diff --git a/main.tex b/main.tex index 8367c5b2b179f8c4b5ec5e869c4eaaf5af372e36..85102ab6ab14a318c7a896bf61f893f44697f193 100644 --- a/main.tex +++ b/main.tex @@ -1132,47 +1132,26 @@ the constant and linear terms match up with the ones for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}. \subsubsection{ + Semistability of the Quotient: \texorpdfstring{ - $\Delta(G) \geq 0$ + $\Delta(v-u) \geq 0$ }{ - Δ(G) ≥ 0 + Δ(v-u) ≥ 0 } } \label{subsect-d-bound-bgmlv3} -This condition expressed in terms of $R,C,D,r,c,d$ looks as follows: +Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on +$d$ yields: \begin{sagesilent} # Third Bogomolov-Gieseker form expression that must be non-negative: bgmlv3 = Δ(v-u) -\end{sagesilent} - -\begin{equation} - \sage{0 <= bgmlv3.expand() } -\end{equation} - - -\noindent -Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) -we get the following: - -\begin{sagesilent} bgmlv3_with_q = ( bgmlv3 .expand() .subs(c == c_in_terms_of_q) ) -\end{sagesilent} - -\begin{equation} - \sage{0 <= bgmlv3_with_q} -\end{equation} - - -\noindent -This can be rearranged to express a bound on $d$ as follows: - -\begin{sagesilent} var("r_alt",domain="real") # r_alt = r - R temporary substitution bgmlv3_with_q_reparam = ( @@ -1191,9 +1170,7 @@ bgmlv3_d_ineq = ( assert bgmlv3_d_ineq.lhs() == d bgmlv3_d_upperbound = bgmlv3_d_ineq.rhs() # Keep hold of lower bound for d -\end{sagesilent} -\begin{sagesilent} # Seperate out the terms of the lower bound for d bgmlv3_d_upperbound_without_hyp = ( @@ -1263,8 +1240,8 @@ assert bgmlv3_d_upperbound_exp_term == ( \end{sagesilent} \bgroup -\def\psi{\chern_1^{\beta}(F)} -\def\phi{\chern_2^{\beta}(F)} +\def\psi{\chern_1^{\beta}(v)} +\def\phi{\chern_2^{\beta}(v)} \begin{dmath} \label{eqn-bgmlv3_d_upperbound} d \leq @@ -1276,22 +1253,16 @@ assert bgmlv3_d_upperbound_exp_term == ( \noindent -Viewing equation \ref{eqn-bgmlv3_d_upperbound} as an upper bound for $d$ give: -as a function of $r$, the terms can be rewritten as follows. -The constant term in $r$ is -$\chern^{\beta}_2(F) + \beta q$. -The linear term in $r$ is -$\sage{bgmlv3_d_upperbound_linear_term}$. -Finally, there is an hyperbolic term in $r$ which tends to 0 as $r \to \infty$, -and can be written: -\bgroup -\def\psi{\chern_1^{\beta}(F)} -$\sage{bgmlv3_d_upperbound_exp_term_alt2}$. -\egroup -In the case $\beta = \beta_{-}$ (or $\beta_{+}$) we have -$\chern^{\beta}_2(F) = 0$, -so some of these expressions simplify, and in particular, the constant and -linear terms match those of the other bounds in the previous subsections. +Viewing the right hand side of equation \ref{eqn-bgmlv3_d_upperbound} +as a function of $r$, the linear and constant terms almost match up with the +ones in the previous section, up to +$\chern_2^{\beta}(v)$. + + +However, when specializing to problem \ref{problem:problem-statement-2} again +(with $\beta = \beta_{-}$), then we have $\chern^{\beta}_2(v) = 0$. +And so in this context, the linear and constant terms do match up with the +previous subsubsections. \subsubsection{All Bounds on $d$ together} %% RECAP ON INEQUALITIES TOGETHER