From a579508c82f831cee4b0d234215c9ff1c4ea8465 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Fri, 12 May 2023 23:29:57 +0100 Subject: [PATCH] Start leading onto part with tighter bounds --- main.tex | 64 ++++++++++++++++++++++++++++++++++++++------------------ 1 file changed, 44 insertions(+), 20 deletions(-) diff --git a/main.tex b/main.tex index a299d66..c01c5fa 100644 --- a/main.tex +++ b/main.tex @@ -23,7 +23,7 @@ \newcommand{\centralcharge}{\mathcal{Z}} \newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}} -\newtheorem{rmax_with_uniform_eps}{Theorem}[section] +\newtheorem{theorem}{Theorem}[section] \begin{document} @@ -787,6 +787,13 @@ Some of the details around the associated numerics are explored next. The strategy here is similar to what was shown in (sect \ref{sec:twisted-chern}), % ref to Schmidt? + +\begin{sagesilent} +var("a_F b_q n") # Define symbols introduce for values of beta and q +beta_value_expr = (beta == a_F/n) +q_value_expr = (q == b_q/n) +\end{sagesilent} + \renewcommand{\aa}{{a_F}} \newcommand{\bb}{{b_q}} Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$. @@ -799,23 +806,6 @@ Then fix a value of $q$: \cap [0, \chern_1^{\beta}(F)] \end{equation} as noted at the beginning of this section (\ref{sec:refinement}). -Firstly, we only consider $r$-values for which $c:=\chern_1(E)$ is integral: - -\begin{sagesilent} -var("a_F b_q n") # Define symbols introduce for values of beta and q -beta_value_expr = (beta == a_F/n) -q_value_expr = (q == b_q/n) -\end{sagesilent} - -\begin{equation} - c = - \sage{c_in_terms_of_q.subs([q_value_expr,beta_value_expr])} - \in \ZZ -\end{equation} - -\noindent -That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to -$n$, and so invertible mod $n$). Substituting the current values of $q$ and $\beta$ into the condition for the radius of the pseudo-wall being positive @@ -832,7 +822,8 @@ radius of the pseudo-wall being positive \frac{1}{2n^2}\ZZ \end{equation} -\begin{rmax_with_uniform_eps}[Bound on $r$ \#1] +\begin{theorem}[Bound on $r$ \#1] +\label{thm:rmax_with_uniform_eps} Let $v = (R,C,D)$ be a fixed Chern character. Then the ranks of the pseudo-semistabilizers for $v$ are bounded above by the following expression. @@ -853,7 +844,7 @@ radius of the pseudo-wall being positive \right) \right\} \end{align*} -\end{rmax_with_uniform_eps} +\end{theorem} \begin{proof} @@ -945,8 +936,41 @@ for $\epsilon$ gives the result. \end{proof} +%% TODO simplified expression for rmax by predicting which q gives rmax + %% refinements using specific values of q and beta +This bound can be refined a bit more by considering restrictions from the +possible values that $r$ take. +Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact +that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of +$\frac{1}{m}\ZZ$ is at least $\frac{1}{\lcm(m,2n^2)}$ away. However this a +conservative estimate, and a larger gap can sometimes be guaranteed if we know +this value of $\frac{1}{2n^2}\ZZ$ explicitly. + +The expressions that will follow will be a bit more complicated and have more +parts which depend on the values of $q$ and $\beta$, even their numerators +$\aa,\bb$ specifically. The upcoming theorem (TODO ref) is less useful as a +`nice' formula for a bound on the ranks of the pseudo-semistabilizers, but has a +purpose in the context of writing a computer program to find +pseudo-semistabilizers. Such a program would iterate through possible values of +$q$, then iterate through values of $r$ within the bounds (dependent on $q$), +which would then determine $c$, and then find the corresponding possible values +for $d$. + + +Firstly, we only consider $r$-values for which $c:=\chern_1(E)$ is integral: + +\begin{equation} + c = + \sage{c_in_terms_of_q.subs([q_value_expr,beta_value_expr])} + \in \ZZ +\end{equation} + +\noindent +That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to +$n$, and so invertible mod $n$). + \begin{sagesilent} rhs_numerator = ( positive_radius_condition -- GitLab