diff --git a/notebooks/other_P_choice.ipynb b/notebooks/other_P_choice.ipynb
index 7150920a2ed6ae2529e869e0d7cc59faa00b5729..7dabce824e88547a841e9913d40f3d74b58c7b3b 100644
--- a/notebooks/other_P_choice.ipynb
+++ b/notebooks/other_P_choice.ipynb
@@ -47,7 +47,7 @@
        "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = R \\\\ \\mathrm{ch}_{1} = C \\ell^{1} \\\\ \\mathrm{ch}_{2} = D \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Chern_Char object at 0x7fd4b12cb3d0>"
+       "<pseudowalls.chern_character.Chern_Char object at 0x7fbe3e2eb010>"
       ]
      },
      "execution_count": 3,
@@ -75,7 +75,7 @@
        "$\\displaystyle \\text{ Twisted Chern Character for $\\beta={ {{\\beta_0}} }$ } \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = R \\\\ \\mathrm{ch}_{1} = {\\mathrm{ch}_1^{\\beta_0}(v)} \\ell^{1} \\\\ \\mathrm{ch}_{2} = {\\mathrm{ch}_2^{\\beta_0}(v)} \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Twisted_Chern_Char object at 0x7fd4a72f1e50>"
+       "<pseudowalls.chern_character.Twisted_Chern_Char object at 0x7fbe341115d0>"
       ]
      },
      "execution_count": 4,
@@ -117,7 +117,7 @@
        "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = r \\\\ \\mathrm{ch}_{1} = c \\ell^{1} \\\\ \\mathrm{ch}_{2} = d \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Chern_Char object at 0x7fd4a72f3410>"
+       "<pseudowalls.chern_character.Chern_Char object at 0x7fbe342a8390>"
       ]
      },
      "execution_count": 6,
@@ -145,7 +145,7 @@
        "$\\displaystyle \\text{ Twisted Chern Character for $\\beta={ {{\\beta_0}} }$ } \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = r \\\\ \\mathrm{ch}_{1} = {\\mathrm{ch}_1^{\\beta_0}(u)} \\ell^{1} \\\\ \\mathrm{ch}_{2} = {\\mathrm{ch}_2^{\\beta_0}(u)} \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Twisted_Chern_Char object at 0x7fd4a7106010>"
+       "<pseudowalls.chern_character.Twisted_Chern_Char object at 0x7fbe34121810>"
       ]
      },
      "execution_count": 7,
@@ -340,10 +340,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\frac{1}{2} \\, \\beta^{2} r + \\beta q + \\frac{q^{2}}{2 \\, r}\\)</html>"
+       "<html>\\(\\displaystyle \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q + \\frac{q^{2}}{2 \\, r}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\frac{1}{2} \\, \\beta^{2} r + \\beta q + \\frac{q^{2}}{2 \\, r}$"
+       "$\\displaystyle \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q + \\frac{q^{2}}{2 \\, r}$"
       ],
       "text/plain": [
        "1/2*beta^2*r + beta*q + 1/2*q^2/r"
@@ -377,10 +377,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\frac{1}{2} \\, \\beta^{2} r + \\beta q - \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + {\\operatorname{ch}_2^{\\beta}(v)}\\)</html>"
+       "<html>\\(\\displaystyle \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q - \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + {\\operatorname{ch}_2^{\\beta_0}(v)}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\frac{1}{2} \\, \\beta^{2} r + \\beta q - \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + {\\operatorname{ch}_2^{\\beta}(v)}$"
+       "$\\displaystyle \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q - \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + {\\operatorname{ch}_2^{\\beta_0}(v)}$"
       ],
       "text/plain": [
        "1/2*beta^2*r + beta*q - 1/2*(ch1bv - q)^2/(R - r) + ch2bv"
@@ -399,6 +399,49 @@
     " + bgmlv3_d_upperbound_terms.hyperbolic)"
    ]
   },
+  {
+   "cell_type": "markdown",
+   "id": "f386ee6b",
+   "metadata": {},
+   "source": [
+    "consider lowerbound inducesd when $r < R$ and compare to bound given by radius condition:"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 49,
+   "id": "46ca0285",
+   "metadata": {},
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<html>\\(\\displaystyle -\\frac{{\\left(q - {\\mathrm{ch}_1^{\\beta_0}(v)}\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + \\frac{r {\\mathrm{ch}_2^{\\beta_0}(v)}}{R} - {\\mathrm{ch}_2^{\\beta_0}(v)} > 0\\)</html>"
+      ],
+      "text/latex": [
+       "$\\displaystyle -\\frac{{\\left(q - {\\mathrm{ch}_1^{\\beta_0}(v)}\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + \\frac{r {\\mathrm{ch}_2^{\\beta_0}(v)}}{R} - {\\mathrm{ch}_2^{\\beta_0}(v)} > 0$"
+      ],
+      "text/plain": [
+       "-1/2*(q - twisted_v1)^2/(R - r) + r*twisted_v2/R - twisted_v2 > 0"
+      ]
+     },
+     "execution_count": 49,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
+   "source": [
+    "(\n",
+    "(\n",
+    "    radius_condition_d_bound.rhs()\n",
+    "    - (bgmlv3_d_upperbound_terms.linear\n",
+    "    + bgmlv3_d_upperbound_terms.const\n",
+    "    - bgmlv3_d_upperbound_terms.hyperbolic)\n",
+    "    > 0\n",
+    ") #* R * (R - r)\n",
+    ")"
+   ]
+  },
   {
    "cell_type": "markdown",
    "id": "9d591f22",
@@ -409,7 +452,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 15,
+   "execution_count": 16,
    "id": "3f3b7d88",
    "metadata": {},
    "outputs": [],
@@ -420,7 +463,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 16,
+   "execution_count": 17,
    "id": "ed6fbc1d",
    "metadata": {},
    "outputs": [],
@@ -434,7 +477,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 17,
+   "execution_count": 18,
    "id": "d006ea59",
    "metadata": {},
    "outputs": [
@@ -450,7 +493,7 @@
        "1/2*B^2*r"
       ]
      },
-     "execution_count": 17,
+     "execution_count": 18,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -461,7 +504,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 18,
+   "execution_count": 19,
    "id": "c1ec0dec",
    "metadata": {},
    "outputs": [
@@ -477,7 +520,7 @@
        "1/2*B^2*r"
       ]
      },
-     "execution_count": 18,
+     "execution_count": 19,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -496,7 +539,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 19,
+   "execution_count": 20,
    "id": "3eab094d",
    "metadata": {},
    "outputs": [
@@ -509,10 +552,10 @@
        "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = 3 \\\\ \\mathrm{ch}_{1} = 2 \\ell^{1} \\\\ \\mathrm{ch}_{2} = -2 \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Chern_Char object at 0x7fd4a711ff50>"
+       "<pseudowalls.chern_character.Chern_Char object at 0x7fbe34139910>"
       ]
      },
-     "execution_count": 19,
+     "execution_count": 20,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -524,7 +567,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 20,
+   "execution_count": 21,
    "id": "b4f4f892",
    "metadata": {},
    "outputs": [],
@@ -534,7 +577,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 21,
+   "execution_count": 22,
    "id": "8756764b",
    "metadata": {
     "scrolled": true
@@ -549,10 +592,10 @@
        "$\\displaystyle \\text{ Twisted Chern Character for $\\beta={ -\\frac{67}{99} }$ } \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = 3 \\\\ \\mathrm{ch}_{1} = \\frac{133}{33} \\ell^{1} \\\\ \\mathrm{ch}_{2} = \\frac{265}{6534} \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Twisted_Chern_Char object at 0x7fd4a710c950>"
+       "<pseudowalls.chern_character.Twisted_Chern_Char object at 0x7fbe34158dd0>"
       ]
      },
-     "execution_count": 21,
+     "execution_count": 22,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -564,7 +607,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 22,
+   "execution_count": 23,
    "id": "16dce8ed",
    "metadata": {},
    "outputs": [],
@@ -574,7 +617,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 23,
+   "execution_count": 24,
    "id": "bf3b7639",
    "metadata": {},
    "outputs": [],
@@ -590,7 +633,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 24,
+   "execution_count": 25,
    "id": "db9f2513",
    "metadata": {},
    "outputs": [
@@ -606,7 +649,7 @@
        "4489/19602*r + 4489/2178/(r - 3) - 8579/6534"
       ]
      },
-     "execution_count": 24,
+     "execution_count": 25,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -620,7 +663,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 25,
+   "execution_count": 26,
    "id": "71f8d1ef",
    "metadata": {},
    "outputs": [
@@ -636,7 +679,7 @@
        "4489/19602*r + 2/r - 134/99"
       ]
      },
-     "execution_count": 25,
+     "execution_count": 26,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -650,7 +693,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 26,
+   "execution_count": 27,
    "id": "bd3a5e35",
    "metadata": {},
    "outputs": [
@@ -666,7 +709,7 @@
        "2377/9801*r - 134/99"
       ]
      },
-     "execution_count": 26,
+     "execution_count": 27,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -678,18 +721,18 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 27,
+   "execution_count": 28,
    "id": "ec13b9b8",
    "metadata": {},
