diff --git a/main.tex b/main.tex index e282d781b5785396806ba2cd05b6221cbe3516ec..6bbe39e320cb6d54f6806600218350c1ce35982d 100644 --- a/main.tex +++ b/main.tex @@ -916,28 +916,46 @@ radius of the pseudo-wall being positive \frac{1}{2n^2}\ZZ \end{equation} +\begin{sagesilent} +var("Delta", domain="real") # placeholder for the specific values of 1/epsilon + +r_upper_bound1 = ( + (1/Delta < bgmlv2_d_upperbound_exp_term) + * r * Delta +) + +assert r_upper_bound1.lhs() == r + +r_upper_bound2 = ( + (1/Delta < bgmlv3_d_upperbound_exp_term_alt2) + * (r-R) * Delta + R +) + +assert r_upper_bound2.lhs() == r +\end{sagesilent} + \begin{theorem}[Bound on $r$ \#1] \label{thm:rmax_with_uniform_eps} Let $v = (R,C,D)$ be a fixed Chern character. Then the ranks of the - pseudo-semistabilizers for $v$ are bounded above by the following expression. + pseudo-semistabilizers for $v$ with + $\chern_1^\beta = q$ + are bounded above by the following expression. + \bgroup + \def\Delta{\lcm(m,2n^2)} + \def\psi{\chern_1^{\beta}(F)} \begin{align*} - &\frac{\lcm(m,2n^2)}{2} - \max_{q \in [0,\chern_1^\beta(v)]} - \\ - &\left\{ - \min - \left( - q^2, - 2R\beta q - +C^2 - -2DR - -2Cq - +q^2 - +\frac{R}{\lcm(m,2n^2)} - \right) - \right\} + \min + \left( + \sage{r_upper_bound1.rhs()}, \:\: + \sage{r_upper_bound2.rhs()} + \right) \end{align*} + \egroup + + Taking the maximum of this expression over + $q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ + would give an upper bound for the ranks of pseudo-semistabilizers for $v$. \end{theorem} \begin{proof}