beta_min + q - C) - + 2*D*R - ).expand()/(2*r - R), "fail" + ( + - R*v.twist(beta_min).ch[2]/2 + - R*beta_min*q + + C*q + - q^2 + )/(R-2*r) + ).expand() \end{sagesilent} + \noindent Viewing equation \ref{eqn-bgmlv1_d_lowerbound} as a lower bound for $d$ given as a function of $r$, the terms can be rewritten as follows. The constant term in $r$ is -$\chern^{\beta}_2(F) + \beta q$. +$\chern^{\beta}_2(F)/2 + \beta q$. The linear term in $r$ is -$(\chern^{\beta}_2(F)/2 + \beta^2/2 + \beta q)r$. +$\sage{bgmlv1_d_lowerbound_linear_term}$. Finally, there's an hyperbolic term in $r$ which tends to 0 as $r \to \infty$, and can be written: -$\frac{-2R\chern^{\beta}_2(F) - 3R^2\beta^2 - 4Rq\beta + Cq - q^2}{R-2r}$ or -$\frac{(2R\beta + q)(2R\beta + q - C) + 2DR}{2r-R}$. +$\frac{R\chern^{\beta}_2(F)/2 + R\beta q - Cq + q^2 }{2r-R}$. In the case $\beta = \beta_{-}$ (or $\beta_{+}$) we have $\chern^{\beta}_2(F) = 0$, so some of these expressions simplify. @@ -298,7 +309,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) we get the following: \begin{sagesilent} - bgmlv2_with_q = bgmlv2.expand().subs(c == c_in_terms_of_q) + bgmlv2_with_q = ( + bgmlv2 + .expand() + .subs(c == c_in_terms_of_q) + ) \end{sagesilent} \begin{equation} @@ -311,11 +326,12 @@ This can be rearranged to express a bound on $d$ as follows: \begin{sagesilent} bgmlv2_d_ineq = ( - ((0 <= bgmlv2_with_q)/2/r + d) # Rearrange for d - .expand() - ) + (0 <= bgmlv2_with_q)/2/r # rescale assuming r > 0 + + d # Rearrange for d + ).expand() - bgmlv2_d_lowerbound = bgmlv2_d_ineq.rhs() # Keep hold of lower bound for d + # Keep hold of lower bound for d + bgmlv2_d_lowerbound = bgmlv2_d_ineq.rhs() \end{sagesilent} \begin{equation} @@ -325,9 +341,16 @@ This can be rearranged to express a bound on $d$ as follows: \begin{sagesilent} # Seperate out the terms of the lower bound for d - bgmlv2_d_lowerbound_exp_term = (bgmlv2_d_lowerbound*r).expand().subs(r==0)/r - bgmlv2_d_lowerbound_const_term = bgmlv2_d_lowerbound.subs(1/r == 0).subs(r==0) - bgmlv2_d_lowerbound_linear_term = bgmlv2_d_lowerbound.subs(1/r == 0).subs(r==1)*r + bgmlv2_d_lowerbound_without_hyp = bgmlv2_d_lowerbound.subs(1/r == 0) + bgmlv2_d_lowerbound_const_term = bgmlv2_d_lowerbound_without_hyp.subs(r==0) + bgmlv2_d_lowerbound_linear_term = ( + bgmlv2_d_lowerbound_without_hyp + - bgmlv2_d_lowerbound_const_term + ).expand() + bgmlv2_d_lowerbound_exp_term = ( + bgmlv2_d_lowerbound + - bgmlv2_d_lowerbound_without_hyp + ).expand() \end{sagesilent} Viewing equation \ref{eqn-bgmlv2_d_lowerbound} as a lower bound for $d$ in term @@ -361,7 +384,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) we get the following: \begin{sagesilent} - bgmlv3_with_q = bgmlv3.expand().subs(c == c_in_terms_of_q) + bgmlv3_with_q = ( + bgmlv3 + .expand() + .subs(c == c_in_terms_of_q) + ) \end{sagesilent} \begin{equation} @@ -376,14 +403,17 @@ This can be rearranged to express a bound on $d$ as follows: var("r_alt",domain="real") # r_alt = r - R temporary substitution bgmlv3_with_q_reparam = ( - bgmlv3_with_q.subs(r == r_alt + R) + bgmlv3_with_q + .subs(r == r_alt + R) /r_alt # This operation assumes r_alt > 0 ).expand() + bgmlv3_d_ineq = ( ((0 <= bgmlv3_with_q_reparam)/2 + d) # Rearrange for d .subs(r_alt == r - R) # Resubstitute r back in .expand() ) + # Check that this equation represents a bound for d assert bgmlv3_d_ineq.lhs() == d, f"Inequality is of the form: {bgmlv3_d_ineq}" bgmlv3_d_upperbound = bgmlv3_d_ineq.rhs() # Keep hold of lower bound for d @@ -398,21 +428,26 @@ This can be rearranged to express a bound on $d$ as follows: # Seperate out the terms of the lower bound for d bgmlv3_d_upperbound_without_hyp = bgmlv3_d_upperbound.subs(1/(R-r) == 0) + bgmlv3_d_upperbound_const_term = bgmlv3_d_upperbound_without_hyp.subs(r==0) + bgmlv3_d_upperbound_linear_term = ( bgmlv3_d_upperbound_without_hyp - bgmlv3_d_upperbound_const_term ).expand() + bgmlv3_d_upperbound_exp_term = ( bgmlv3_d_upperbound - bgmlv3_d_upperbound_without_hyp ).expand() # Verify the simplified forms of the terms that will be mentioned in text + assert bgmlv3_d_upperbound_const_term == ( v.twist(beta_min).ch[2] + beta_min*q ).expand() + assert bgmlv3_d_upperbound_exp_term == ( R*v.twist(beta_min).ch[2] + (C - q)^2/2