From c0b192f0771600a9aaa00f834005ab79177c2b5e Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Fri, 12 May 2023 18:07:10 +0100 Subject: [PATCH] Start the 'min' expressions --- main.tex | 18 ++++++++++++++++++ 1 file changed, 18 insertions(+) diff --git a/main.tex b/main.tex index 38dc744..a812d2c 100644 --- a/main.tex +++ b/main.tex @@ -819,6 +819,24 @@ radius of the pseudo-wall being positive \frac{1}{2n^2}\ZZ \end{equation} +For each $r$, the smallest element of $\frac{1}{\lcm(m,2n^2)}\ZZ$ strictly larger +than the lower bound here is exactly $\frac{1}{\lcm(m,2n^2)}$ greater. +Therefore, if any of the two upper bounds come to within +$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for $d$. + +Considering equations +\ref{eqn:bgmlv2_d_bound_betamin}, +\ref{eqn:bgmlv3_d_bound_betamin}, +\ref{eqn:positive_rad_d_bound_betamin}, +this happens when: + +\begin{equation} + \min\left( + \sage{bgmlv2_d_upperbound_exp_term}, + \sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0)}, + \right) + < \frac{1}{\lcm(m,2n^2)} +\end{equation} \minorheading{Irrational $\beta$} -- GitLab