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAADXCAYAAACXixybAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnY0lEQVR4nO3deVhWdf7/8Sc7yCo7yKKmueCGLIogqOSeTuZU5q+0Ms0yLS1TzGmxKcsWyzTLslGzmZrvOJYNljuoiBuuuS8g+yo7st7n98eJGwmURZAbfD+u677wPufc53zOEeXFZ9VTFEVBCCGEEEK0evotXQAhhBBCCNE0WlWwUxSFcePG0aVLF2xsbPjggw9aukhCCCGEEDqjVQU7PT09fvnlF1544QVyc3MJCgpq6SIJIYQQQuiMVhXsKkVHR2NhYcGAAQNauihCCCGEEDqj1QU7jUbDrl27CAkJwdDQsKWLI4QQQgihM1pdsDt8+DDZ2dmEhoa2dFGEEEIIIXSKTld55efn8/bbb3Px4kWcnZ1xd3encnaWBx54oIVLJ4QQQgihW/R0dR6769evExoaipeXF9999x16enp8++23zJs3DxMTE1JTU9HT02vpYgohhBBC6AydbYp95JFHyM3N5auvvtIGuHHjxpGbm0toaKiEOiGEEEKIP9HJYPfDDz+we/duXnjhBczNzbXbjx8/DiD964QQQgghaqGTwe7LL78E4KGHHqq2PTIyEpD+dUIIIYQQtdG5Pnbl5eWYmpri6upKfHx8tX1BQUGkpqZy+fLlFiqdEEIIIYTu0rkau6ysLCoqKvD29q62/caNGxw5ckTbDLtp0yZyc3NboohCCCGEEDpJ54Kdo6Mj5ubm2NnZVdv+r3/9i9LSUm0z7ObNm7G2tm6JIgohhBBC6CSdC3Z6eno8++yzHDt2TDtn3Y4dO/jPf/4DgJubG5cvX8bDw6MliymEEEIIoXN0ro8dQFFRETNnzuT69eu4uLjQrVs35s2bx9tvv82BAwdwcHDg888/r1GrJ4QQQghxL9PJYCeEEEIIIRpO55pihRBCCCFE40iwE0IIIYRoIyTYCSGEEEK0ERLshBBCCCHaCAl2QgghhBBthAQ7IYQQQog2QoKdEEIIIUQbIcFOCCGEEKKNkGAnhBBCCNFGSLATQgghhGgjJNgJIYQQQrQREuyEEEIIIdoICXZCCCGEEG2EBDshhBBCiDaiQcFu9erV9OnTBysrK6ysrAgICODXX3+97WciIyPx8fHB1NSUzp078+WXXza4kIqikJeXh6IoDf6sEEIIIcS9okHBzs3Njffff5+jR49y9OhRhg0bxl/+8hfOnDlT6/GxsbGMGTOGwYMHc/z4cRYtWsScOXPYtGlTgwqZn5+PtbU1+fn5DfqcEEIIIcS9RE+5w2owW1tbPvzwQ6ZNm1Zj34IFC9iyZQvnzp3Tbps5cyYnT54kOjq63tfIy8vD2tqa3NxcrKys7qS4QgghhBCNoyiQcxqSw0HPEHrOb+kS1WDY2A9WVFTwf//3fxQWFhIQEFDrMdHR0YwYMaLatpEjR7J27VrKysowMjKq9XMlJSWUlJRo3+fl5TW2mEIIIYQQjVdWAGm7IHmr+ipKBENz6PhES5esVg0OdqdPnyYgIIDi4mIsLCzYvHkzPXv2rPXY1NRUnJycqm1zcnKivLyczMxMXFxcav3c0qVLefvttxtaNCGEEEKIO5d3Sa2VS94K6ZGgKQXL+8H9r9BhLDgMBgOTli5lrRoc7Lp168aJEyfIyclh06ZNTJ06lcjIyFuGOz09vWrvK1t+/7z9ZmFhYcybN0/7Pi8vD3d394YWVQghhBCibhUlaoBL3gpJ4VBwGfSNwWkoeH8IrmPAsgsAOcU5RFz6lbKKMh7xeqSFC15Tg4OdsbExXbqoN+fr68uRI0f47LPP+Oqrr2oc6+zsTGpqarVt6enpGBoaYmdnd8trmJiYYGKim0lYCCGEEG1AUWJV82rqTigvhHZu4DoWXD8G51AwNKe4vJgDCQfYdfgf7IzdydHko2gUDSPuG9E2gt2fKYpSrT/czQICAvjll1+qbdu+fTu+vr637F93N5WWllJeXt7SxRBC5xgaGmJsbNzSxRBCiKajKYfMg1VNrDmnQM8A7AeB12K1idW6FxWKhmMpx9gZvYJdsbuISoiiuLwYh3YODOs0jOn9pxPaKZRO7Tu19B3VqkHBbtGiRYwePRp3d3fy8/P54YcfiIiI4LfffgPUJtSkpCQ2bNgAqCNgV65cybx585g+fTrR0dGsXbuWf/3rX01/Jw1UWlrKmTNn0Gg0LV0UIXSOvr4+Xl5eEu6EEK1bcQak/KYGuZRtUJoNJvbgMhq8FoHLCBQjG85nnmfXxV3sin2DiLgIcopzsDC2INgzmHeHvUtop1B6O/VGX0+dJS4rC86cAS+vFr6/WjQo2KWlpfHkk0+SkpKCtbU1ffr04bfffmP48OEApKSkEB8frz2+U6dObN26lblz57Jq1SpcXV1ZsWIFEydOrNf1Vq1axapVq6ioqGhIMeulvLwcjUZDx44dMTMza/LzC9Fa3bhxg7i4OLKysrCyssLc3LyliySEEPWjaCD7hNpPLnkrZB0CFLD1gftnq33lbH1JyE9mV+wudh2bw+7Y3STnJ2Okb0SAewBzB84ltFMo/h38MTJQWxeLi2H3Lti5E3bsgOPHYcAAaMDMbXfNHc9jdzc0xzx2RUVFnDt3jh49etCuXbsmOacQbUHlv41jx45hYGDAY489JuFOCKG7yvIgZUdVf7niVDCyAucRapBzHc11jNkTu4ddsbvYeXUnl65fQg89+jn3I7RTKA90foAgjyDMjdX/6zQaOHFCDXE7d8L+/Wq4c3KCBx5QX6GhoIvjOu+4j50Qom0yMjIiJyeHkpISCXZCCN2hKJB3/o8gFw7p+0ApB+ue0OkJcB1LoXU/9iceYtfVXezatZLjKcdRUOhq25XQTqG8F/oeQzsOxa5d1UDO2Fg1xO3cCbt2qc2t7dpBSAi8954a5nr1gttM6qETJNgJIWol/euEEDqj/AakR1Q1sRbGgoEpOA0Dn88oc3qAw7kZavPqyTeJToimTFOGi4ULoZ1Dme0/m9BOobhbV1WxXb8O/9laFeauXAF9ffD3h+efh+HDYeBAaG3/Fep0sGvOPnZCCCGE0GGF16qCXNpuqLgB5h3BdSwa11Gc0XNk57Uodh3dSuS1BRSUFmBtYs2QjkP4eMTHhHYOpYd9D+28ucXFsHt3VT+5mBi18q9bNxg1Sq2RGzIEbGxa8qbvnE4Hu1mzZjFr1ixtHzshhBBCtFGaMsiIqmpizT2rrsfqOBj6LCHBog+/pcWxK243uyOeIaMoAxMDE4I8glgUtIjQzqH0d+mPob4abTQaOHmyqp/cvn1w4wY4OKgh7oUX1H5yHh4tfN9NTKeDnRBCCCHasBup6nQkSeGQul0dCGHqBK5jyL3/FXYWwa/XDrBr+yricuLQ19PH19VXnUuucyiD3AdhamiqPd21a1U1crt2QWYmmJmp/eTeeUdtXu3VS21ybask2AkhhBDi7lA0kHW0apLg60cBPbDzp6TrbA4r9mxOjWPn8d2cTv8HAD0dejLu/nGEdgolpGMINqY22tNlZ8PWPVX95C5dUkObnx8895xaMxcQAPfSYlYS7IQQQgjRfEqzIWX7H02sv0JJBhjZUOE8nIu2w/kpr5hfrh3k8KH3qVAqcLdy54HOD7AgcAHDOg3DxdJFe6qSEoiIqKqVO3pUbXLt2lWtjfvgA7WfXPv2LXa3LU6ng50Mnmg+Q4YMoV+/fnz66actXZRa3c3yVc5nKIQQogkoCuT+rga5pHDIPABKBYpNH1KdxrK7xJSNKZeJ3Ps/bpTfwM7MjqGdhrKy70pCO4XSxbaLdsCDRqNOBlxZI3dzP7lhw2DGDLVWztOzhe9Zh+h0sJPBE6K5ffrpp4wfP75Fy5CRkcH69et59dVXb3lMcnIyrq6ud7FUQgjRAOWFkLq7qom1KAHFoB0FtgOJcXiUf2Zl85/Th8guPkU7o3YEewazZOgSQjuF0te5r3apLqg+n9zu3Wo/uXbtIDhY7Sf3wAPQu3fb7id3J3Q62Ik7U1paes/ORTZkyBDmzJnDww8/fMtjtm/fjoODA507d76LJavJwcGB4OBgVq1axaxZs2o9JiIigoiICB5//HGGDh1ar/MeOXKE77//Hm9vb6KioggLC6NTJ91ctFoI0QrlX6kKcmkRoCmh3Lwjl0x78L+KbnwVf44r53djqG/IgA4DmDNgDqGdQhngNgBjg6qfTVlZVdOQ7NwJV69WzSc3c6Ya5AYOvLf6yd0JybtNoGPHjjWaDPv168dbb70FqCHjxRdf5MUXX8TGxgY7OzsWL17Mzau51ecYRVFYtmwZnTt3xszMjL59+/Kf//ynxjnmzZuHvb29dg3fWykvL7/l9UpKSpgzZw6Ojo6YmpoSFBTEkSNHGnTflWWaM2cOr732Gra2tjg7O1fbD1BYWMiUKVOwsLDAxcWFjz/++LblrstPP/2EgYEBCxcupKys7JbHrVixgkmTJt3RtZqKv78/hw8fJjMzs9b9kydP5osvviAhIYFnn32WX3/99bbnKykp4ZFHHiEsLIypU6fy9NNP8/TTTzdH0YUQ94qKUkjdCTHz4Jdu8EsXlOPzSStI5T/GfozK7YzRiTh6HtrO9xkZ/KXnY4RPDuf6a9fZ/8x+3hryFoM9B1NRasyOHbBgAfj4qM2qjz4Ke/fCmDHw00/q5MHR0WoNXUiIhLqGkGB3l6xfvx5DQ0MOHTrEihUrWL58Od98802Djlm8eDH/+Mc/WL16NWfOnGHu3Lk88cQTREZG1jhHVFQUX331VaPL9Nprr7Fp0ybWr1/PsWPH6NKlCyNHjuT69euNundzc3MOHTrEsmXLWLJkCTt27NDunz9/Pnv27GHz5s1s376diIgIYmJitPvXrVun7W9Rl/LycmJiYvj3v/9Nenr6LZ/BqVOncHNzw8DAoMH301zGjx/PunXrbrnf0NCQKVOmsGbNGvLy8njmmWfYvHkztS33vHfvXqysrHBycgLU4Hjw4EHS0tKaq/hCiLaoKAkufwN7J8AmO9g9nOKr33GozIxXiu/D+lIZzsdOsjAxBU+3B/jxrz+S/mo6J2ae4OORHzOm6xjaGVpy5AgsXarOG9e+PYwYARs2QM+e8I9/QEICnDsHn38Of/kLSO+rO6DosJUrVyo9evRQ7r//fgVQcnNzm+zchYWFytGjR5XCwsKqbaWFSkxyzG1fhaWFNc7l6empLF++vNq2vn37Km+++aaiKIoSEhKi9OjRQ9FoNNr9CxYsUHr06KF9X9cxBQUFiqmpqXLgwIFq15k2bZry+OOPa8/Rr1+/et3/7a5XUFCgGBkZKd9//712X2lpqeLq6qosW7as3vddeZ2goKBqx/j5+SkLFixQFEVR8vPzFWNjY+WHH37Q7s/KylLMzMyUl156SVEURfnvf/+rdOvWrV739c033yiXLl1SFEVR3n//fcXBwaHW75tPPvlE+eabb7Tvy8vLlZUrVypPPPGEcvjwYUVRFGXy5MnK+vXr63Xd2ykvL1c+//xzZerUqdpzJyQkKCEhIdWOy8jIUIYOHVrv82o0GuWnn35S/t//+3/Kzp07q+1bs2ZNjfPb29sru3btqvO8lf82vv/+e2X58uVKVlZWvcskhGjlKsoVJT1KUU4sUpSt/RTlexTN9/pK/P95KGs2dFZ8PzBSeAvF6UMn5fH/PK58E/ONEpsdW+0UGo2iXLyoKF98oSgPP6woNjaKAopiYaEo48YpyqefKsrvv6vHiabXoBq7pUuX4ufnh6WlJY6Ojjz00ENcuHDhtp+JiIhAT0+vxuv8+fN1Xm/WrFmcPXu2RhNgczmfeR6fNT63fZ3PrLvctRk4cGC1WqeAgAAuXbpUbcTv7Y45e/YsxcXFDB8+HAsLC+1rw4YNXLlyRfsZX1/fOy7T5cuXKSsrIzAwULvPyMgIf39/zp071+B779OnT7X3Li4upKenA3DlyhVKS0sJCAjQ7re1taVbt27a9xMmTKjX90tBQQEZGRl06dIFgJdeeol27drxwQcf1Dg2MTERR0dH7fuff/6Zxx57jKKiIuLi4gAYN24ceXl59b/RW9iyZQuTJk3ixo0bxMbGArBjxw7c3NyqHWdvb1/t77IumZmZHDt2DDs7uxp95zIzMzE1Na22zdTUlJycnMbdhBCi7SrJgtjvIer/ofzXEXYEcuPcZ+zJzuCZTDPsrmjwupTNL4ZePBH8IaefP03KKyn8c+I/mdZ/Gh1tOpKWBv/6F0ybBh07wv33w5w5kJEBc+dCVJTavLplC7z0Enh5QT0bYkQDNWjwRGRkJLNmzcLPz4/y8nJef/11RowYwdmzZzE3N7/tZy9cuICVlZX2vYODQ+NK3Iy623cnZkZMncf8mb6+fo3msNv17WoMjUYDQHh4OB06dKi2z+Smzgd1/T00xJ+bPxVFqbatvvdtZGRU47yV9/Pnz9+Jr7/+munTp2vfm5qa8u677zJjxgxeeOGFas+toKAAMzMz7fthw4ah0WjYt28fGzduBOC+++6rdWDFZ599pg1otQkJCWHChAna96GhoQDs3r2bb7/9FlB/4amtD2R9mpyTk5P5/PPPKSsrY/bs2XjWMs7f2tq6xrMtKCjA3t6+zvMLIdo4RYHsE9qlu5TMQ+ihIVavPZvzSvl3DpwsKyXA/X5C+4WytXMovq6+2qW6AAoK1KlHKgc8nDqlbu/dGyZOVAc8BAeDhUWL3OE9rUHB7rfffqv2/h//+AeOjo7ExMQQHBx82886Ojpio+Mr67Yzakd/l/4N/pyDgwMpKSna93l5eTV+8B88eLDG+65du1br43W7Y3r27ImJiQnx8fGEhIQ0uIy1udX1unTpgrGxMfv372fy5MmAGtiOHj3Kyy+/rD2+Pvddly5dumBkZMTBgwfx+GPBvuzsbC5evNig+0xNTcXU1BQ7O7tq2ydPnszy5ct54403WLt2rXa7vb092dnZ2vc2NjZ89913DBkyRBv4Tp8+zVNPPVXjWi+99FJDbhErKyt++OEHgoODtcE7MjKS9957j5ycnGr/LgwNb/1PMi4ujlWrVmFsbMycOXNwcXG55bHdu3fn66+/1r4vKSkhPz+/1hAohLgHlOWrAx+Sw6lI/B8GJWncwIjIEiP+naNhWyG4Ot1H6H2hvNMplECPQNoZtav6eBkcOFgV5KKjobwc3NzUiYEXLFDnlXN2bsF7FMAdTneSm5sLqE1ndfH29qa4uJiePXuyePHi207ZUFJSQklJifZ9UzSHNadhw4axbt06xo0bR/v27fnb3/5Wo1N+QkIC8+bN47nnnuPYsWN8/vnnNUZ/3u4YS0tLXn31VebOnYtGoyEoKIi8vDwOHDiAhYUFU6dObXC5b3U9c3Nznn/+eebPn4+trS0eHh4sW7aMoqIipk2b1qD7rouFhQXTpk1j/vz52NnZ4eTkxOuvv47+TRMUbd68mbCwsNs2x65evZoZM2bUOqp04cKFTJo0iblz59KrVy8AevToQXx8fLXj0tLSqoVLCwuLauW4EwkJCdom4t9//x0jIyMcHR1Zv349zz77LKCGZ0tLy1o//9FHH1FUVMTChQtrhNfaBAcHk56eTmJiIm5ubkRGRuLn5yfBToh7haJA/kVICqcscQsGmVHoK+VcrTDmv3mlbC2E6xZdCO70AOMDhvGxZwjtzdpX+/jZs1VBLiIC8vPVQQ3DhsFnn6m1cl27SpOqrml0sFMUhXnz5hEUFKT9YVkbFxcX1qxZg4+PDyUlJXz33XeEhoYSERFxy1q+pUuX8vbbbze2aHddWFgYV69e5cEHH8Ta2pp33nmnRs3VlClTuHHjBv7+/hgYGDB79mxmzJjRoGPeeecdHB0dWbp0KVevXsXGxob+/fuzaNGiRpX7dtd7//330Wg0PPnkk+Tn5+Pr68u2bdtof9M6LfW57/r48MMPKSgoYPz48VhaWvLKK69of2kA9ReI2/XlvHjxIu+++y5Lliy57XUWLVrEli1bABg1ahTTp0/nlVde0e6fNGkS8+bN47vvvqO8vLxRYflWJk6cyIIFC/j3v/8NgI+PDytXrqxWI3jkyBGGDRtW6+dvN3lxbQwNDVm/fj3vvvsuAwcOJDIyku+//77R5RdCtAIVxZAWQVniz5Ql/Ey7khRKFD12FSlsLYTfDd3p6jGSYf2G8c9OQ3G2qF69lpQEu3ZVhbmUFDA2hsBAWLhQDXL9+8NtGhaEDtBTGtnJadasWYSHh7N///4ancDrMm7cOPT09LQ/ZP+stho7d3d3cnNzq/XTuxNFRUXapaTatWtX9wfuQH2Wx9L1Jb7aohkzZrBkyRKcdaTtYPHixYwfPx5/f/8WLUflv40LFy6Qnp7OlClT6lUrL4RoAYXxlCVsIS/2n1hmH8GYcq6VQXghRGvaY+QygqDOIxjWaRgdbTpW+2huLkRGVgW5yrFx3t5qiHvgAQgKUld9EK1Ho3L37Nmz2bJlC3v37m1wqAN1NGZlB/XamJiYVBsQIERzeOONN1i5ciV///vfW7oo5OXlkZGRcctQt3z58tuOmB06dCgTJ05sruIJIXSFpoyK9P2kX/oHBqnbcSxLQ0+B0zdgT6kZuXZD6HrfXwi97wGet+tWbUBWaSkcvKmf3OHDUFGhjmIdPhzeeguGDlUnDBatV4OCnaIozJ49m82bNxMREdHo5YmOHz9+247fQtwNbm5uTJgwga1btzJmzJgWK4eiKCxfvvy2AXPu3Ll3sURCCF2i3Egj8cLX3Li2CdfC37GgHP1y2HbDkASLflh6PExQlwd5809rrmo0cPp0VZCLjISiIrC1VScKfuoptVauhVdVFE2sQcFu1qxZ/POf/+Tnn3/G0tKS1NRUQJ1aoXIkYVhYGElJSWzYsAFQF1nv2LEjXl5elJaWsnHjRjZt2sSmTZua+FZ0V0RERJMcI5qej49PSxeBrKwsnn/+eZ2cAkgIcfcpmgoSr/1M2sV/YHP9AJ011+kAHC3RI8rIE43LKHrc//+Y1GEARgbVp5OKj68Kcrt2QXo6mJrC4MHw5ptqkOvXT12LVbRNDQp2q1evBtT+YDf7xz/+oe0EnpKSUm20YWlpKa+++ipJSUmYmZnh5eVFeHh4vWpIVq1axapVq6pN4itEWyNzywkhkrPOcunMagxSf6VbaSzu+hosK+CoYstx23E4dZ2CX+ex+BuZVfvc9euwZ0/VoIdLl9RRqr6+6mTBDzwAgwap4U7cGxo9eOJuysvLw9rautUOnhCiNZHBE0I0v8zCDI6d30hB3I90KDiFj+ENDPXgUoUp8ea9MPOciFePZ7FuV/0Xv+JidRWHylq5mBh1apKuXasGPAwdqq7HKu5NMmhZCCGEaGZ5JXlEXd1B0uXvsMraj79eFiOM4IaixyUzD046Dadjzxfo6uBN15s+V1EBJ05UBbn9+9Vw5+iohrjnn1f7y8kUlaKSBLt7lK5Pr3I3y1dZcyuEEE3lRtkNDiQc4PilTeil/IpXWRxDzcBUH9JNLMhqP5yM+57EofMj9DGoaidVFLh6tSrI7d6tNream0NICLz3nhroevWSiYFF7STYiXvap59+yvjx4+s8LiMjg/Xr1992ouDk5GRcXV2bsnhCiFairKKMI8lHiLi6naxrP+NecJqR7SoINYZyY31SbbqT7z4Bky5TcLTqhuNNqSwjQw1wlWEuLg4MDGDAAHjxRTXIDRigThYsRF10OtjJ4Ik7U1paivE9+j/BkCFDmDNnDg8//PAtj9m+fTsODg50rsdYfwcHB4KDg1m1ahWzZs2q9ZiIiAgiIiJ4/PHHb7tk3s2OHDnC999/j7e3N1FRUYSFhTV6GiEhxN2jUTScTD3J7tjdHI/binVWFMNMSnixHVgZQoGdFaVOoWg6/z8MXUbgZlS1XGBREezbVxXkTpxQt/fsCePHq0EuJASaqEu5uMfo9IDnWbNmcfbsWY4cOdLSRbmtjh071mgy7NevH2+99RaghowXX3yRF198ERsbG+zs7Fi8eDE3j1upzzGKorBs2TI6d+6MmZkZffv25T//+U+Nc8ybNw97e3uGDx9+23KXl5ff8nolJSXMmTMHR0dHTE1NCQoKqvH3UNd9V5Zpzpw5vPbaa9ja2uLs7FxtP0BhYSFTpkzBwsICFxeXGmvoNtRPP/2EgYEBCxcupKys7JbHrVixgkmTJtX7vP7+/hw+fLjW9WgBJk+ezBdffEFCQgLPPvssv/76623PV1JSwiOPPEJYWBhTp07l6aef5umnn653eYQQd4+iKJzPPM8XR77gkR8fZvRnNvzvP/0ZdmE+G9nNSrtSRrj2xrzvEhh1DItHc7Ad8l/0PSZSrmfJoUPw7rtVAxtGjYJ//hP69IENG9TlvM6cUddgHTdOQp1oPJ0Odm3J+vXrMTQ05NChQ6xYsYLly5fzzTffNOiYxYsX849//IPVq1dz5swZ5s6dyxNPPEFkZGSNc0RFRfHVV181ukyvvfYamzZtYv369Rw7dowuXbowcuRIrl+/3qh7Nzc359ChQyxbtowlS5awY8cO7f758+ezZ88eNm/ezPbt24mIiCAmJka7f926ddVmT7+d8vJyYmJi+Pe//016evotn8GpU6dwc3PDwMCgQfcyfvx41q1bd8v9hoaGTJkyhTVr1pCXl8czzzzD5s2bqW3w+d69e7GyssLJyQlQg+PBgwdJS0trUJmEEM0jLieOb49/y5Obn6TXp668vb4HNsde5OvyX9jmmM9CJyv6dH0UAjai93A6lg+ewqD331Dae3P+gh6rVsGECWBvDwMHwgcfqIHto4/g7FlITIT16+HJJ0F6cYimotNNsXdbURGcP3/7Y7p3b9y6ee7u7ixfvhw9PT26devG6dOnWb58OdOnT6/XMYWFhXzyySfs3r2bgIAAADp37sz+/fv56quvCAkJAaBLly4sW7bsjso0efJkVq9ezbp16xg9ejQAX3/9NTt27GDt2rXMnz+/Qffep08f3nzzTQC6du3KypUr2bVrF8OHD6egoIC1a9eyYcMGbQ3j+vXrqy1VZ21tTbdu3ep1rfXr1zN16lTs7OwICwtjyZIlTJkypcY0Obt27cLPz0/7vqKigtWrV3P06FFmzZqFn58fiYmJPPHEE9Umjw4JCWHVqlW37WsHoK+vz2OPPcajjz7Kli1bePLJJ3n66acJDQ3VHhMXF1dtGhEDAwMsLS05c+aMNuwJIe6exLxE9sTuYU/cHvbE7caq6BpjzeGV9ub0cSpCH6iw6Y1BhwfBdSxGdgNAX/3lMClJnUuucj655GQwMoKAAHjlFbV51c8PDOWnrmhmOv0tdrf72J0/D3UtRBATA/37N/zcAwcOrFbrFBAQwMcff0xFRYW21uh2x5w9e5bi4uIazaulpaV4e3tr3/v6+t5xmS5fvkxZWRmBgYHafUZGRvj7+3OucpXoBujTp0+19y4uLqSnpwNw5coVSktLtWEVwNbWtlqQmzBhAhMmTKjzOgUFBWRkZNClSxcAXnrpJVavXs0HH3zAu+++W+3YxMTEahNtb9myhUmTJrFv3z5iY2Px8/Njx44dNdZCtre3v+2arX+WmZnJsWPHsLOzq9F3LjMzE9M/zRpqampKTk5Ovc8vhGi81IJUIuIi2BO7h91xu0nJvswD7eAJ+/Z84liKjQKKgTl6LsPBdSy4jsagXQcAsrMh4ueqIHfhgnrOfv3g8cfVKUgGDwYLi5a7P3Fv0ulgN2vWLGbNmqWdoLi5de+uBre6jvkzfX39Gk1tt+vb1RgajQaA8PBwOnToUG2fiYmJ9s/m5uZNds0/N38qilJtW33v28io+pI3enp62vtpyvmxv/7662o1oKamprz77rvMmDGDF154odpzKygo0C6DB2hr0nbv3s23334LqIMhauunWJ9m4eTkZD7//HPKysqYPXs2nrVMMmVtbV3j/gsKCmQlCiGaSWZRJpFxkeyO3c2euD2cyzxHFyN4xtGRLU7G3G9viIFSDlaO4DIGOoxBz2EwGJhw44Y6MXBlkDt2TF2L9b771BC3ZInaf05WBhQtTaeD3d3Wrl3jauMcHBxISUnRvs/LyyM2NrbaMQcPHqzxvmvXrtX6eN3umJ49e2JiYkJ8fLy22fVO3ep6Xbp0wdjYmP379zN58mRADWxHjx7l5Zdf1h5fn/uuS5cuXTAyMuLgwYN4eHgAkJ2dzcWLFxt0n6mpqZiammJnZ1dt++TJk1m+fDlvvPEGa9eu1W63t7cnOztb+97KyooffviB4OBgbTiOjIzkvffeIycnBxsbG+2xhrdpS4mLi2PVqlUYGxszZ84cXFxcbnls9+7d+frrr7XvS0pKyM/PrzUECiEaLqc4h8i4yD+aVvdwKu0UxnrwuIMLKxztGODkhGVpGujngsMQcJ0PrmPAsgvl5eov+ru+VYPcgQNQUqJODBwaCjNnql87dmzpuxSiOgl2TWDYsGGsW7eOcePG0b59e/72t7/V6JSfkJDAvHnzeO655zh27Biff/55jdGftzvG0tKSV199lblz56LRaAgKCiIvL48DBw5gYWHB1KlTG1zuW13P3Nyc559/nvnz52Nra4uHhwfLli2jqKiIadOmNei+62JhYcG0adOYP38+dnZ2ODk58frrr6N/0wrVmzdvJiwsjPO36QC5evVqZsyYUeuI1YULFzJp0iTmzp1Lr169AOjRo0e1NY0rn0dlM+7vv/+OkZERjo6OrF+/nmeffRZQA66lpSW1+eijjygqKmLhwoU1AmZtgoODSU9PJzExETc3NyIjI/Hz85NgJ0Qj5Zfksy9+n7af3PHU42gUDQPbd2CeqwfDOnjToeg8+hUpYGQIrg+pTazOw1AMzDl3DnatU2vl9uyBvDywtFSnHnn/fTXIycTAQtdJsGsCYWFhXL16lQcffBBra2veeeedGjVXU6ZM4caNG/j7+2NgYMDs2bOZMWNGg4555513cHR0ZOnSpVy9ehUbGxv69+/PokWLGlXu213v/fffR6PR8OSTT5Kfn4+vry/btm2j/U0LENbnvuvjww8/pKCggPHjx2Npackrr7xCbm6udn9ubi4XKjuw1OLixYu8++67LFmy5LbXWbRoEVu2bAFg1KhRTJ8+nVdeeUW7f+LEiSxYsIB///vfAPj4+LBy5Uqeeuop7TFHjhxh2LBhtZ6/rgEVf2ZoaMj69et59913GThwIJGRkXz//fcNOocQ97KisiKi4qPYE7eH3bG7OZp8lAqlAndLF5716MVaz1H0KL2Ccf4FKEsF60Fw35tqrZx1LxIS9di1s2rQQ0qKOuBh0CB49VU1yPn5qduEaC30lKbs5NTEbh48cfHiRXJzc2uMbmysyoXOe/ToQbvGDHNtgPosj6XrS3y1RTNmzGDJkiU4OzvX+zOLFy9m/Pjx+Pv7N2PJWlblv40LFy6Qnp7OlClTqo3eFaKlFJcXczDxoLaP3KHEQ5RpynA0d2S8ZwCP27XHlwwsrx9ArzQbTBzAdbQa5FxGcL2gPXv2VPWTu3RJrX3z9lZDXGgoBAWpy3cJ0Vo1qMZu6dKl/Pe//+X8+fOYmZkxaNAgPvjggzqnooiMjGTevHmcOXMGV1dXXnvtNWbOnFnn9e724Alxb3njjTdYuXIlf//73+t1fF5eHhkZGbcMdcuXL7/tiNmhQ4cyceLERpVViHtRaUUph5MOa5tWDyQcoKSiBFszW4Z6hvBdyMsMNb6BQ+4R9LK2QKoCtr5w/2xwHUuRmS/7o/TZ9YUa5I4fV9di7dpVDXHvvacOeKhHzwkhWo0GBbvIyEjtHF/l5eW8/vrrjBgxgrNnz95yNGZsbCxjxoxh+vTpbNy4kaioKF544QUcHBzkh5xoUW5ubkyYMIGtW7cyZsyY2x6rKArLly+/bQicO3duUxdRiHtKuaacmOQY7WCH/fH7KSorwtrEmmDPYD4Z9iZjLIzxLPwdvZTfIHEzGFmB8wjoOpNyh1Ec+d2ZXVvUWrkDB6C0FJyd1SD34ovq1z/GaQnRJt1RU2xGRgaOjo5ERkYSHBxc6zELFixgy5Yt1eY/mzlzJidPniQ6Orpe16mssWutTbGi9cvMzESj0eDo6NjSRWl20hQr7pYKTQUn005qa+T2XttLfmk+FsYWDPYYzFDPIYx26kTPslj0U36D9H2glIN1T3Adi+IyhjMZgezabcSuXRARAfn56uoOQ4ZUNa/27CkDHsS9444GT1R2cL/df/rR0dGMGDGi2raRI0eydu1aysrKasxxBuq0DyUlJdr3eXl5d1JMIe6YzC0nxJ3TKBrOpJ/R9pGLvBZJTnEOZoZmBHoEsjBoIaEeg/DRz8MwdTskr4b4ODAwA6dh4PMZicoYtkd1ZNc/1Vq5tDQwNobAQFiwQA1yvr6ywoO4dzX6W19RFObNm0dQUJB2ConapKam1lgeycnJifLycjIzM2ud52vp0qW8/fbbjS2aEEIIHaAoCuczz2ubViPiIsgsysTYwJhB7oOYO3AuQzsOxd/GEZO0XZAcDgffgYpiMO8IrmPJtRjLztND2PGDGTt3wpUrau2bjw889ZQa5AIDG7fUoxBtUaOD3YsvvsipU6fYv39/ncfWtoJBbdsrhYWFMW/ePO37vLw83N3dG1tUIYQQd4GiKFzMukhEXAQR1yKIiIsgtSAVQ31DBnQYwEyfmQztNJQAV1/Mco6pQe73mZB7FvQMwXEwJd3/zuHEMWyJ6M6uXXqcOKEOeOjWDUaOVIPckCEgvQOEqF2jgt3s2bPZsmULe/furbGW5p85OzuTmppabVt6ejqGhoa3nMTVxMSk2jJZuq61TFWi6+W8m+VTFIVly5bxf//3fyxcuJC8vDzOnTvH0qVLq60sUdkPUwhR062CnIGeAX4d/JjadyrDOg0j0D0Q84p8SP4VElfD0e1Qlgemzmicx3DRaAk/HRrOr19aER0NZWXg6qqGuJdeUr/W8aNGCPGHBgU7RVGYPXs2mzdvJiIiosai5rUJCAjgl19+qbZt+/bt+Pr61tq/ToimUFRUhKIotxytraenh5WVFY888gh//etfAZgwYQInTpzA19cXgE8//ZTx48fX63oZGRmsX7++wZMUC9GaKIrChawLapD745VWmKYNck/1fYohHYcQ6BGIhVE7yDoCyVth9yK4HgPoodgNIK39q+w6N5YftvUjIlKfggKwtlanHvnkEzXIde8uAx6EaIwGBbtZs2bxz3/+k59//hlLS0ttTZy1tbV2QfWwsDCSkpLYsGEDoI6AXblyJfPmzWP69OlER0ezdu1a/vWvfzXxrYhKpaWlGBsbt3QxWkx4eDivvPIKkyZN4q233rrlcdu2bSMsLAyArKwsSkpK6NOnD6D+8uHg4EDnzp3rdU0HBweCg4NZtWoVs2bNuuN7qHTkyBG+//57vL29iYqKIiwsrF6/UAnRFOoKck/3e7oqyBlbQGk2pGyHoy9Aym9QkgHG7SmwHMnRkpf5Z8RIfvrVgYwMMDFRJwNetAgeeEBdp7uBKxIKIWqhX/chVVavXk1ubi5DhgzBxcVF+/rxxx+1x6SkpFRbg7NTp05s3bqViIgI+vXrxzvvvMOKFSvqNYfdqlWr6NmzJ35+fg0pZosqKSlhzpw5ODo6YmpqSlBQEEeOHNHu/+WXX7CxsUGj0QBw4sQJ9PT0mD9/vvaY5557jscffxyoajLs3LkzZmZm9O3bl//85z/VrjlkyBBefPFF5s2bh729PcOHD79l+crLy3nxxRexsbHBzs6OxYsXc/OMN3WVv2PHjjWaSvv161ctQA0ZMoQ5c+bw2muvYWtri7Ozc42AVVhYyJQpU7CwsMDFxaXGurl3YuzYsTz22GO3Paa8vJxDhw6Rn5/Pzp07iYyM5Oeff9YG4hUrVjBp0qQGXdff35/Dhw/Xul5tY5SUlPDII48QFhbG1KlTefrpp3n66aeb5NxC1KZysMOXR79k0n8m4fKxCz1W9WD2r7OJz43nGe9n2PbENnIW5hA9LZqloe8x0t4Vi0srYUcwbHKAqEmUZ57kbOmzLDu+j/vD0rEc9S9Cn32Ck+cdePZZdbLg7Gz1a1iYumyXhDohmkaDm2Lrsm7duhrbQkJCOHbsWEMuBbTOlSdee+01Nm3axPr16/H09GTZsmWMHDmSy5cvY2trS3BwMPn5+Rw/fhwfHx8iIyOxt7cnMjJSe46IiAjtZLeLFy/mv//9L6tXr6Zr167s3buXJ554AgcHB0JCQrSfWb9+Pc8//zxRUVG3/Xtav34906ZN49ChQxw9epQZM2bg6enJ9OnT61X++lq/fj3z5s3j0KFDREdH89RTTxEYGKgNnfPnz2fPnj1s3rwZZ2dnFi1aRExMDP369dOeY926dTz99NP1+r77s1sNzKkUHR3N4MGDeeCBB2rsO3XqFG5ubhg04ifN+PHjWbduXY0m2c8++4zc3FxmzJhR7yXM9u7di5WVlXZUub+/PwcPHiQtLa3GSHMhGqMyyFX2kYuMiyStMA1DfUP8XP14xvsZhnQcwiD3QWqNHEB5IaTuUptYk7dCUQKKgTlpeg+wL+4Lvg4fw44otUNcjx4wchQs+2PAg41Ni92qEPcMmennZuVFkHf+9sdYdQfD2sfVFxYWsnr1atatW8fo0aMB+Prrr9mxYwdr165l/vz5WFtb069fPyIiIvDx8dGGuLfffpv8/HwKCwu5ePEiQ4YMobCwkE8++YTdu3cTEBAAQOfOndm/fz9fffVVtWDXpUsXli1bVucturu7s3z5cvT09OjWrRunT59m+fLlTJ8+vV7lr68+ffrw5ptvAtC1a1dWrlzJrl27GD58OAUFBaxdu5YNGzZog9769etrDMSxtrauc7m6AwcO8MMPP9C7d2+uXLnCgw8+SFBQEKD+faxfvx6An376iY0bN2Jubs7JkydZsWIFtra25OTkYPOnnza7du2qUUtcUVHB6tWrOXr0qHb1lcTERJ544gkiIiK0x4WEhLBq1aoawe6ll14iLS2NL7/8ksLCQqZNm1bnvcXFxVUL0wYGBlhaWnLmzBkJdqJR/hzkIuIiSC9Mv32QA8i/DLFbISkc0iNAU0qRYVdOZTzMj/vHsuanYIqKTXBzU/vHbXhO/erq2mK3KsQ9S4LdzfLOw28+tz9mVAzY9q9115UrVygrKyMwMFC7zcjICH9//2orbwwZMoSIiAjmzZvHvn37+Pvf/86mTZvYv38/OTk5ODk50b17d44cOUJxcXGNptXS0lK8vb2rbavs8F+XgQMHVqvNCggI4OOPP6aioqLe5a+Pyr5qlVxcXEhPTwfU51RaWqoNq6BOcv3noDNhwgQmTJhwy2ukpKQwceJEjh8/rm3ujYmJ0Qa7Q4cO8eGHHwKwadMmtm3bxsMPP0zfvn35v//7v1ueNzExkSFDhlTbtmXLFiZNmsS+ffuIjY3Fz8+PHTt21Aij9vb2t1wv1snJiTfffJP8/Hy++eYbVq5cyeTJk6s9h5tlZmZiampabZupqSk5OTm3LLsQN6sryE3znlZ7kKsogdSdapBL3gr5F9HoGRN/I4RfTy1j9c9jOB3Xlfbt1QEPH36s9pPr2lUGPAjR0iTY3cyquxrc6jrmFm41P5+iKNW2DRkyhLVr13Ly5En09fXp2bMnISEhREZGkp2dra2Jq+yHFx4eTocOHaqd88/Twdxq9GdD1Kf8+vr6NZpGy8rKapzrzyOe9fT0tPdzB6vYVbNp0yY8PDy0TZt/7sfn41MV0m1tbeu9gklBQYF2MFCl0NBQAHbv3s23334LqE3mtfVnrKsZ2NLSkrlz51JaWsr333/Pt99+y9SpU7WBtJK1tXWNZ1VQUCCrYIhbUhSFc5nniIiLIPJaZP2DHEBRkrZ5VUndiV55AQWaDhyIG8v6Hcv4+VAoioEFgwfDE8/DsGHg7S1944TQNTod7FatWsWqVauoqKi4Oxc0bHfL2rj66NKlC8bGxuzfv5/JkycDaug5evQoL7/8sva4yn52n376KSEhIejp6RESEsLSpUvJzs7mpZdeAqBnz56YmJgQHx9frdn1Thw8eLDG+65du2JgYFCv8js4OJCSkqL9fF5eHrGxsQ0qQ5cuXTAyMuLgwYN4/LEad3Z2NhcvXmzQfWo0mtuGxMb0kQO11i07O7vaNisrK3744QeCg4O1IToyMpL33nuvRnOuYT3XMsrLyyMpKQkLC4ta16Dt3r07X3/9tfZ9SUkJ+fn5eHp6NuKuRFt0c5CrDHP1DnKaCsg6qIa5pHDIOYlG0edi9iD+G72IH/aN5XxqbwYO1CM0FH79OwwYoC7fJYTQXTod7Frb4Alzc3Oef/555s+fj62tLR4eHixbtoyioiKmTZumPa6yn93GjRv57LPPADXsPfLII5SVlWmbAS0tLXn11VeZO3cuGo2GoKAg8vLyOHDgABYWFkydOrXBZUxISGDevHk899xzHDt2jM8//1w7IrU+5R82bBjr1q1j3LhxtG/fnr/97W8NDlAWFhZMmzaN+fPnY2dnh5OTE6+//jr6+tUHaW/evJmwsDDOn6+93+OECRN45513iI+P1wbEH374oc7RrOnp6Wzfvh19fX1iYmL44IMPqoWxHj16VBvZXSkhIYEuXboA8Pvvv2NkZISjoyPr16/n2WefBdQgbGlpedvrx8bGsmbNGvT19Zk5c+YtV1UJDg4mPT2dxMRE3NzciIyMxM/PT4LdPaxyrdW91/Zqa+QyijIw1DfEv4M/z3o/qw1y5sa11OIXZ0LKNkgOR5O0Df3y6+SX2rHz7Gh+3LeQHb+PoHN3W4YNgw+/VqcjaYLGACHEXaTTwa41ev/999FoNDz55JPk5+fj6+vLtm3baN++fbXjhg4dyrFjx7Qhrn379vTs2ZPk5ORqKx288847ODo6snTpUq5evYqNjQ39+/dn0aJFjSrflClTuHHjBv7+/hgYGDB79mxmzJhR7/KHhYVx9epVHnzwQaytrXnnnXcaXGMH8OGHH1JQUMD48eOxtLTklVdeITc3t9oxubm5XLhw4ZbncHd3Z9OmTSxevJigoCA0Gg1jxozht99+43//+x9lZWX873//Iz8/n6ioKBITE+nevTtxcXHk5OTw4osvcvDgQXbu3MmoUaO05x01ahTTp0/nlVdeqXa9iRMnsmDBAv79738DalPvypUreeqpp7THHDlyhGHDhtVa3uPHj7N+/XqcnZ157bXXanxP/JmhoSHr16/n3XffZeDAgURGRvL999/f9jOibSnXlHMy9SSR1yLZe20v++L3cf3GdYz0jfB19WV6/+m3D3KKAtknIDmc8vitGOQcRA+FMyn92RQ9i60nx1Bo4seQoQZMWgCrQ6COb0shhI7TU5qqw1Mzqqyxy83NxcrKqknOWVRUpF0uqp2sHn3PevTRR1m2bBkdO3astn3GjBksWbKk3lOTVFq8eDHjx4/H39+/2vbPPvsMU1NTpk6dWmNAhK6p/Ldx4cIF0tPTmTJlSoOmuhGNV1pRSkxyjDbI7Y/fT35pPqaGpgx0G0iwRzAhHUMY6DaQdka3+H+rLB9Sd1Aev5WKhK2YaFIoKLFk28kRhJ8Yw+/XR9PH34Vhw9R+cg38FhdC6DipsRP3rPDwcB555JEaoQ7gjTfeYOXKlfz973+v9/ny8vLIyMioEeoAbb9JIW52o+wGh5MOa4PcgYQD3Ci/gbmROYEegSwMWkiwZzB+rn6YGN5i/WxFgbwLlCdspeBCOJbF+zDQK+NSUg/CT0wm+tpY2nkGMmSYMX97CWThEiHaNp0Odnd98IS4Zxw5cgQnJyd8fX05e/YsPXv2rLbfzc2NCRMmsHXrVsaMGVPn+RRFYfny5Q0KguLeU1BawIGEA9o+coeTDlNaUYq1iTWDPQezZOgSgj2D6e/SH0P92/z3XFFMRUoEWafCMc7cio3hVcpKTTlwdih7Liwn33I0XgM6M+Z1eKWHTEEixL1EmmKlKfaeEx0dzXPPPYejoyOlpaWsXr0aLy+vOzpnZmYmGo2m1tGtrY00xTadnOIc9sfv1wa5mOQYKpQKHNo5EOwZTLBnMCGeIfRy7IWB/u0HISkF8aQeC6f46lZc9XdhYniDuAxPtp0eS6JmDO17DCV4aDuZgkSIe5xO19gJ0RwCAgI4depUk55T5pYTABmFGeyL36cNcidTT6Kg4GrpSohnCE/3e5oQzxC623evc75DNGWk/n6AjBNbsbkRjrvlGezLDYm6EsSvOW+juIyhd2BPnpqph8ktWmmFEPceCXZCCNFIyfnJaoiLi2Rv/F7OZpwFoKNNR0I8Q5jtP5sQzxA6t+9cd5ADMuLTuBL1G4Zp4dxvuR1ns1wocOJw4mgizN/Ctf9wBk60ZohMQSKEuAUJdkIIUU9xOXHVgtzl65cB6GbXjWDPYBYFLWKw52A8rD3qdb6cbA0n98RQdDkcN/2t9HY9gp1Gj9/L/NiXOY92XcbQb1J/xtvq130yIYSgEcFu7969fPjhh8TExJCSksLmzZt56KGHbnl8REQEQ4cOrbH93LlzdO9+6+W5QAZPCCFajqIoXLp+SdusuvfaXuJz1Ymrezv2ZuR9I3lv2HsM9hyMs0X95gwpKoJD+3JIOb4dq4Kt+HX4lRDrdHLtbLiQN5JoXqTz4FH08XSkT92nE0KIGhoc7AoLC+nbty9PP/00EydOrPfnLly4UG3gg4ODQ52faW0rTwghWq/KyYD3xe9jX/w+9sfvJ70wHX09fbydvflrj78S7BlMkEcQdu3s6nXOsjI4fEjh1P4z6KVspad1OIO7RmHoUUF8Xi9SzZ6moucYXPsMwv92o2CFEKKeGvw/yejRoxk9enSDL+To6FhtPU0hhGhJRWVFHEo8xP74/eyL30d0YjQFpQWYGJhol+cK8ggi0CMQK5P6jcbXaODECdi7p4jsc7tx1w9neK+tBHrEU+zajuSKUNI9VuLiMwYPCw/q12ArhBD1d9d+RfT29qa4uJiePXuyePHiWptnK5WUlFBSUqJ9n5eXdzeKKIRow7KKsohKiGLfNbVGLiYlhnJNOTamNgS6B/L64NcZ7DEYX1ffW08G/CeKAufPw5498PvBq1jlhxNy/1Zm9tyD6bASssvuo9ThISr6jMHUJYTOBrq96ogQovVr9mDn4uLCmjVr8PHxoaSkhO+++47Q0FAiIiIIDg6u9TNLly7l7bffbu6iCSHasGs517RNqvvi92lHrHaw7MBgz8FM6TuFII8gejn2Ql+vfoMTFAWuXlWDXOSeUooT9jHQYytj+4XzwqgLlCtG5JsGY9htKXiMob3l/TI7sBDirmr2YNetWze6deumfR8QEEBCQgIfffTRLYNdWFgY8+bN077Py8vD3d29uYsqhGilNIqGM+lntCFuf/x+EvISAOhh34PBHoNZGLiQwZ6D8bT2rNfUI5Xi49Ugt2cPnDmSTB+HX3nQO5wvh+/A3LiAYj1XDNzHgOdSDJ0foL2RZXPdphBC1KlFeusOHDiQjRs33nK/iYkJJndpxs0bN27clesI0Vq0hn8TJeUlxKTEsO/aPvYn7CcqPors4mwM9Q3xcfHhUa9HGewxmECPQOzbNWzy6JSUqiAXGVGBHYcZ6x3OgoCt9BhxHAV9KtoPxNB9IXQYi6lNX6mVE0LojBYJdsePH8fFxaUlLq1laGiIvr4+cXFxLVoOIXSRoiiUl5e3dDG08kryOJBwQFsjdzjpMMXlxZgbmRPgHsDLA19msMdg/Dv4Y27csNl7MzMhIgJ271bDXFrCdUb22cbkkHCWL/4NC6MsNEa26LuOgg6voucyEkOT+o2KFUKIu63Bwa6goIDLly9r38fGxnLixAlsbW3x8PAgLCyMpKQkNmzYAMCnn35Kx44d8fLyorS0lI0bN7Jp0yY2bdrUdHfRCMbGxnh5eZGVlcX//vc/zM3N71otoRC6rqKigrKysha7flJeEgcSDmibVU+mnUSjaHBo58Bgz8EsDV1KkEcQ/Zz7YdjAaUJyciAyUg1xu3fD6dMKfT1PMiV0K/PmhNPZ+iD6aKB9P3CdCa5j0LcbAHWs5SqEELqgwcHu6NGj1Ua0VvaFmzp1KuvWrSMlJYX4+Hjt/tLSUl599VWSkpIwMzPDy8uL8PBwxowZU+e1mnuCYmNjY0xMTCgsLKSsrEyCnRA3uXlkenOq0FRwOv00UfFRRCVEcSDhANdyrwFwX/v7GOw5mFl+sxjsOZiutl0b1D8OID8f9u2ral49dgzaGRcweehOPn8yHD/XrbTTSwZDC3AeDq5fgetoaNehOW5XCCGalZ6iKEpLF6IulRMU5+bmVpvkuCkUFhby448/ypQqQtTCysqKxx57DHPzplucNLc4l0NJh4iKj+JA4gEOJh6koLQAI30j+rv0J9A9kEHugxjkPggXy4Z32SgqggMHqppWjxyBigoI6nORGeO2MqxbOK6Ge9FTSsGqG7iMgQ5jwSEIDOSXOyFE63bPBztQw93dqp0QojUxMTG5o1CnKApxOXFEJURpg9zptNMoKNiZ2THIfZA2yPm6+mJmZNbga5SUwMGDVU2rhw5BaSm4uRTz/MORjPPZSjerrRiXXAZ9E3AaAq5jwXUMWN7X6HsTQghdJMFOCNFkSitKOZ5yXNukGpUQRWpBKgDd7bsT6B6oDXL3293f4GZVUJfpOnq0qkYuKgqKi6F9e5g4OoHHQ7bi6xKOZdEu9CqKoJ17VZBzHgaGTVf7KIQQukaCnRCi0TKLMolOiNYGuSPJRyguL8bU0BT/Dv7aEBfgFlDv9VX/rKICjh+vqpHbvx8KCsDSEoaElDN5eDRDum3FqTwcvdzToGcADoFqkHMdC9ZeMh2JEOKeodPB7ubBExcvXpRgJ0QL0igaLmZdVJtU/6iNu5B1AQAXCxcCPQIZ5DaIQI9A+jn3w9jAuHHX0cDp0zfNJRcJublgZgaDB8OY0Awe7P8bnUzC0U/dBmU5YOKgDnhwHQsuw8G4fRPeuRBCtB46HewqSY2dEHdfTnEOh5MOE50QzcGkgxxKPER2cTb6evr0duytrY0L9Ahs8GoON7t5vdXdu9U55bKywMQEAgJg2DANDwYep7dtOIZpWyHrMKCArW9VE6udL9RzWTAhhGjLJNgJIajQVHA24yzRidEcTDzIwcSDnMs8B0B70/YMdBtIgFsAA9wGMNBtIFYmjf93qChw+bIa4Cpr5VJTwdAQBgyAoUNh+JBcBnjuwCRzKyT/CsWpYGQFLiPVIOcyGsycmujuhRCi7ZBgJ8Q9KKMwg0NJh7S1cYeTDlNQWoC+nj59nPoQ4BbAQLeBDHQb2Ki54252c5CrfCUng74++PjAsGEwdIhCUN9zmOdshaRwyNgPSrnaP66yr5zDINA3aqpHIIQQbZIEOyHauLKKMk6lnapWG3cl+woATuZOBLgHMLCDGuJ8XH2wMLa4o+spCly5Uj3IJSVVBbkhQ9RXUEARVkURkBwOyVuhMA4MzMBpmDqvnMtosOh4R2URQoh7TYusFVtfzb3yhBBtUXJ+MgcTD2pr444mH6W4vBgjfSO8Xbx58P4HtbVxd9I3rlJdQW7y5D+CXBBY6cdVBbntu6GiGMw7QYcH1Zo5xyFg2PC57IQQQqikxk6IViyvJI+Y5BiOJB/hcNJhDicdJiEvAQB3K3dt37iBbgPxdvHG1ND0jq+pKHD1avUgl5ioBrn+/W+qkQsCa8sytVk1+Y8m1rxzoGcIjsFVTaxW3WQ6EiGEaCIS7IRoJUrKSziVdkob4o4kH+FcxjkUFMyNzPF19cXP1Y8A9wAGdBhAB6umWeu0QUHOGriRqg54SA6H1B1QlgemzmqQ6zAWnB9QB0IIIYRochLshNBBGkXDhcwL2gB3OOkwJ9NOUlpRiqG+IX2d+uLn6od/B3/8O/jT3b47BvoGTXJtRYHY2OpBLiFBDXLe3tWDnI0NoKmA60ermlivxwB6YDdADXKuY6B9P5mORAgh7gIJdkK0MEVRSMhL4EhSVU3c0eSj5JfmA9DNrhv+Hfy1Qa6vc98maVKtun4DgxxAaTYkb1ODXMqvUJKpTgrsMuqP6UhGgal9k5VRCCFE/eh0sJOVJ0RblFqQyrGUY8Qkx3A4+TBHko6QVpgGgJuVmzbA+bn64evqi7WpdZNeX1EgLk6dP+7mIKenVxXkhg79U5BTFMg5rQa55HDIPACKBmz6VjWx2g0AfZ0ejyWEEG1eg4Pd3r17+fDDD4mJiSElJYXNmzfz0EMP3fYzkZGRzJs3jzNnzuDq6sprr73GzJkz631NqbETrZGiKCTnJxOTEqMGuT++JucnA+rEv76uvtrmVD9XP1wsXZqhHGqQu7lGLj6+epAbMkRdrksb5ADKCiBtd1UTa1EiGJqrfeRcx6pLeLVza/LyCiGEaLwG/3pdWFhI3759efrpp5k4cWKdx8fGxjJmzBimT5/Oxo0biYqK4oUXXsDBwaFenxeiNVAUhfjc+GoBLiYlhvTCdADszOzwcfVhat+p9Hfpj4+LDx1tOt7xVCO3UhnkKmvlbg5yf/1rVdNq+z8vqZp/WR29mrwV0iNAUwqWXcH9r39MRxIMBibNUmYhhBB37o6aYvX09OqssVuwYAFbtmzh3Llz2m0zZ87k5MmTREdH1+s6UmMndImiKMTmxBKTXL0mLutGFqBO+uvj6kN/5/7qV5f+uFu5N1uIqxy1uncvREaqQe7aNTXI9etXvUauRpCrKIH0vVVNrPmXQN9YnU/OdYz6suraLOUWQgjR9Jq9Q0x0dDQjRoyotm3kyJGsXbuWsrIyjIxqLhFUUlJCSUmJ9n1eXl5zF1OIWpVWlHIu4xwn005yMvUkJ9JOcCzlGDnFOQB0sOxAf5f+zPafrdbEufrgYuHSbCEO1CB34YIa4iIj1UCXlKQGub594eGHbxPkQG1S1U5HshPKC9UmVdcx4P2RuvKD0Z2tPiGEEKJlNHuwS01Nxcmp+mLdTk5OlJeXk5mZiYtLzT5FS5cu5e23327uoglRTUZhhjbAnUxTX+cyzlGmKQOgk00n+jr35ZWAV/BxUWvinCyafyF6jQZ+/70qxO3dC+npYGCgruzw+OMQEvKnwQ7VTlAOWYeqmlhzTqpTj9gPAq/FaqCz6S2TBAshRBtwV4aw/bn2orL191a1GmFhYcybN0/7Pi8vD3d390Zde1b4LN4IeeOu/AAWrUOFpoKLWRdrhLjKQQ1mhmb0durNgA4DmNF/Bn2d+9LHqQ9WJnenG0B5OZw8WVUjt28fZGeDkRH4+8Ozz6pBLiAALC1vcZLiTEj57Y/pSH5TpycxsVfXX+25EFxGgIntXbkfIYQQd0+zBztnZ2dSU1OrbUtPT8fQ0BA7O7taP2NiYoKJSdN00N54eiPfnviW6f2nM3/QfNytGxcQRetTOT/cmfQznMk4w+/pv2u/FpcXA+r0In2d+vJU36fo69yXvk596WLbpckm+62PsjI4erSqj9z+/ZCfD6amanibM0cNcgMHgtmtllFVFMg+XrV0V9YhQIH2/eH+F9VRrLa+cBfvSwghxN3X7MEuICCAX375pdq27du34+vrW2v/uqYW+1Isnx/6nM8OfcaXR79kSt8pzPafTV/nvs1+bXF3KIpCSkEKZ9KrwtuZjDOcST+jneTX3Micng496eXYi8m9JmtDnF272n+5aE7FxXD4cFWNXHQ0FBWBuTkEBsLChRAcDH5+cNvfb8ry1D5ySeHqJME3UsDQUq2N67IWXEeBWdNPnyKEEEJ3NXhUbEFBAZcvXwbA29ubTz75hKFDh2Jra4uHhwdhYWEkJSWxYcMGQJ3upFevXjz33HNMnz6d6OhoZs6cyb/+9a96T3fSFKNi80vy+SrmKz6J/oSUghT8O/gzo/8MJvWahLmxeaPOKe6uynnhLmRd0NbCVdbAVQ5mMDU0padDT7wcvPBy8KKXYy+8HL3wsPZAv4WWtCosVMNbZY3coUNQUqKuqzp4sBriQkLUqUhu+7uOokDehap55TL2gaYMrHpULd1lHwgGxnft3oQQQuiWBge7iIgIhg4dWmP71KlTWbduHU899RRxcXFERERo90VGRjJ37lztBMULFiyo1wTFzbHyRFlFGeGXwvkq5iu2Xd6GhbEFj/d6nMd7P85gj8F3tQlO1K6orIiLWRe5kHmB85nnuZB1gQtZF7iYdZGC0gIAjA2M6W7fvSq8OXjh5ehFJ5tOLf53mJcHUVFVNXJHj6r95uzsqkJccDD06aMOgLit8hvqfHLJW9VXwVUwMAXHoVVhzqLT3bgtIYQQrYBOLylWqbnmsYvLieObY9+w8dRGruVew8nciTFdxzC261iG3zf8rnWWvxeVVpRyLecaV7KvcCnrkja8Xci8QEJegvY4h3YOdLPvRje7P15//Pk+2/sw1JHlq65fVwc4VNbIHT+ujmR1dq4KcSEh0KOHuv5qnQqvVfWVS9sNFTfA3POP1R7GgNNQMGzX7PclhBCi9bmng10lRVE4mHiQ/577L+GXwjmXeQ4jfSOCPYMZ3WU0gR6B9HPu16QLr7d1iqKQXZzNletXuJp9lSvZ6tfKPyfmJaJRNIBa+9bFtos2vHW3764NcO3NapuIrWWlpalBrrJG7vRpdbu7uxrgKsNc1671nEFEUwYZB6qaWHPPgJ4hOARVrcNq1UOmIxFCCFEnCXa1iM2OJfxSOOGXwomIi6C4vBgjfSP6OfdjQIcBDHAbwEC3gdzX/r5mnYhWl5VVlJGcn0xCXgIJuQnar4n5icTnxnPl+hVyS3K1x7c3bc99tvfRuX1n7muvfq38s5uVW4s3n95K5aoO+/ZVvS5dUvfdd19VbVxICHh6NiB73UhTBzwkb4WU7VCWC6ZO6vqrrmPBeTgYWzfbfQkhhGibdDrYNUcfu4YqrSjlVNopDiUe4mDSQQ4lHuLSdfUnu52ZHd4u3txvez/3291PV7uu3G93Px1tOupMM2FDlWvKySzKJK0gjbTCNO3XpLwkEvISSMxLJCEvgZT8FBSqvnWsTKxwt3LH3doddyv3auGtc/vOOlnzVhuNRq2Bqwxx+/dDsjq9Hb17q4MdgoLUr25uDTixooGso1VLd10/CuiBnX/V0l22/dWJg4UQQohG0ulgV0nX1oq9fuM6h5MOcyjxEKfST3Ex6yKXsi5RUqEug2aob0jn9p1xs3LD1dIVFwsXXC1dcbV0xaGdA+3N2mNjakN70/ZYmVg1S61fSXkJuSW55BTnkFOcQ25x1Z9zinO0+67fuF4twGUVZVULbAAWxhZ0sOyAu7U7blZuaoC7KcS5W7u32v6IJSXq4IbKIBcVBbm5YGgIvr5qgBs8WJ2GxLah8/mW5qi1ccnh6hJeJRlgZAMuI/8Ic6PA1LEZ7koIIcS9SoJdE9EoGhLzErmYdZGLWRe5fP0yyfnJ1V43ym/U+Jy+nj7tjNphamiqfZkZmmn/bKBvgKIoKCg1vpZVlFFcXlzrq3IZrNpYm1hjbWqtDZdOFk44tnPEycIJJ3Onal8dzR1pZ9R2Ourn58OBA1VB7vBhdV45c3N1MuDKIDdgALRr6G0rito/TjsdSRQoFepyXa5j1CZW+wBopbW5QgghdJ8Eu7tEURRyS3LJLMokpziH7BvZZBdnk30jm6KyolrD2Y3yG9oBBnp6euihV+3PRvpGmBmZVQuFlS9zI3Pam7XH2kQNcDamNlibWmNpbKmz/dmaQ3p69f5xJ06oza329lVNqoMHq3PIGTYmb5UXQuruqulIiuLBoB04P/BHmBsN5h5NfVtCCCFEraTq4C7R09PTBizRPBQF4uKqB7kLF9R9np5qgHvuOfVr9+53MMg0/0pVX7m0CNCUgMV94PbQH9ORhKhzzQkhhBB3mU7X2OnC4Amhuyoq4NQptV9cVJQa5JKS1H1eXlW1cYMHq1ORNP5CpeoqD0nhkLJVXf1B3wgcQ6qaWC3rO7eJEEII0Xx0OthVagtNseLO5eery3FFRamjVQ8ehIICdRmu/v2rD3Swu9MlYIuSq5pXU3dAeQGYuVYFOedQMLJskvsSQgghmooEO6GzEhKqauOiouDkSbV/XPv2MGiQGuACA8HPD8zM7vBimgrIOlw18CH7uDr1iN3AqqW7bPpKrZwQQgidJn3shE74c7NqVJQa7AC6dFED3PPPq1+7d6/n0lx1KcmClG1/NLH+BqXXwcQOXEZBj1fVaUlM7rTqTwghhLh7JNiJFnFzs2pUlNqsmp9f1az6yCNVNXJOTk10UUWBnJNqkEveClkH1YmD23tD1+fVJlY7f7iHRg0LIYRoW3Q62N08eEK0bomJar+4WzWrhoU1YbPqzcryIXVXVRPrjWQwtFCX7PJfAy6joZ1rE15QCCGEaDmN6mP3xRdf8OGHH5KSkoKXlxeffvopgwcPrvXYiIgIhg4dWmP7uXPn6N69e72uJ33sWpeKCnVZrpubVePj1X2VzaqVryZrVq2kKJB/sWrgQ3okaMrAqptaI+c6BhwGg4FxE15UCCGE0A0NrrH78ccfefnll/niiy8IDAzkq6++YvTo0Zw9exYPj1tPxHrhwoVqoczBwaFxJRY6JydHXcEhOrr2ZtW//rUZmlVvVlEMaZFVtXIFV0DfBJyGgvfHapizvK8ZLiyEEELolgbX2A0YMID+/fuzevVq7bYePXrw0EMPsXTp0hrHV9bYZWdnY2Nj06hCSo2d7tBo4Nw5NcRFR6sh7tw5taLM1lZdlqtJR6veSmG8uv5qcrja1FpRBO3c1Vq5DmPVUGdo3kwXF0IIIXRTg2rsSktLiYmJYeHChdW2jxgxggMHDtz2s97e3hQXF9OzZ08WL15ca/NspZKSEkpKSrTv8/LyGlJM0YSuX1cHOVSGuEOHIC9PbT7t3VudN+6119RA17U55+jVlENmdFWtXM5p0DMAh0Do/aZaK2ftJdORCCGEuKc1KNhlZmZSUVGB05/a05ycnEhNTa31My4uLqxZswYfHx9KSkr47rvvCA0NJSIiguDg4Fo/s3TpUt5+++2GFE00gYoKOHNGDXCVNXKVS3LZ28PAgbBggfrVzw8sm3t+3uKMP2rltqrTkpTlgKmjOuDBazG4jABjm2YuhBBCCNF6NKgpNjk5mQ4dOnDgwAECAgK02999912+++47zp8/X6/zjBs3Dj09PbZs2VLr/tpq7Nzd3aUptollZlavjTt8WO0bZ2AAffqotXADB6pf77vvLlSGKRq4fqxqHdasI4ACtn5qjVyHsWDro04cLIQQQogaGlRjZ29vj4GBQY3aufT09Bq1eLczcOBANm7ceMv9JiYmmJiYNKRoog7l5fD771UhLjoaLl1S9zk4qOFt0SL1q68vmN+t7mmlueqSXcnhau1ccRoYWamTA3d9QZ0s2Kw5RlwIIYQQbU+Dgp2xsTE+Pj7s2LGDCRMmaLfv2LGDv/zlL/U+z/Hjx3FxcWnIpUUDKIq6asPhw1Wvo0ehsBAMDaFvXxg5Et58Uw1ynTrdxa5pigJ556omCc7YD0q52j+u09Q/piMZBPpGd6lAQgghRNvR4OlO5s2bx5NPPomvry8BAQGsWbOG+Ph4Zs6cCUBYWBhJSUls2LABgE8//ZSOHTvi5eVFaWkpGzduZNOmTWzatKlp7+Qelp0NR45UD3Jpaeo+d3fw94c33lBDnI8PtGt3lwtYXgRpe6qaWAuvgYEZOIWC7wo1zJl73uVCCSGEEG1Pg4PdY489RlZWFkuWLCElJYVevXqxdetWPD3VH8wpKSnEV85GizqS9tVXXyUpKQkzMzO8vLwIDw9nzJgxdV5LVp6oqbgYTpyoHuIqm1RtbNRBDc8+q4Y5Pz9osYrRglg1yCWFQ/oeda45807QYZw6JYljCBg211woQgghxL2pUStP3G336jx2FRXqqNSbQ9zJk2p/ORMT8PZWw5u/v/rq0qWJV3FoUGFLITOqqok17xzoGYJjcNWKD1bdZDoSIYQQohnp9Fqx9xJFgStXICYGjh1Tm1aPHlVHqerpQY8eanibNk392rs3GLf0qlg3Um6ajmQ7lOeDmYsa4vr+HZwfUAdCCCGEEOKukBq7FqDRVIW4ytexY5Cbq+53d1dHpg4YoIY4Hx/QidvWVMD1I1VNrNnHAD2wH6iGOdex0L6f1MoJIYQQLUSCXTPTaODy5ZohrnIxDU9PNbj5+Kjrqvr4qNOP6IyS62ptXHI4pPwGJZlg3F6dhsR1rDotial9S5dSCCGEEOh4U2xrGzyh0cDFi2pwqwxxx49XhbiOHdXgtnBhVZCz17VMpCjqcl2VS3dlHlAnDrbpC11mqDVzdgNAX6e/dYQQQoh7ktTYNVJJCZw7p45QPXmyKsQVFKj7O3WqqomrDHF2di1a5FsrK4C0XX9MR7IVihLB0Bych//RxDoa2rm1dCmFEEIIUQepdqmHjAw1vFW+TpxQQ115ubq/Sxd1hOrixVUhzta2RYtct7xLVfPKpUeCphQs7wf3v6pLdzkMBgNZ/UMIIYRoTaTG7iYVFWp/uMpauMqvycnq/nbt1NGo/fqpqzf07au+t7RstiI1nYoSSN9b1cSafwn0jcFxiBrkXMeAZZeWLqUQQggh7sA9W2OXlaWunXrmTFWIO30abtxQ93fooAa3p55Sv/brB/fdBwYGLVjohipKrGpeTd0J5YVqk6rrWPD+CJyGgZFFS5dSCCGEEE1Ep4NdUwyeyMlRw1vlqzLMVS65ZWgIPXuqwe2xx6pq4nRuUEN9aMoh82BVE2vOKdAzAPtB4LVYrZmz7iXTkQghhBA67uTJk3z00UfExsaycOFCAgMDefvttykpKSE1NZU333yTfv361fhcm2+Krcww+vrQtSt4eUGvXupXLy91W4tP9HsnijPVaUiSwyFlG5Rmg4k9uIxWg5zLCHV6EiGEEEK0Gs888wxr1qzh/fffZ8WKFQQHB/PZZ59x8eJFRo4cyXPPPcfnn39e43M6XWPXFL7/Xg1w3bqBqWlLl6YJKBrIPlG1dFfWIUABWx+4f7baV87WF/RbU5uxEEIIISpduXIFV1dXDA0NSU5O5vr16yxatIgOHToQHR2NhYUF48aNq/Wzbb7Grk0oy4OUHVX95YpTwdBSrY1zHatOR2Lm3NKlFEIIIUQTOHDgAGZmZnh7e9OnTx9sbW2JiIio12d1usautU1Q3GQUBfLO3zQdyT5QysGqB3R6Qq2Vsw8Eg9bchiyEEEKI2gwaNAiAzMxMfv/9d9544416f1a/MRf84osv6NSpE6ampvj4+LBv377bHh8ZGYmPjw+mpqZ07tyZL7/8sl7XmTVrFmfPnuXIkSONKWbrUn4Dkn+FIy/ClvsgvCecWgwGZuDzKYy/Cg+eBe8PwWmohDohhBCijduzZw+KojBkyJB6f6bBNXY//vgjL7/8Ml988QWBgYF89dVXjB49mrNnz+Lh4VHj+NjYWMaMGcP06dPZuHEjUVFRvPDCCzg4ODBx4sSGXr5tKbxW1VcubTdU3ABzzz+aV8eqAc7QrKVLKYQQQogWsGfPHkxMTBg4cGC9P9PgPnYDBgygf//+rF69WrutR48ePPTQQyxdurTG8QsWLGDLli2cO3dOu23mzJmcPHmS6Ojoel2zzfSx05RBRlRVE2vuWdAzBIegqkmCrXrIdCRCCCGEoEePHjg5OdW7fx00sMautLSUmJgYFi5cWG37iBEjOHDgQK2fiY6OZsSIEdW2jRw5krVr11JWVoaRkVGNz5SUlFBSUqJ9n5eX15BiaimKQn5+fqM+22RupKmTA6dsU2vlyvLB1EEd+NBxgVorZ2xddXxLl1cIIYQQTc7S0hK9BlTcpKamcv78eR577LEGXadBwS4zM5OKigqcnJyqbXdyciI1NfWWBavt+PLycjIzM3FxcanxmaVLl/L22283pGi1ys/Px9rauu4D77oM4Ps/XkIIIYRo6xra6piWloaTkxOPPvpog67TqFGxf06ciqLcNoXWdnxt2yuFhYUxb9487fu8vDzc3d0bXE5LS0tyc3Prdayfn1/jB2mU5kDqLkjdrk5LUpJFbrEe1l0ngMtIcA5Va+nuQOUzSEhIaLLm6Du651Z4PnmGd6Y5nh/o9j039fnkGd651vDvuDnOKc9Qt87XmGdo2cCF5fv27XvLSrPbaVCws7e3x8DAoMaF0tPTa9TKVXJ2dq71eENDQ+zs7Gr9jImJCSYmJg0pWq309PTq/cANDAzq/w2uKJB7Ru0nlxQOmQdAqQCb3tB7OriOIXDoDE6f2XQHpa+dlZVVk/1DbNA9t4HzVZJneGea8vmB7t+zPEPdOx/o9r/j5jinPEPdOx80/b/lptCgYGdsbIyPjw87duxgwoQJ2u07duzgL3/5S62fCQgI4Jdffqm2bfv27fj6+tbav66lzJo1q/4H6+mBTS/11XNBrYfMfOHFJipZ82nQPbeB8zUHXb9neYa6d77moOv3rOvPsDnKJ89Q986p68+wqTR4VOyPP/7Ik08+yZdffklAQABr1qzh66+/5syZM3h6ehIWFkZSUhIbNmwA1OlOevXqxXPPPcf06dOJjo5m5syZ/Otf/6r3dCeVgyAa2vGwLWkzI4NbkDzDOyPP787JM7xz8gzvnDzDO6fLz7DBfewee+wxsrKyWLJkCSkpKfTq1YutW7fi6ekJQEpKCvHx8drjO3XqxNatW5k7dy6rVq3C1dWVFStWNGgOu4Y0qbZVJiYmvPnmm03SRH2vkmd4Z+T53Tl5hndOnuGdk2d453T5GbaKtWKFEEIIIUTdGrWkmBBCCCGE0D0S7IQQQggh2ggJdkIIIYQQbYQEOyGEEEKINkKCnY5LSkriiSeewM7Ojnbt2tGvXz9iYmJaulitRnl5OYsXL6ZTp06YmZnRuXNnlixZgkajaemi6ay9e/cybtw4XF1d0dPT46effqq2X1EU3nrrLVxdXTEzM2PIkCGcOXOmZQqro273DMvKyliwYAG9e/fG3NwcV1dXpkyZQnJycssVWAfV9X14s+eeew49PT0+/fTTu1a+1qA+z/DcuXOMHz8ea2trLC0tGThwYLWZLe51dT3DgoICXnzxRdzc3DAzM6NHjx6sXr26ZQr7Bwl2Oiw7O5vAwECMjIz49ddfOXv2LB9//DE2NjYtXbRW44MPPuDLL79k5cqVnDt3jmXLlvHhhx/y+eeft3TRdFZhYSF9+/Zl5cqVte5ftmwZn3zyCStXruTIkSM4OzszfPhw8vPz73JJddftnmFRURHHjh3jb3/7G8eOHeO///0vFy9eZPz48S1QUt1V1/dhpZ9++olDhw7h6up6l0rWetT1DK9cuUJQUBDdu3cnIiKCkydP8re//Q1TU9O7XFLdVdcznDt3Lr/99hsbN27k3LlzzJ07l9mzZ/Pzzz/f5ZLeRBE6a8GCBUpQUFBLF6NVGzt2rPLMM89U2/bwww8rTzzxRAuVqHUBlM2bN2vfazQaxdnZWXn//fe124qLixVra2vlyy+/bIES6r4/P8PaHD58WAGUa9eu3Z1CtTK3eoaJiYlKhw4dlN9//13x9PRUli9fftfL1lrU9gwfe+wx+b+wAWp7hl5eXsqSJUuqbevfv7+yePHiu1iy6qTGTodt2bIFX19fHnnkERwdHfH29ubrr79u6WK1KkFBQezatYuLFy8CcPLkSfbv38+YMWNauGStU2xsLKmpqYwYMUK7zcTEhJCQEA4cONCCJWvdcnNz0dPTk9r4BtBoNDz55JPMnz8fLy+vli5Oq6PRaAgPD+f+++9n5MiRODo6MmDAgNs2eYuagoKC2LJlC0lJSSiKwp49e7h48SIjR45ssTJJsNNhV69eZfXq1XTt2pVt27Yxc+ZM5syZo12uTdRtwYIFPP7443Tv3h0jIyO8vb15+eWXefzxx1u6aK1SamoqAE5OTtW2Ozk5afeJhikuLmbhwoVMnjz5nl9hpyE++OADDA0NmTNnTksXpVVKT0+noKCA999/n1GjRrF9+3YmTJjAww8/TGRkZEsXr9VYsWIFPXv2xM3NDWNjY0aNGsUXX3xBUFBQi5WpwUuKibtHo9Hg6+vLe++9B4C3tzdnzpxh9erVTJkypYVL1zr8+OOPbNy4kX/+8594eXlx4sQJXn75ZVxdXZk6dWpLF6/V+vOazYqi3LPrON+JsrIyJk2ahEaj4Ysvvmjp4rQaMTExfPbZZxw7dky+7xqpcgDZX/7yF+bOnQtAv379OHDgAF9++SUhISEtWbxWY8WKFRw8eJAtW7bg6enJ3r17eeGFF3BxceGBBx5okTJJsNNhLi4u9OzZs9q2Hj16sGnTphYqUeszf/58Fi5cyKRJkwDo3bs3165dY+nSpRLsGsHZ2RlQa+5cXFy029PT02vU4onbKysr49FHHyU2Npbdu3dLbV0D7Nu3j/T0dDw8PLTbKioqeOWVV/j000+Ji4trucK1Evb29hgaGtb6M2b//v0tVKrW5caNGyxatIjNmzczduxYAPr06cOJEyf46KOPWizYSVOsDgsMDOTChQvVtl28eBFPT88WKlHrU1RUhL5+9W9zAwMDme6kkTp16oSzszM7duzQbistLSUyMpJBgwa1YMlal8pQd+nSJXbu3ImdnV1LF6lVefLJJzl16hQnTpzQvlxdXZk/fz7btm1r6eK1CsbGxvj5+cnPmDtQVlZGWVmZzv2MkRo7HTZ37lwGDRrEe++9x6OPPsrhw4dZs2YNa9asaemitRrjxo3j3XffxcPDAy8vL44fP84nn3zCM88809JF01kFBQVcvnxZ+z42NpYTJ05ga2uLh4cHL7/8Mu+99x5du3ala9euvPfee7Rr147Jkye3YKl1y+2eoaurK3/96185duwY//vf/6ioqND2T7S1tcXY2Liliq1T6vo+/HMYNjIywtnZmW7dut3touqsup7h/PnzeeyxxwgODmbo0KH89ttv/PLLL0RERLRcoXVMXc8wJCSE+fPnY2ZmhqenJ5GRkWzYsIFPPvmk5QrdYuNxRb388ssvSq9evRQTExOle/fuypo1a1q6SK1KXl6e8tJLLykeHh6Kqamp0rlzZ+X1119XSkpKWrpoOmvPnj0KUOM1depURVHUKU/efPNNxdnZWTExMVGCg4OV06dPt2yhdcztnmFsbGyt+wBlz549LV10nVHX9+GfyXQnNdXnGa5du1bp0qWLYmpqqvTt21f56aefWq7AOqiuZ5iSkqI89dRTiqurq2Jqaqp069ZN+fjjjxWNRtNiZdZTFEW5C/lRCCGEEEI0M+ljJ4QQQgjRRkiwE0IIIYRoIyTYCSGEEEK0ERLshBBCCCHaCAl2QgghhBBthAQ7IYQQQog2QoKdEEIIIUQbIcFOCCGEEKKNkGAnhBBCCNFGSLATQgghhGgjJNgJIYQQQrQREuyEEEIIIdqI/w+am4v7CAAmFgAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAADXCAYAAACXixybAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABnx0lEQVR4nO3deVxU9f7H8dewI6vsIOKSO24oLigCSmpqWtYtzZ9p3tIsl5IyxaxudsuyW5ZLlmVXy+6tbl7LLpY7qIiK4L5rqMgOsu8w5/fHicERVECUAT/Px2MeNmfOnPmeCfXtd/l8NYqiKAghhBBCiEbPqKEbIIQQQggh6kejCnaKojB69GjatWuHvb09H3zwQUM3SQghhBDCYDSqYKfRaPj111958cUXyc7Oxt/fv6GbJIQQQghhMBpVsKsQFRWFtbU1/fr1a+imCCGEEEIYjEYX7LRaLTt27CAwMBATE5OGbo4QQgghhMFodMHu4MGDZGZmEhwc3NBNEUIIIYQwKAbd5ZWbm8vbb7/NuXPncHNzo2XLllRUZ3nwwQcbuHVCCCGEEIZFY6h17K5du0ZwcDDe3t58++23aDQavv76a0JCQjA3Nyc5ORmNRtPQzRRCCCGEMBgGOxT7xBNPkJ2dzRdffKELcKNHjyY7O5vg4GAJdUIIIYQQNzDIYPf999+zc+dOXnzxRaysrHTHDx8+DCDz64QQQgghqmGQwe7zzz8H4NFHH9U7HhERAcj8OiGEEEKI6hjcHLuysjIsLCzw8PDgypUreq/5+/uTnJzMhQsXGqh1QgghhBCGy+B67DIyMigvL8fHx0fveGFhIdHR0bph2A0bNpCdnd0QTRRCCCGEMEgGF+xcXFywsrLC0dFR7/i///1vSkpKdMOwGzduxM7OriGaKIQQQghhkAwu2Gk0Gp577jliY2N1Neu2bdvGTz/9BICnpycXLlzAy8urIZsphBBCCGFwDG6OHUBBQQHTp0/n2rVruLu707FjR0JCQnj77bfZt28fzs7OLF++vEqvnhBCCCHE/cwgg50QQgghhKg9gxuKFUIIIYQQdSPBTgghhBCiiZBgJ4QQQgjRREiwE0IIIYRoIiTYCSGEEEI0ERLshBBCCCGaCAl2QgghhBBNhAQ7IYQQQogmQoKdEEIIIUQTIcFOCCGEEKKJkGAnhBBCCNFESLATQgghhGgiJNgJIYQQQjQREuyEEEIIIZqIWgW7VatW0b17d2xtbbG1tcXPz4/ffvvtlu+JiIigd+/eWFhY0LZtWz7//PNaN1JRFHJyclAUpdbvFUIIIYS4X9Qq2Hl6evL+++9z6NAhDh06xJAhQ3jkkUc4efJktefHxcUxcuRIBg0axOHDh1mwYAGzZ89mw4YNtWpkbm4udnZ25Obm1up9QgghhBD3E41yh91gDg4OfPjhhzz77LNVXps3bx6bNm3i9OnTumPTp0/n6NGjREVF1fgzcnJysLOzIzs7G1tb2ztprhBCCCFE3SgKZB2HxDDQmECXuQ3doipM6vrG8vJy/vOf/5Cfn4+fn1+150RFRTFs2DC9Y8OHD2fNmjWUlpZiampa7fuKi4spLi7WPc/JyalrM4UQQggh6q40D1J2QOJm9VFwFUysoPXEhm5ZtWod7I4fP46fnx9FRUVYW1uzceNGunTpUu25ycnJuLq66h1zdXWlrKyM9PR03N3dq33f4sWLefvtt2vbNCGEEEKIO5dzXu2VS9wMqRGgLQGbDtDyL9BiFDgPAmPzhm5ltWod7Dp27MiRI0fIyspiw4YNTJ48mYiIiJuGO41Go/e8YuT3xuPXCw0NJSQkRPc8JyeHli1b1rapQgghhBC3V16sBrjEzZAQBnkXwMgMXAeDz4fgMRJs2gGQVZRF+PnfKC0v5QnvJxq44VXVOtiZmZnRrp16c76+vkRHR/Ppp5/yxRdfVDnXzc2N5ORkvWOpqamYmJjg6Oh4088wNzfH3Nwwk7AQQgghmoCCq5XDq8nboSwfmnmCxyjw+AjcgsHEiqKyIiKvRLLj4NfsiNvBocRDaBUtwx4Y1jSC3Y0URdGbD3c9Pz8/fv31V71jW7duxdfX96bz6+6lkpISysrKGroZQhgcExMTzMzMGroZQghRf7RlkL6/cog16xhojMFpAHgvVIdY7bpSrmiJSYphR9QytsdtJ/JKJMXlxTg3cya4bTBTe00luE0wbZq3aeg7qlatgt2CBQsYMWIELVu2JDc3l++//57w8HB+//13QB1CTUhI4JtvvgHUFbArVqwgJCSEqVOnEhUVxZo1a/j3v/9d/3dSSyUlJZw8eRKtVtvQTRHC4BgZGeHt7S3hTgjRuBWlQdLvapBL2gIlmWDuBO4jwHsBuA9DMbXnTPoZdpzbwY64N9kVt4vs4myszawJbBXI4uDFBLcNpqtLV4w0apW4jAw4eRK8vRv4/qpRq2CXkpLC008/TVJSEnZ2dnTv3p3ff/+doUOHApCUlMSVK1d057dp04bNmzczZ84cVq5ciYeHB8uWLePxxx+v0eetXLmSlStXUl5eXptm1khZWRlarZbWrVtjaWlZ79cXorEqLCzk0qVLZGRkYGtri5WVVUM3SQghakbRQuYRdZ5c4mbIOAAo4NAbOsxS58o5+HI1L4kdf+xgR+xL7IjbQWJuIqZGpvi19CPEL4TgNsH0bdEXU2N1dLGwEHbugG3bYPt2OHwY+vWDWlRuu2fuuI7dvXA36tgVFBRw+vRpOnfuTLNmzerlmkI0BRW/N2JjYzE2NmbcuHES7oQQhqs0B5K2Vc6XK0oGU1twG6YGOY8RZGLOrku71DAXt4OzGWfRoKGnW0+C2wQT3DaYQV6DsDJT/6wrL4cjRyqD3N69UFwMrq7w4IPqIzgYDHFd5x3PsRNCNE2mpqZkZWVRXFwswU4IYTgUBXLO/BnkwiB1DyhlYNcF2kwEj1EU2vdi79UD7IjbwfYdK4lNikVBoZ1DO4LbBPPO4HcY3GYwTs2cdJf94w81xG3bBjt3wrVrYGUFgYGweDEMHaoOvd6iqIdBkGAnhKiWzK8TQhiMskJIDa8cYs2PA2MLcB0CvT+lzG0oh3Iy1B653xcRGR9JSXkJrlauBLcN5sU+LxLcJphW9q10l8zIgP+EVfbKxcWBsTH07QszZqi9cv37Q2P7o9Cgg93dnGMnhBBCCAOWf7kyyKXshPJCsGoNHqNQPEZw2siN7Vci2RG7hfBLoeQU52BjZkNQ6yCWPLiE4LbBeDt76+rmFhZW9shVzJNTFOjUCUaNUoNcUBDY2TXoXd8xgw52M2bMYMaMGbo5dkIIIYRoorSlkBZZOcSafUrdj9VlEHRfRKKND1tSL7Pj0k527H6O5LxkzIzNGNByAHMHzCW4TTB9WvTBxEiNNuXlEBt783lys2apv3p6NvB91zODDnZCCCGEaMIKk9VyJAlhkLxVXQhh4QoeI8ntMJcdRRq2XN7Pju2rOX/tPBo09HLvxaTukwhuG4y/lz/NTCsXQDaVeXJ3QoKdEEIIIe4NRQsZhyqLBF87BGjAsS8lHV4iBhd+TrnM9mM7OZy0FgWFDo4deLDtgywOXszgNoNxsHTQXS4jA8J23nye3NChalmSxjZP7k5IsBNCCCHE3VOSCUlb/xxi/Q2K08DUHq37MC46jWBTTgm/XtnPvoPvU6otxd3aneC2wczqO4vgNsG0tKusKXK7eXJDh6q9c/fz7C2DDnayeOLuCQoKomfPnnzyyScN3ZRq3cv2VdQzFEIIUQ8UBbJPqEEuIQzS94FSjmLfnTS3MYSXNuO7xIvs2vMbuSU/Ymtuy+DWg/lo2EcEtw2ms1Nn3YKH8nKIibn5PLnZs9V6ck1tntydMOhgJ4snxN32ySefMGbMmAZtQ1paGuvWrePVV1+96TmJiYl4eHjcw1YJIUQtlOVD8s7KIdaCeDBuRoHjAGJdJ/D9tWx+OnWAlPw1mBubM9BrIPP95xPcJpjeHr11Cx5AnSdXEeRunCf3/vtqoGvq8+TuhEEHO3FnSkpK7ttaZEFBQcyePZvHHnvspuds3boVZ2dn2rZtew9bVpWzszMBAQGsXLmSGTNmVHtOeHg44eHhPPXUUwwePLhG142Ojua7777Dx8eHyMhIQkNDadPGMDetFkI0QrkXK4NcSjhoiymzasNFS282a735Iv40Z89sR4MGXw9fpvScQnDbYAa2HIilaeVWnunpaoDbvl3mydUHo4ZuQFPQunXrKkOGPXv25G9/+xughoyZM2cyc+ZM7O3tcXR0ZOHChVy/m1tNzlEUhSVLltC2bVssLS3p0aMHP/30U5VrhISE4OTkpNvD92bKyspu+nnFxcXMnj0bFxcXLCws8Pf3Jzo6ulb3XdGm2bNn89prr+Hg4ICbm5ve6wD5+flMmjQJa2tr3N3d+eijj27Z7tv5+eefMTY2Zv78+ZSWlt70vGXLljF+/Pg7+qz60rdvXw4ePEh6enq1r0+YMIHPPvuM+Ph4nnvuOX777bdbXq+4uJgnnniC0NBQJk+ezJQpU5gyZcrdaLoQ4n5RXgLJ2yEmBH7tCL+2Qzk8l9S8FP5r3peROe0wPRJHp/2/81XyFYZ1GMPGcRvJeC2Dg1MPsvjBxTzY9kEos2TbNpg3D3r3BhcXGDcO9uxR58n98ou6KGLfPli0CAYNklBXGxLs7pF169ZhYmLCgQMHWLZsGUuXLuWrr76q1TkLFy7kn//8J6tWreLkyZPMmTOHiRMnEhERUeUakZGRfPHFF3Vu02uvvcaGDRtYt24dsbGxtGvXjuHDh3Pt2rU63buVlRUHDhxgyZIlLFq0iG3btulenzt3Lrt27WLjxo1s3bqV8PBwYmJidK+vXbtWN9/idsrKyoiJieHHH38kNTX1pt/BsWPH8PT0xNjYuNb3c7eMGTOGtWvX3vR1ExMTJk2axOrVq8nJyeGvf/0rGzdupLrtnnfv3o2trS2urq6AGhz3799PSkrK3Wq+EKIpKkiAC1/B7rGwwRF2DqUo7lsOlloyt7g9dudLcY09witX4vHwCOS7x74j6ZUkTr54kmUjlvFop0exNWvOoUOVw6jNm8OwYfDNN9ClC/zznxAfD6dPw/LlMGbM/b344Y4pBmzFihVK586dlQ4dOiiAkp2dXW/Xzs/PVw4dOqTk5+dXHivJV2ISY275yC/Jr3KtVq1aKUuXLtU71qNHD+Wtt95SFEVRAgMDlc6dOytarVb3+rx585TOnTvrnt/unLy8PMXCwkLZt2+f3uc8++yzylNPPaW7Rs+ePWt0/7f6vLy8PMXU1FT57rvvdK+VlJQoHh4eypIlS2p83xWf4+/vr3dOnz59lHnz5imKoii5ubmKmZmZ8v333+tez8jIUCwtLZWXXnpJURRF+e9//6t07NixRvf11VdfKefPn1cURVHef/99xdnZudqfm48//lj56quvdM/LysqUFStWKBMnTlQOHjyoKIqiTJgwQVm3bl2NPvdWysrKlOXLlyuTJ0/WXTs+Pl4JDAzUOy8tLU0ZPHhwja+r1WqVn3/+Wfm///s/Zfv27XqvrV69usr1nZyclB07dtz2uhW/N7777jtl6dKlSkZGRo3bJIRo5MrLFCU1UlGOLFCUzT0V5TsU7XdGyuX/eCmrv2mj9P7AROFvKC4fuijjfxqvfBnzpXLx2sUql7l4UVE+/1xR/vIXRXFwUBRQFCsrRRk1SlGWLlWU48cV5bq/fkQ9qlWP3eLFi+nTpw82Nja4uLjw6KOPcvbs2Vu+Jzw8HI1GU+Vx5syZ237ejBkzOHXqVJUhwLvlTPoZeq/ufcvHmfTbt7s6/fv31+t18vPz4/z583orfm91zqlTpygqKmLo0KFYW1vrHt988w0XL17UvcfX1/eO23ThwgVKS0sZOHCg7jVTU1P69u3L6dOna33v3bt313vu7u5OamoqABcvXqSkpAQ/Pz/d6w4ODnTs2FH3fOzYsTX6ecnLyyMtLY127doB8NJLL9GsWTM++OCDKudevXoVFxcX3fNffvmFcePGUVBQwKVLlwAYPXo0OTk5Nb/Rm9i0aRPjx4+nsLCQuLg4ALZt24bnDcu4nJyc9P5f3k56ejqxsbE4OjpWmTuXnp6OhYWF3jELCwuysrLqdhNCiKarOAPivoPI/0P5rwtsG0jh6U/YmZnKlDRzHC9q6XYhi/+ZdmNS4Eccf+E4ya8k8+/H/81zvZ6jbfO2pKfDjz/CtGnQti088IA6Py4hAWbOhN271UUQ//sfvPwydO0qix/ullotnoiIiGDGjBn06dOHsrIyXn/9dYYNG8apU6ewsrK65XvPnj2Lra2t7rmzs3PdWnwXdXLqRMy0mNuecyMjI6Mqw2G3mttVF1qtFoCwsDBatGih95q5ubnuv2/3/6E2bhz+VBRF71hN79vU1LTKdSvu58b334kvv/ySqVOn6p5bWFjw7rvvMm3aNF588UW97y0vLw9Ly8rJu0OGDEGr1bJnzx7Wr18PwAMPPFDtwopPP/1UF9CqExgYyNixY3XPg4ODAdi5cydff/01oP6Dp7o5kDUZck5MTGT58uWUlpYya9YsWrVqVeUcOzu7Kt9tXl4eTk5Ot72+EKKJUxTIPAKJm1ESwyD9ABq0/IE9/80p5qdsOF5WzgCvLgT3Dub3NkPo5d5Lb+VqYaFaeqRiwcP19eQeflgdcr3f68k1lFoFu99//13v+T//+U9cXFyIiYkhICDglu91cXHB3t6+1g28l5qZNqOXe69av8/Z2ZmkpCTd85ycnCp/8e/fv7/K8/bt2+vN8brVOV26dMHc3JwrV64QGBhY6zZW52af165dO8zMzNi7dy8TJkwA1MB26NAhXn75Zd35Nbnv22nXrh2mpqbs378fLy8vADIzMzl37lyt7jM5ORkLCwscHR31jk+YMIGlS5fy5ptvsmbNGt1xJycnMjMzdc/t7e359ttvCQoK0gW+48eP88wzz1T5rJdeeqk2t4itrS3ff/89AQEBuuAdERHBe++9R1ZWlt7vCxOTm/+WvHTpEitXrsTMzIzZs2fj7u5+03M7derEl19+qXteXFxMbm5utSFQCHEfKM1VFz4khlF+9VeMi1MpxJRdRSb8lK1lW4ERXu5dCO4YzPtthuDn6Ye5SWWnQXk5HDpUGeQq6sm5uUk9OUNzR+VOsrOzAXXo7HZ8fHwoKiqiS5cuLFy48JYlG4qLiykuLtY9r4/hsLtpyJAhrF27ltGjR9O8eXPeeOONKpPy4+PjCQkJ4fnnnyc2Npbly5dXWf15q3NsbGx49dVXmTNnDlqtFn9/f3Jycti3bx/W1tZMnjy51u2+2edZWVnxwgsvMHfuXBwcHPDy8mLJkiUUFBTw7LPP1uq+b8fa2ppnn32WuXPn4ujoiKurK6+//jpGRpWzBDZu3EhoaOgth2NXrVrFtGnTql1VOn/+fMaPH8+cOXPo2rUrAJ07d+bKlSt656WkpOiFS2tra7123In4+HjdEPGJEycwNTXFxcWFdevW8dxzzwFqeLaxsan2/f/4xz8oKChg/vz5VcJrdQICAkhNTeXq1at4enoSERFBnz59JNgJcb9QFMg9BwlhlFz9BZP0SIyUci6Wm7Exp4TN+ZBr15mA1g/yl0HBfOo1CBtzG723X7gAO3ZUrScXFCT15AxZnYOdoiiEhITg7++v+8uyOu7u7qxevZrevXtTXFzMt99+S3BwMOHh4Tft5Vu8eDFvv/12XZt2z4WGhvLHH3/w8MMPY2dnxzvvvFOl52rSpEkUFhbSt29fjI2NmTVrFtOmTavVOe+88w4uLi4sXryYP/74A3t7e3r16sWCBQvq1O5bfd7777+PVqvl6aefJjc3F19fX7Zs2ULz5s1rdd818eGHH5KXl8eYMWOwsbHhlVde0f2jAdR/QNxqLue5c+d49913WbRo0S0/Z8GCBWzatAmAhx56iKlTp/LKK6/oXh8/fjwhISF8++23lJWV1Sks38zjjz/OvHnz+PHHHwHo3bs3K1as0OsRjI6OZsiQIdW+/1bFi6tjYmLCunXrePfdd+nfvz8RERF89913dW6/EKIRKC+ClHBKrv5CafzPWBUnU6xo2FGgsDkfTpu1poPXQwT3DubH1kE4NdOfmpGSoga4ijB3+XJlPbmZM9UgJ/XkDJ9GqeMkpxkzZhAWFsbevXurTAK/ndGjR6PRaHR/yd6ouh67li1bkp2drTdP704UFBTotpJq1qxZvVzzZmqyPZahb/HVFE2bNo1Fixbh5ubW0E0B1HI2Y8aMoW/fvg3ajorfG2fPniU1NZVJkybVqFdeCNEA8q9QGr+J7Lh/YZsZjRllXC6FsHzYrzhi7jGcQW2HM7j1YL09VwHy8tRFDdu3q2Hu2DH1uLe3GuKCg9V5cvX01664R+rUYzdr1iw2bdrE7t27ax3qQF2NWTFBvTrm5uZ6CwKEuBvefPNNVqxYwd///veGbgo5OTmkpaXdNNQtXbr0litmBw8ezOOPP363mieEMBTaUspT95Jy/p+YJG/FpTQFjQInCiG8pBnZToPp0O5RHnzgQV5waK+3IKu0FA4erAxyUVFQVqbOi3vwQXjtNRgyBG4xfVc0ArUKdoqiMGvWLDZu3Eh4eHidtyc6fPjwLSd+C3EveHp6MnbsWDZv3szIkSMbrB2KorB06dJbBsw5c+bcwxYJIQyJUphCwtk1FFz+iRb5x7GiDOMy2FpkQry1DzZej+Hf/mHedO2OkaZyXrCiwIkTlQseIiLUXjo7OzXAffqp2ivXoYPMk2tKahXsZsyYwb/+9S9++eUXbGxsSE5OBtTSChUrCUNDQ0lISOCbb74B1E3WW7dujbe3NyUlJaxfv54NGzawYcOGer4VwxUeHl4v54j617t374ZuAhkZGbzwwgsGWQJICNEAFC0JlzaRfP5r7DMiaaO9hgdwqFhDpGkryt2G06XjRMa16IepsX45qStXKufI7dihzpszN4eBA2HBArVnrlcvde6caJpqFexWrVoFqPPBrvfPf/5TNwk8KSlJb7VhSUkJr776KgkJCVhaWuLt7U1YWFiNekhWrlzJypUr9Yr4CtHUSG05IURK5lnOn/wMTeJvdCy5SAsjLVblEK04ENN8FK4dJtOn7Sj6murPCc/MhF27Knvlzp9Xe9969YJnnlGD3MCBcF3ZTtHE1XnxxL2Uk5ODnZ1do108IURjIosnhLj7sgoziT2zntxL3+ORewQf4wJMNHCu3Jwrzbpi4fUYXb2nYt9Mvye/sBAiIyt75WJi1CHX9u3VYdUHH4TBg0F+y96/7qiOnRBCCCFur6C0gKi4HcSfX4d1+m58SWOIKRQqGs6Ze3LYdTytu7xIB5fedLjufeXlEBtbGeQqCgO7uKgh7oUX1EAnJSpFBQl29ylDL69yL9tX0XMrhBD1pbismAMJBzh8fgNKYhidSv4gyELBwghSzKxJtx9C8gNP4/bAeHoYV+7rrCjqcGrFHLmdOyErq7Iw8OLFaqCTvVbFzUiwE/e1Tz75hDFjxtz2vLS0NNatW3fLQsGJiYl4eHjUZ/OEEI1EmbaMQ4mHCP9jKxmXf8Ez7xjDLMt4yQxKTTQk27Qny/NRXDtMwdW2I67XpbLkZP0FD/HxYGIC/fvDyy+rPXJ9+0phYFEzBh3sZPHEnSkpKcHsPv2TICgoiNmzZ/PYY4/d9JytW7fi7OxM27Ztb3s9Z2dnAgICWLlyJTNmzKj2nPDwcMLDw3nqqaduuWXe9aKjo/nuu+/w8fEhMjKS0NDQOpcREkLcO+Xaco6mHGVn3E6OXPoNu4xIhpgX82IzsDWGPAdbilyGoH1gIqbuw2hpWrldV26uWnqkIsidOKEe79YN/vIXtUdu0CC4yQ6DQtxS/WyEeZfMmDGDU6dOER0d3dBNuaXWrVtXGTLs2bMnf/vb3wA1ZMycOZOZM2dib2+Po6MjCxcu5Pp1KzU5R1EUlixZQtu2bbG0tKRHjx789NNPVa4REhKCk5MTQ4cOvWW7y8rKbvp5xcXFzJ49GxcXFywsLPD396/y/+F2913RptmzZ/Paa6/h4OCAm5ub3usA+fn5TJo0CWtra9zd3avsoVtbP//8M8bGxsyfP5/S0tKbnrds2TLGjx9f4+v27duXgwcPVrsfLcCECRP47LPPiI+P57nnnuO333675fWKi4t54oknCA0NZfLkyUyZMoUpU6bUuD1CiHtHURROpJ5g+YHlPP79o4z8tDlhP/XmwbOvsZ6drHAsYZhHN6x6LIKHYrF+MgunwRsx8nqcEsWGPXvgrbfUFaoODjB6NGzcqPbE/etfaq/dsWPw8ccwcqSEOlF3Bh3smpJ169ZhYmLCgQMHWLZsGUuXLuWrr76q1TkLFy7kn//8J6tWreLkyZPMmTOHiRMnEhERUeUakZGRfPHFF3Vu02uvvcaGDRtYt24dsbGxtGvXjuHDh3Pt2rU63buVlRUHDhxgyZIlLFq0iG3btulenzt3Lrt27WLjxo1s3bqV8PBwYmJidK+vXbtWr3r6rZSVlRETE8OPP/5IamrqTb+DY8eO4enpiXEtizmNGTOGtWvX3vR1ExMTJk2axOrVq8nJyeGvf/0rGzdupLrF57t378bW1hZXV1dADY779+8nJSWlVm0SQtQ/RVE4l3GOLw59wbifxtHpYxfe/bYbjkde5uvyMLa45jLf1ZZu7Z8Ev/VoHkvF5uFjGHd7A629D8eOa3QhzcEBAgJg+XJ1V4fly9V5dJcuwZo18NRT8OcfA0LcMYMeir3XCgrgzJlbn9OpE9SlOkrLli1ZunQpGo2Gjh07cvz4cZYuXcrUqVNrdE5+fj4ff/wxO3fuxM/PD4C2bduyd+9evvjiCwIDAwFo164dS5YsuaM2TZgwgVWrVrF27VpGjBgBwJdffsm2bdtYs2YNc+fOrdW9d+/enbfeeguA9u3bs2LFCnbs2MHQoUPJy8tjzZo1fPPNN7oexnXr1ultVWdnZ0fHjh1r9Fnr1q1j8uTJODo6EhoayqJFi5g0aVKVMjk7duygT58+uufl5eWsWrWKQ4cOMWPGDPr06cPVq1eZOHGiXvHowMBAVq5cecu5dgBGRkaMGzeOJ598kk2bNvH0008zZcoUgoODdedcunRJr4yIsbExNjY2nDx5Uhf2hBD3zuWsy+yM28nOSzvZFbcTx+JEHrbWsMDemm7ueRgBWvuuGLV4GDxGYerYD4zUfxxeuqQ/Ty4tDSws1CHVN95Qh1d79pTCwOLuM+hgd6/n2J05A7fbiCAmRi38WFv9+/fX63Xy8/Pjo48+ory8XNdrdKtzTp06RVFRUZXh1ZKSEnx8fHTPfX1977hNFy5coLS0lIEDB+peMzU1pW/fvpw+fbrmN/2n7t276z13d3cnNTUVgIsXL1JSUqILqwAODg56QW7s2LGMHTv2tp+Tl5dHWloa7dq1A+Cll15i1apVfPDBB7z77rt65169elWv0PamTZsYP348e/bsIS4ujj59+rBt27YqeyE7OTndcs/WG6WnpxMbG4ujo2OVuXPp6elYWFjoHbOwsCArK6vG1xdC1F1ibiK74nax69IudsbtJDU7jqHN4GlnJ5Z7FGGvBcW4GRr3YPAYBR4jMGrWAoCMDNj138rCwBcvgpER+PrC1KnqgocBA9RwJ8S9ZNDBbsaMGcyYMUNXoPhu69RJDW63O+dGRkZGVYbabjW3qy60Wi0AYWFhtGjRQu81c3Nz3X9bWVnV22feOPypKIresZret6mp/pY3Go1Gdz/1WR/7yy+/1OsBtbCw4N1332XatGm8+OKLet9bXl6ebhs8QNeTtnPnTr7++mtAXQxR3TzFmgwLJyYmsnz5ckpLS5k1axatqikyZWdnV+X+8/LyZCcKIe6StPw0wi+F64Lc2YyztDOF51zdmOtuSjsXE4yVMrB1BPeR0GIkGudBYGxOQYFaQ66iV+7wYbU0SceO8NBDapALCoLmzRv6LsX9zqCD3b3WrFndeuOcnZ1JSkrSPc/JySEuLk7vnP3791d53r59e705Xrc6p0uXLpibm3PlyhXdsOudutnntWvXDjMzM/bu3cuECRMANbAdOnSIl19+WXd+Te77dtq1a4epqSn79+/Hy8sLgMzMTM6dO1er+0xOTsbCwgJHR0e94xMmTGDp0qW8+eabrFmzRnfcycmJzMxM3XNbW1u+//57AgICdOE4IiKC9957j6ysLOzt7XXnmpjc/LfNpUuXWLlyJWZmZsyePRt3d/ebntupUye+/PJL3fPi4mJyc3OrDYFCiNrLKsoi4lKELsgdTz2OmQb+z6UFn7k50MfNDZuSZDDKBOcg8HgVPEaCTTvKytR/6G9fo4a5yEgoKQE3N3VYdfZsNczd0KkvRIOTYFcPhgwZwtq1axk9ejTNmzfnjTfeqDIpPz4+npCQEJ5//nliY2NZvnx5ldWftzrHxsaGV199lTlz5qDVavH39ycnJ4d9+/ZhbW3N5MmTa93um32elZUVL7zwAnPnzsXBwQEvLy+WLFlCQUEBzz77bK3u+3asra159tlnmTt3Lo6Ojri6uvL6669jZFS5rmfjxo2EhoZy5hYTIFetWsW0adOqXbE6f/58xo8fz5w5c+jatSsAnTt31tvTuOL7qBjGPXHiBKampri4uLBu3Tqee+45QA24NjdZrvaPf/yDgoIC5s+fXyVgVicgIIDU1FSuXr2Kp6cnERER9OnTR4KdEHWUV5LH3it72Rm3k12XdhGbFItW0eLn4Mmr7l4M9uxFi4LTGJUngIkReDyiDrG6DUExtuLsWdi+Tg1yu3ZBdra6OjUoCD78UA10nTtLYWBh2CTY1YPQ0FD++OMPHn74Yezs7HjnnXeq9FxNmjSJwsJC+vbti7GxMbNmzWLatGm1Ouedd97BxcWFxYsX88cff2Bvb0+vXr1YsGBBndp9q897//330Wq1PP300+Tm5uLr68uWLVtoft04Q03uuyY+/PBD8vLyGDNmDDY2NrzyyitkZ2frXs/Ozubs2bM3ff+5c+d49913WbRo0S0/Z8GCBWzatAmAhx56iKlTp/LKK6/oXn/88ceZN28eP/74IwC9e/dmxYoVPPPMM7pzoqOjGTJkSLXXv92CihuZmJiwbt063n33Xfr3709ERATfffddra4hxP2ssLSQqKtRuiB3MOEgZdoyWtq485xXV77yeojOJRcxyz0LpUlgNwAeeEvtlbPrSmKSRm/BQ0ICmJqCnx+88ooa5Hx91WNCNBYapT4nOdWz6xdPnDt3juzs7CqrG+uqYqPzzp0706wuy1xroSbbYxn6Fl9N0bRp01i0aBFubm41fs/ChQsZM2YMffv2vYsta1gVvzfOnj1LamoqkyZN0lu9K0RDKSkv4WDCQV2Qi4qPori8GKdmToxpNYAJTg70IRWba1FoSjLB3Bk8RqhBzn0Y2YXNdYWBt2+HirVgPXqoIa6iMHA9TlUW4p6rVY/d4sWL+e9//8uZM2ewtLRkwIABfPDBB7ctRREREUFISAgnT57Ew8OD1157jenTp9/28+714glxf3nzzTdZsWIFf//732t0fk5ODmlpaTcNdUuXLr3litnBgwfz+OOP16mtQtyPyrRlxCbF6oLc3it7KSgtwN7CniCvAP4ZMIshZoW4ZB9Ck/ErJCvg4AsdZoHHKIqtfdl/wIjtX6lBLjoaysuhdWs1xL31FgwZAs7ODX2nQtSfWgW7iIgIXY2vsrIyXn/9dYYNG8apU6duuhozLi6OkSNHMnXqVNavX09kZCQvvvgizs7O8pecaFCenp6MHTuWzZs3M3LkyFueqygKS5cuvWUInDNnTn03UYj7SsU2XbvidhF+OZzdl3eTU5yDlakVAa0CWBwwn1E25rQpOI1R0u9wdROY2oLbMGg/nXKXhzhy1o0dv8POnbBnj1qf1NFRXegwZYoa6Gqwi6AQjdYdDcWmpaXh4uJCREQEAQEB1Z4zb948Nm3apFf/bPr06Rw9epSoqKgafU5Fj11jHYoVjV96ejparRYXF5eGbspdJ0Ox4l4p15ZzLOWYrgTJ7su7yS7OxtLEkoFeAwnyCmSU2wN0K7uCcfIWSN0DShnYdQGPUSjuIzmXNZAdO011Cx4yM9UKB4MGqWHuwQfVoVYj2WdJ3CfuaPFExQT3W/2hHxUVxbBhw/SODR8+nDVr1lBaWlqlxhmoZR+Ki4t1z3Nycu6kmULcMaktJ8Sd0ypajqccZ9elXYRfUnvkMosysTCxYEDLAbw64FWGtPSjj0kepsnbIHENJFwCY0twHQK9PyXZeCRbI1uz48fKBQ8mJtCvH8yapYa5/v3BzKyh71aIhlHnYKcoCiEhIfj7++tKSFQnOTm5yvZIrq6ulJWVkZ6eXm2dr8WLF/P222/XtWlCCCEMgFbRciL1hK5HLuJSBJlFmZgbm+PX0o+X+79MUOsg+tm7Yp6yAxLD4OC7UF4EVq3BYxS5tqPYfjyI7f+xZMcOqFgg37MnjB+vBrlBg8DauiHvVAjDUedgN3PmTI4dO8bevXtve251OxhUd7xCaGgoISEhuuc5OTm0bNmyrk0VQghxD2gVLafSTunmyEVciiCjMAMzYzP8PP2Y3W82g1sPpp9HLywyY9Qgd+IFyD4FGhNwGURxp78TfXUkmyI6sWOHRrfDQ7t2aoh75x0YPBikE12I6tUp2M2aNYtNmzaxe/fuKntp3sjNzY3k5GS9Y6mpqZiYmNy0iKu5ubneNlmGrrGUKjH0dt7L9imKwpIlS/jPf/7D/PnzycnJ4fTp0yxevFhvZ4mKeZhCiKoUReFU2qnKHrnLEaQXpGNqZEp/z/7M6DODoNZB9Pfsj2VZNiT+BvErIHorlOaAhRtat5GcM13EzweG8tvntkRFQWmpusNDcDDMnKn++ufGNEKI26hVsFMUhVmzZrFx40bCw8OrbGpeHT8/P3799Ve9Y1u3bsXX17fa+XVC1IeCggIURbnpam2NRoOtrS1PPPEEf/nLXwAYO3YsR44cwdfXF4BPPvmEMWPG1Ojz0tLSWLduXa2LFAvRmCiKwpn0M7o5cuGXwkkrSMPUyJR+nv2Y3ns6g9sMpr9nf5qZWEBGNCRuhh1z4VoMoEFx7Eey/avsOD2K77f0JGK3EXl5YGen9sR9/LFagkR2eBCibmoV7GbMmMG//vUvfvnlF2xsbHQ9cXZ2droN1UNDQ0lISOCbb74B1BWwK1asICQkhKlTpxIVFcWaNWv497//Xc+3IiqUlJRgdh/PHA4LC+OVV15h/Pjx/O1vf7vpeVu2bCE0NBSAjIwMiouL6d69O6D+48PZ2Zm2NayL4OzsTEBAACtXrmTGjBl3fA8VoqOj+e677/Dx8SEyMpLQ0NAa/YNKiPqgKApnM87qeuTCL4WTmp+KiZEJfVv0ZVrvaQS1DmJAywE0M20GJZmQtBWip0PS71CchmLWnDyb4UQXvcy/dg3nl9+dSU8HCwvw94fXX1d75Hr1glruSCiEqEatFoCvWrWK7OxsgoKCcHd31z1++OEH3TlJSUl6e3C2adOGzZs3Ex4eTs+ePXnnnXdYtmxZjWrYrVy5ki5dutCnT5/aNLNBFRcXM3v2bFxcXLCwsMDf35/o6Gjd67/++iv29vZotVoAjhw5gkajYe7cubpznn/+eZ566imgcsiwbdu2WFpa0qNHD3766Se9zwwKCmLmzJmEhITg5OTE0KFDb9q+srIyZs6cib29PY6OjixcuJDrK97crv2tW7euMlTas2dPvQAVFBTE7Nmzee2113BwcMDNza1KwMrPz2fSpElYW1vj7u5eZd/cOzFq1CjGjRt3y3PKyso4cOAAubm5bN++nYiICH755RddIF62bBnjx4+v1ef27duXgwcPVrtfbV0UFxfzxBNPEBoayuTJk5kyZQpTpkypl2sLUR1FUTiXcY4vDn3BUxuewuNjDzqv7Mys32YRnx3Psz7PsnXiVrLmZRH510j+PvgdHnRwpdm5ZbAtADY4Q+R4StOPcqLoORZH7+GBuanYPvRvhk2byMkLzjz/vFpjLjMTtm2D+fOhTx8JdULUl1oPxd7O2rVrqxwLDAwkNja2Nh8FNM6dJ1577TU2bNjAunXraNWqFUuWLGH48OFcuHABBwcHAgICyM3N5fDhw/Tu3ZuIiAicnJyIiIjQXSM8PFxX7HbhwoX897//ZdWqVbRv357du3czceJEnJ2dCQwM1L1n3bp1vPDCC0RGRt7y/9O6det49tlnOXDgAIcOHWLatGm0atWKqVOn1qj9NbVu3TpCQkI4cOAAUVFRPPPMMwwcOFAXOufOncuuXbvYuHEjbm5uLFiwgJiYGHr27Km7xtq1a5kyZUqNfu5udLOFORWioqIYNGgQDz74YJXXjh07hqenJ8Z1+JtmzJgxrF27tsqQ7Keffkp2djbTpk2r8RZmu3fvxtbWVreqvG/fvuzfv5+UlJQqK82FqAtFUbhw7YJej1xSXhLGGmN8PXx5psczBLUOYqDXQKzN/lx2WpYPyTvUIdbEzVAQj2JsRTIPEnHxM1b/byS7Dqhzr7t2hTGPqD1ygYFQT2VIhRC3cEd17JqcsgLIOXPrc2w7gUn1BY3z8/NZtWoVa9euZcSIEQB8+eWXbNu2jTVr1jB37lzs7Ozo2bMn4eHh9O7dWxfi3n77bXJzc8nPz+fcuXMEBQWRn5/Pxx9/zM6dO/Hz8wOgbdu27N27ly+++EIv2LVr144lS5bc9hZbtmzJ0qVL0Wg0dOzYkePHj7N06VKmTp1ao/bXVPfu3XnrrbcAaN++PStWrGDHjh0MHTqUvLw81qxZwzfffKMLeuvWrauyEMfOzu6229Xt27eP77//nm7dunHx4kUefvhh/P39AfX/x7p16wD4+eefWb9+PVZWVhw9epRly5bh4OBAVlYW9vb2etfcsWNHlV7i8vJyVq1axaFDh3S7r1y9epWJEycSHh6uOy8wMJCVK1dWCXYvvfQSKSkpfP755+Tn5/Pss8/e9t4uXbqkF6aNjY2xsbHh5MmTEuxEnSiKwh+Zf+jNkUvITcBIY4Svhy9Pd3+aoNZB+Hv5Y2NuU/nG3AsQtxkSwiA1HLQlFBi353DKY3y/ZxRfbQqgqMScNm3UEDftZXW+nPyYCnHvSbC7Xs4Z+L33rc95KAYcelX70sWLFyktLWXgwIG6Y6ampvTt21dv542goCDCw8MJCQlhz549/P3vf2fDhg3s3buXrKwsXF1d6dSpE9HR0RQVFVUZWi0pKcHHx0fvWMWE/9vp37+/Xm+Wn58fH330EeXl5TVuf01UzFWr4O7uTmpqKqB+TyUlJbqwCmqR6xuDztixYxk7duxNPyMpKYnHH3+cw4cP64Z7Y2JidMHuwIEDfPjhhwBs2LCBLVu28Nhjj9GjRw/+85//3PS6V69eJSgoSO/Ypk2bGD9+PHv27CEuLo4+ffqwbdu2KmHUycnppvvFurq68tZbb5Gbm8tXX33FihUrmDBhgt73cL309HQsLCz0jllYWJCVlXXTtgtxPUVROH/tPBGXIoi4rD6u5lzFSGNEL/dePNX1KQa3GYy/lz+25td1p5UXQ/J2Ncglbobcc2gx41JhIJuPLGHVLyM5Fd8eFxd1ocPylWqgk+mfQjQ8CXbXs+2kBrfbnXMTN6vPpyiK3rGgoCDWrFnD0aNHMTIyokuXLgQGBhIREUFmZqauJ65iHl5YWBgtWrTQu+aN5WButvqzNmrSfiMjoypDo6WlpVWudeOKZ41Go7ufO9jFTs+GDRvw8vLSDW3eOI+vd+/KkO7g4FDjHUzy8vJ0i4EqBAcHA7Bz506+/vprQB0yr24+4+2GgW1sbJgzZw4lJSV89913fP3110yePFkXSCvY2dlV+a7y8vJkFwxxU4qicDr9tF6QS85L1gW5cd7jCGodxCCvQdhZ3DC9pSBBN7yqJG9HU5ZHbnkLIuNGsW7bEn6NDsbIzJrAQJgaoga5rl1l5aoQhsagg93KlStZuXIl5eXl9+YDTZrdtDeuJtq1a4eZmRl79+5lwoQJgBp6Dh06xMsvv6w7r2Ke3SeffEJgYCAajYbAwEAWL15MZmYmL730EgBdunTB3NycK1eu6A273on9+/dXed6+fXuMjY1r1H5nZ2eSkpJ078/JySEuLq5WbWjXrh2mpqbs378frz+LU2VmZnLu3Lla3adWq71lSKzLHDlQe90yMzP1jtna2vL9998TEBCgC9ERERG89957VYZzr6+Ddys5OTkkJCRgbW1d7R60nTp14ssvv9Q9Ly4uJjc3l1atWtXhrkRTVLGzQ0WQ2315N2kFaZgYmeDr4cvkHpMJbBXIQK+B+j1yANpyyNivhrmEMMg6ilYx4ty1AWzYv4Af9ozibEo3BgzQEDwcZi9RFznU8MdbCNFADPq3aGNbPGFlZcULL7zA3LlzcXBwwMvLiyVLllBQUMCzzz6rO69int369ev59NNPATXsPfHEE5SWluqGAW1sbHj11VeZM2cOWq0Wf39/cnJy2LdvH9bW1kyePLnWbYyPjyckJITnn3+e2NhYli9frluRWpP2DxkyhLVr1zJ69GiaN2/OG2+8UesAZW1tzbPPPsvcuXNxdHTE1dWV119/HaMbduneuHEjoaGhnDlT/bzHsWPH8s4773DlyhVdQPz+++9vu5o1NTWVrVu3YmRkRExMDB988IFeGOvcubPeyu4K8fHxtGvXDoATJ05gamqKi4sL69at47nnngPUIGxjY1PlvdeLi4tj9erVGBkZMX369JvuqhIQEEBqaipXr17F09OTiIgI+vTpI8HuPlauLedYyjFdb9zuy7u5VnhNV0duWu9pBLYKxK+lX+Vih+sVpUPSFkgMQ5u4BaPSa+SVOrLt5Ah+2DOf7SeH0baTA8HB8PHXMGAANKt+SrEQwkAZdLBrjN5//320Wi1PP/00ubm5+Pr6smXLFpo3b6533uDBg4mNjdWFuObNm9OlSxcSExP1djp45513cHFxYfHixfzxxx/Y29vTq1cvFixYUKf2TZo0icLCQvr27YuxsTGzZs1i2rRpNW5/aGgof/zxBw8//DB2dna88847te6xA/jwww/Jy8tjzJgx2NjY8Morr5Cdna13TnZ2NmcrNoasRsuWLdmwYQMLFy7E398frVbLyJEj+f333/nf//5HaWkp//vf/8jNzSUyMpKrV6/SqVMnLl26RFZWFjNnzmT//v1s376dhx56SHfdhx56iKlTp/LKK6/ofd7jjz/OvHnz+PHHHwF1qHfFihU888wzunOio6MZMmRIte09fPgw69atw83Njddee63Kz8SNTExMWLduHe+++y79+/cnIiKC77777pbvEU1LmbaMw0mHdUFuz+U9ZBdnY25sTn/P/szsM5PA