From bd0d95ecceec50ce3b159d0acbc226e34ccb88d4 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Sun, 7 Jul 2024 23:49:56 +0100 Subject: [PATCH] Iron out final theorem bound of chapter --- tex/bounds-on-semistabilisers.tex | 52 ++++++++++++++++++------------- 1 file changed, 30 insertions(+), 22 deletions(-) diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index a0bea7b..781bdf7 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -730,9 +730,9 @@ proof of Theorem \begin{sagesilent} -from plots_and_expressions import main_theorem1 +from plots_and_expressions import main_theorem1, betamin_subs \end{sagesilent} -\begin{theorem}[Bound on $r$ \#1] +\begin{theorem}[Bound on $r$ \#1 for Problem \ref{problem:problem-statement-2}] \label{thm:rmax_with_uniform_eps} Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and @@ -747,8 +747,8 @@ from plots_and_expressions import main_theorem1 \begin{align*} \min \left( - \sage{main_theorem1.r_upper_bound1}, \:\: - \sage{main_theorem1.r_upper_bound2} + \sage{main_theorem1.r_upper_bound1.subs(betamin_subs)}, \:\: + \sage{main_theorem1.r_upper_bound2.subs(betamin_subs)} \right) \end{align*} \noindent @@ -760,8 +760,8 @@ Both $d$ and the lower bound in (Equation \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. So, if any of the two upper bounds on $d$ come to within -$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for -$d$. +$\epsilon_v \coloneqq \frac{1}{\lcm(m,2n^2)}$ of this lower bound, +then there are no solutions for $d$. Hence any corresponding $r$ cannot be a rank of a pseudo-semistabiliser for $v$. @@ -778,8 +778,8 @@ assymptote_gap_condition1, assymptote_gap_condition2, k \begin{align} - &\sage{assymptote_gap_condition1.subs(k==1)} \\ - &\sage{assymptote_gap_condition2.subs(k==1)} + \epsilon_v =&\sage{assymptote_gap_condition1.subs(k==1)} \\ + \epsilon_v =&\sage{assymptote_gap_condition2.subs(k==1)} \end{align} \noindent @@ -805,7 +805,7 @@ This is equivalent to: from plots_and_expressions import q_sol, bgmlv_v, psi \end{sagesilent} -\begin{corollary}[Bound on $r$ \#2] +\begin{corollary}[Global bound on $r$ \#2 for Problem \ref{problem:problem-statement-2}] \label{cor:direct_rmax_with_uniform_eps} Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and @@ -1042,29 +1042,37 @@ $\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$. \begin{sagesilent} from plots_and_expressions import main_theorem2 \end{sagesilent} -\begin{theorem}[Bound on $r$ \#3] +\begin{theorem}[Bound on $r$ \#3 for Problem \ref{problem:problem-statement-2}] \label{thm:rmax_with_eps1} - Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$ - rational and expressed in lowest terms. - Then the ranks $r$ of the pseudo-semistabilisers $u$ for $v$ with, - which are solutions to problem \ref{problem:problem-statement-2}, - $\chern_1^\beta(u) = q = \frac{b_q}{n}$ - are bounded above by the following expression: + Let $X$ be a smooth projective surface with Picard rank 1 and choice of ample + line bundle $L$ with $c_1(L)$ generating $\neronseveri(X)$ and + $m\coloneqq\ell^2$. + Let $v$ be a fixed Chern character on this surface with positive rank + (or rank 0 and $c_1(v)>0$), and $\Delta(v)\geq 0$. + Then the ranks of the pseudo-semistabilisers $u$ for $v$, + which are solutions to Problem \ref{problem:problem-statement-2}, + with $\chern_1^{\beta_{-}(v)}(u) = q$ + are bounded above by the following expression. \begin{align*} \min \left( - \sage{main_theorem2.r_upper_bound1}, \:\: - \sage{main_theorem2.r_upper_bound2} + \sage{main_theorem2.r_upper_bound1.subs(betamin_subs)}, \:\: + \sage{main_theorem2.r_upper_bound2.subs(betamin_subs)} \right) \end{align*} - Where $k_{v,q}$ is defined as in definition/Lemma \ref{lemdfn:epsilon_q}, + Where $k_{v,q}$ is defined as in Definition/Lemma \ref{lemdfn:epsilon_q}, and $R = \chern_0(v)$ - - Furthermore, if $\aa \not= 0$ then - $r \equiv \aa^{-1}b_q \pmod{n}$. \end{theorem} +\begin{proof} + Following the same proof as Theorem \ref{thm:rmax_with_uniform_eps}, + $\epsilon_{v,q} = \frac{k_{v,q}}{\lcm(m, 2n^2)}$ can be used instead of + $\epsilon_{v} = \frac{1}{\lcm(m, 2n^2)}$ as it satisfies the same required + property, as per Definition/Lemma \ref{lemdfn:epsilon_q}. + +\end{proof} + Although the general form of this bound is quite complicated, it does simplify a lot when $m$ is small. -- GitLab