1oFqQWDTahKYokDmEUgMozx+M0aZ+9GgcCq5Fz/tm8HmoyPJM+vD4CHGjJ8HqwLhNj+WQggDp1Hqa8LTXVTRY5ednY1tPa2XLygo0G0X1Uz+SXrfevLJJ1myZAmtW7fWOz5t2jQWLVpU49IkFRYuXMiYMWPo27ev3vFPP/0UCwsLJk+eXGVBhKGp+L1x9uxZUlNTmTRpUq1K3Yi6Ky0vJSYphvBL4URcjiDySiS5JblYmlgyoOUAAlsFEtg6kL4t+mJhcpOfo9JcSN5Gefxmyq5sxlybRH6JDb8fGUbYkZEcSxtBt77uBAerCx88PO7tPQoh7i7psRP3rbCwMJ544okqoQ7gzTffZMWKFfz973+v8fVycnJIS0urEuoA3bxJIa5XXFZMdGK0bo7cvvh95JfmY21mzcCWAwn1DyWwdSC+Hr6YGd9kNxlFgZyzaBM2k3c2DKuCPRhrSjmX2JmwwxPY+8coLL0GEjjYjNAZ0K6dLHgQoikz6GB3zxdPiPtGdHQ0rq6u+Pr6curUKbp06aL3uqenJ2PHjmXz5s2MHDnyttdTFIWlS5fWKgiK+09RWRH7r+7XBbmoq1EUlRVha27LIK9BvBX4FoGtA+nl3gsTo1v88VxehJIczrUTYZikbsbO+A+KSyzYe2ow208tJavZCLz7teXBuRDSHYxqtceQEKIxk6FYGYq970RFRfH888/j4uJCSUkJq1atwtvb+46umZ6ejlarrXZ1a2MjQ7H1J78kXw1ylyMIvxTOgYQDlJSX0NyiOYNaDSKwVSBBrYPo4doDY6NbL0JS8q6QdjSMwoubcWMH5iaFXEprxe/HRnG5dCS2HQYTMLgZffrAfbxVtBD3PYPusRPibvDz8+PYsWP1ek2pLScAMgsz2XtlL3uu7GH35d3EJMVQpi3DqZkTAa0C+HDohwS2CqSbazeMNLfpRtOWknpyH6lHN2NfEIan9Umal5lw6pw/v157m3K3kXQd0IXJ0zTcUHZRCHEfk2AnhBB1lJibyJ7Le3RB7kTqCRQUWti0IKBVAM/0fIZBXoPo7Nz59kEOSItP4Y/I3zFJCaO9zVZcLLLR5rhyIH4EO5r9DTefofi9ZkeQ7LkqhLgJCXZCCFEDFfusVoS4PVf2cOHaBQDaO7QnoFUArw54lUFeg2ht3/q2O5AAZGVqORYeQ8GFMFpoNtPNIxpHrYbjJX3YnRqC5QMj6flkLx5xkklyQoiaqXWw2717Nx9++CExMTEkJSWxceNGHn300ZueHx4ezuDBg6scP336NJ063Xx7LpDFE0KIhqNVtJxMPakX5BJzE9Ggobtrd0a0G8Egr0EMajUIN+ualcXJz4cDe7JIOrwVu/zN9GnxGwF2qWQ72HM2Zzj7lJm09X+IHq1d6HGX708I0TTVOtjl5+fTo0cPpkyZwuOPP17j9509e1Zv4YOzs/Nt39PYdp4QQjRepeWlxCbF6oLc3it7ySzKxMTIhD4efZjYbSIBrQIY6DUQewv7Gl2zuBgO7Fc4EXkSTfJmvO3DCGgfiUmrcuJzu5JiOQWt90jcuw2g761WwQohRA3V+k+SESNGMGLEiFp/kIuLi95+mkII0ZAKSws5kHBA1xu3L34fBaUFumLAL/V7iYBWAfTz7Ff9rg7VKCuD2FjYvauA7LM78TIJY1jXzQS0vkKRZzOSlGDSW6/A1WckLa29qH4zOSGEqLt79k9EHx8fioqK6NKlCwsXLqx2eLZCcXExxcXFuuc5OTn3oolCiCYsuyibyPhIXZCLToimVFuKvYU9/l7+/C3wbwS0CqCXey9MjU1rdE2tFo4fh5074dTBP7AvCGNIp83M7LILi5bFZJU9QKnLo2i7jcTCLZA2xoa964gQovG768HO3d2d1atX07t3b4qLi/n2228JDg4mPDycgICAat+zePFi3n777bvdNCFEE5acl6yWHrm8h91XdnM0+SgKCm7WbgS0CmBC1wkMajWIri5da7RiFdRNHs6dU4Pc7l0lFF3dg3/bzTzsE8ac0WcpV0zJaxaAaYfF0HIk9jYdZJsHIcQ9ddeDXceOHenYsaPuuZ+fH/Hx8fzjH/+4abALDQ0lJCRE9zwnJ4eWLWXQQghRPUVROJN+hsj4SPZe2cveK3u5mHkRgLbN2xLQKoBZfWcR0CqAB5o/UKMVqxUuX1aD3M6dcPJQIj6uv/FwrzDWjNxGM7M8io08MPYaCS0XY+z2IHamNnfrNoUQ4rYaZLZu//79Wb9+/U1fNzc3x9zc/J60pbCw8J58jhCNRWP4PVFcVkxMUgyRVyLZG7+XyCuRZBRmYKQxoodrD0a2H4m/lz8DWw6khW2LWl07ORl27VKDXPiucpw0B3nYJ4zX/TbTacRhFIzQNu+Pccv50GIU5vY9pFdOCGEwGiTYHT58GHd394b4aB0TExOMjIy4dOlSg7ZDCEOkKAplZWUN3QydzMJM9sXv0/XIHUw4SHF5Mc1Mm+Hn6ceMPjPw9/Knv2d/bMxr12N27RpERFT2yiVdvsbw7lv4v6Awlr7xO9amGWhNHTDyeAhavIrGfTjG5o536U6FEOLO1DrY5eXlceHCBd3zuLg4jhw5goODA15eXoSGhpKQkMA333wDwCeffELr1q3x9vampKSE9evXs2HDBjZs2FB/d1EHZmZmeHt7k5GRwf/+9z+srKzuWS+hEIauvLyc0tLSBvlsRVG4nH1ZN6QaGR/JidQTALhZu+Hv5c/7D76Pv5c/PVx71HihQ4W8PNizpzLIHT6s0N3rKE8P2cwvM8Noa7cfI7TQvCd4TAePkRg59oPb7OUqhBCGoNbB7tChQ3orWivmwk2ePJm1a9eSlJTElStXdK+XlJTw6quvkpCQgKWlJd7e3oSFhTFy5MjbftbdLlBsZmaGubk5+fn5lJaWSrAT4jrXr0y/m8q15RxLOaYGuT+HVRNyEwDo7NQZfy9/XvV7FX8vf9o2b1ur+XEAhYWwb586vLprFxw8CObGeTwZsJ2PngyjT8hmrDSJYGINbkPB4wvwGAHNajeEK4QQhkCjKIrS0I24nYoCxdnZ2XpFjutDfn4+P/zwg5RUEaIatra2jBs3Disrq3q7Zn5JPgcSDuh65PZf3U9uSS5mxmb4evji39KfgV4DGdByAE7NnGp9/aIi2L+/MsgdOAAlJdCvyzmmj9nMg53D8DDdjZFSArYdwX0ktBgFzv5gLP+4E0I0bvd9sAM13N2r3gkhGhNzc/M7DnVXc66yL34fUfFR7I3fy+Gkw5Qr5dhb2DOw5UD8vfzx9/LH18MXC5Pa13krKVF74SqCXFSUGu7cXYqY/lgEY3w309luM+YlF8DIHFyDwGMUeIwEmwfu6N6EEMLQSLATQtSb0vJSjiQfYV/8PvZdVcNcfE48AK3tW6shrqUa5Do7d65x/Ti9zyiFQ4cqg1xkpDrcamcHjz8Uz4Sgzfi2CMO2YAea8gJo1rIyyLkNAZP6630UQghDI8FOCFFnqfmpRMVHEXU1in3x+4hOjKaorAhzY3N6e/RmgOcABrQcgF9LP9ys3er0GWVlcPhwZZDbu1ddAGFjA4EBZUwYFkVQh824lYehyT4OGmNwHqgGOY9RYOct5UiEEPcNgw521y+eOHfunAQ7IRpQuback2kn1d64+H1EXY3iwjV1hby7tTsDvQbi5+nHgJYD8HHzwdykbvPVysvh6NHKILdnD+TkgJUV+PvDyOA0Rvn8ThvzMIySt0BpFpg7qwsePEaB+1Awa16Pdy6EEI2HQQe7CtJjJ8S9l1WUxf6r+4mKj2Lf1X0cuHqA3JJcjDXG9HTryYCWf/bGefrhZedV69WqFSr2Ww0PV4NcRARkZYGFBQwcCIMHa3l4wGG6OoRhnLwZMg4CCjj4Vg6xOvpCHYZ1hRCiqZFgJ4RAq2g5n3FerzfuZNpJABwtHXUBbkDLAfh6+GJlVvd5aooCp05V9shFREBGBpibg58fDB4MwQHZ9G25DdO0zZD4GxQlg6ktuA9Xg5z7CLB0ra/bF0KIJkOCnRD3oYyCDA4kHODA1QMcSDjAwYSDZBZlokGDt4u33ty49g7t69wbB2qQO3euMsiFh0NqKpiaQr9+apAbHKTg530ai2ubISEM0vaCUqbOj6uYK+c8AIxqV4xYCCHuNxLshGjiSspLOJJ8RBfiDiQc0M2Nc7R0pJ9nP/q1UB/9PftjZ2F3R5+nKHDxon6QS0oCExPo0+fPIDcYBvQtoFluOCSGQeJmyL8ExpbgOkStK+c+Aqxb3+HdCyHE/aVB9oqtqbu984QQTY2iKMRlxemFuNikWErKSzA1MsXH3YcR7UboQlxddnKoTlxcZYjbtQuuXgUjI+jdG55+Wg1y/v5gzaXKIPfbTigvAqs20OJhtWfOJQhMLO+4PUIIcb+SHjshGrHsomwOJhzUhbgDVw+QVpAGQNvmbXU9cf08+9HTrWedCgBXJz6+skdu1y64fFmtKOLjU9kj5+8Pdjal6rBq4p9DrDmnQWMCLgGVQ6y2HaUciRBC1BMJdkI0EmXaMo6nHNcLcafTTwNgZ25H3xZ9dT1xfVv0xdnKud4+Oz5eXeQQHq4+Ll5Uj3fvXhnkAgKgeXOgMFld8JAYBsnboDQHLNzUINdiFLg9qC6EEEIIUe8k2AlhgLSKlovXLhKdGM2hxENEJ0YTkxhDYVkhxhpjurt2p79nf11vXAfHDnXaxeFmLl+uDHIREfDHH+rxrl0hMFANcoGB4OQEaMvh2qHKIdZrMYAGHPupQc5jJDTvKeVIhBDiHpBgJ0QDUxSFK9lXqoS47OJsQB1S7e3eWxfiern3oplps3ptw6VLlSEuPFx9DmqPXGAgBAWpPXJOTn++oSQTEreoQS7pNyhOV4sCuz/0ZzmSh8DCqbqPEkIIcRcZdLCTnSdEU5SUm6QX4g4lHiK9IB0AT1tPfD188XX3pU+LPvR2741jM8d6/XxFURc7XB/krlxRp7n16FEZ5AYNAkfH696UdVwNcolhkL4PFC3Y96gcYnXsB0YGvR5LCCGavFoHu927d/Phhx8SExNDUlISGzdu5NFHH73leyIiIggJCeHkyZN4eHjw2muvMX369Bp/pvTYicYqvSCdQ4mHdI/oxGgScxMBcG7mTJ8WffRCnLuNe723oaL8yPVDq/HxlYsdrg9yza/fias0D1J2Vg6xFlwFEyt1jpzHKHULr2ae9d5eIYQQdVfrf17n5+fTo0cPpkyZwuOPP37b8+Pi4hg5ciRTp05l/fr1REZG8uKLL+Ls7Fyj9wvRGCiKQnxOPIeTDnM4+TCxSbEcTj7M1ZyrANhb2OPr4cuk7pPUMOfhS0vblvVSaqRqW+D8ef0gl5Cglh/x8YEnn1SDnL8/2Nvf8ObcC+rq1cTNkBoO2hKwaQ8t//JnOZIAMK7bHrBCCCHuvjsaitVoNLftsZs3bx6bNm3i9OnTumPTp0/n6NGjREVF1ehzpMdOGJJybTnnr53XhbjDyYc5nHSYjMIMAJyaOdHLvRc+bj74uPnQ26M3DzR/4K6EOKjc2aFixWpEhFoQuKKOXFCQ2ivn7w92N9YeLi+G1N2VQ6y558HITK0n5zFSfdi2vyvtFkIIUf/u+oSYqKgohg0bpnds+PDhrFmzhtLSUkxNq24RVFxcTHFxse55Tk7O3W6mENUqKS/hZOpJXQ/c4eTDHE0+Sn5pPgBedl74uPkwq+8sNcy5+9DCpsVdC3GgBrkzZ/TnyKWkgLEx+PrCpElqkBs4EKr9d1DB1evKkWyHsnx1SNVjJPj8Q935wdT6rrVfCCHE3XPXg11ycjKurvqbdbu6ulJWVkZ6ejru7lXnFC1evJi33377bjdNCD2ZhZkcTz3OsZRjHE46TGxyLCdTT1KqLUWDho5OHfFx8+HRjo/i4672xtX3wobqKAqcOqU/tJqaWrlF15Qpaq/cgAFgY1PNBbRlkHGgcog166haesRpAHgvVAOdfTcpEiyEEE3APVnCdmPvRcXo7816NUJDQwkJCdE9z8nJoWXLlnX67Od/fZ6/Bf3trkxKF41TaXkpZzPOcizlGMdTjnMs9RjHUo7p5sOZGpnS1aUrvdx68ZzPc/i4+9DdtTvWZvemF0urhZMnK4Pc7t2QlgamptC3Lzz3XGWQs7K6yUWK0iHp9z/Lkfyulicxd1L3X+0yH9yHgbnDPbkfIYQQ985dD3Zubm4kJyfrHUtNTcXExARHx+p7O8zNzTE3r58J2j+d/on1x9fzgu8LhPiF4GHjUS/XFYZPURSS85I5lqIGt2OpapA7lXaKUm0pAC1tW9LdtTsTu02ku2t3urt2p4NjB0yNq04RuFvKy+HoUTXAVTwyMtQg178/PP+8GuT8/KDZzcrXKQpkHq7cuivjAKBA817QYaa6itXBF4yM79l9CSGEuPfuerDz8/Pj119/1Tu2detWfH19q51fV98uzr7Ih5EfsiJ6BcsPLufp7k8zq+8serj1uOufLe6NigB3Ku1U5SP9FCdTT+oWNFibWdPVpSv9WvRjaq+pdHPtRjeXbjS3bH6bq9e/4mI4dEgNcHv2wN69kJsLFhZqkHvxRTXI9e9/iyAH6lZdydvVIJf0GxQmgYmN2hvXbg14PASW0lMthBD3k1qvis3Ly+PChQsA+Pj48PHHHzN48GAcHBzw8vIiNDSUhIQEvvnmG0Atd9K1a1eef/55pk6dSlRUFNOnT+ff//53jcud1Meq2OyibD4/9DnLDy4nITeBgS0H8mKfF3mk4yNYmd1sPEsYEkVRuJpztUqAO5V2iqyiLADMjM3o5NSJLs5d6OLUhW6u3eju2p3W9q3rdcut2sjPh/37K3vj9u+HoiJ1PtzAgeqODgEB6sKHW3ZUKwrknK2sK5e2B7SlYNu5cusup4FgbHbP7k0IIYRhqXWwCw8PZ/DgwVWOT548mbVr1/LMM89w6dIlwsPDda9FREQwZ84cXYHiefPm1ahA8d3YeaK0vJRNZzexMnoluy7toplpM0Z3GM0473GMaD8CCxOLO7q+uHN5JXlcuHaB8xnnOZdxjvPXznM6/TSn0k6RV5IHgKWJJZ2dO+sCXBdn9dGmeRtMGnj3g6wsiIysDHKHDkFZmbqLw6BBlUGuRw91AcQtlRWq9eQSN6uPvD/A2AJcBleGOes29+CuhBBCNAYGvaVYhbtVx+7itYv8ePJHvj/5PcdSjmFjZsMjnR5hnPc4gtsEY2lqWW+fJfQVlhaq4e3aec5nnFd//fO/k/KSdOc5WDrQ3qG9GuKuC3Ct7Fs1WA/cjVJT1SHViiB39KjaueburpYdqQhynTurteVuK/9y5Vy5lJ1QXghWrf7c7WEkuA4Gk/rdK1YIIUTTcF8Hu+udST/DDyd+4IeTP3A6/TQWJhYEtApgWNthBLUOortr93s6ob6xUxSFzKJMLmVdIi4zjrisOL0gF58TrzvXxsyGDo4daO/YnvYOfz7+/O97UU6ktuLj9Rc6nDmjHm/btjLEBQSoz2tUQURbCmn7KodYs0+CxgSc/Sv3YbXtLOVIhBBC3JYEuxsoisKptFNsubiFrRe3EnE5gqKyIixMLOjl3ov+LfrTz7Mf/Vr0w8vO664WojVk5dpyUvJTuJpzlas5V7mSfUUNcVlxujCXW5KrO7+ZaTPaObSjvUN7NcRdF95crFwM9ntUFLhwQT/IXbqkvtalS2WIGzQIPGuzbWphirrgIXEzJG2F0mywcFX3X/UYBW5DwezGbSKEEEKIWzPoYHc35tjVVlFZEYeTDrP/6n4OJBzgQMIBLmVdAsDFyoUuzl3o4NCBjk4d6ejYkQ6OHQxinlddlWnLSC9IJzU/ldT8VFLyUkjOSyYhN0EX4q7mXCUxN5FypVz3PksTS1rbt9Y92ti3qfzv5m1wtHQ02PB2vYoactcHueRkdQi1Z8/KIOfvD87OtbiwooWMQ5Vbd107BGjAsW/l1l0OvdTCwUIIIUQdGXSwq2Boe8Wm5KVwIOEAhxIPcTbjLGfTz3Iu4xyFZYWAWuC2TfM2eNh44GbthpuVm/rrnw93G3eaWzTHxtwGazPreg+BiqJQqi0lrySP7KJssoqyqn1kFmWq4S0/RRfkMgoyUND/kbA2s8bT1rPyYaP+2sK2he5YYwluNyorg8OHK0Pcnj2QmanWkOvTpzLIDRhQzT6rt1OSpfbGJYapW3gVp4GpPbgP/zPMPQQWLnfhroQQQtyvJNjVE62iJSEngbMZasi7cO0CyXnJeo/Mosxq32thYoGNmQ025jZYmFhgpDHSexhrjKscK1fKKSor0nsUlhbq/vvGcHY9K1Mr7C3ssbewx9XaFRcrF1yt1F+v/++K15qZNp2J+nl5cOCAWjtu716IilLLkVhaqgWAK4Jcv363qSFXHUVR58fpypFEglKubtflMVIdYnXyg0bamyuEEMLwSbC7h4rLiknJTyEpN4msoixyS3LJLc7V+7W4rBitotU9ypVyvecVDyONEZYmlliYWOgelqb6z68PcBUPW3Pb+2oRSEpKZYjbu1ftnSsvh+bN1eHUioevL5jVpfxbWT4k76wsR1JwBYybgduDf4a5EWDlVe/3JYQQQlRHgp1oMhQFzp/XD3Lnz6uvtWmjH+Q6daph6ZHq5F6snCuXEg7aYrB+4LpyJIFqrTkhhBDiHjPoYGcIiyeE4SothSNHKrfl2rsX0tLUqiA9elSGuIEDa7li9UblJeouDwlhkLRZ3f3ByBRcAiuHWG3aSzkSIYQQDc6gg10F6bEToO6nun9/ZYjbvx8KCir3WK0Icv3712Ghw40KEiuHV5O3QVkeWHpUBjm3YDC1qZf7EkIIIeqLBDthsJKS1K259u5Ve+WOHFHLkTg66g+r9upVx/lx19OWQ8bByoUPmYfV0iOO/Su37rLvIb1yQgghDJoszxMGQVHg7Fn9+XEXL6qvtW2rFgB+4QU1yHXsWE/5qjgDkrb8OcT6O5RcA3NHcH8IOr+qliUxN7ydL4QQQoibkWAnGkRBARw6BPv2VT4yMioLAY8aVTk/zsOjnj5UUSDrqBrkEjdDxn61cHBzH2j/gjrE6tgXjIzr6QOFEEKIe8ugg931iydE45aQoA6rVoS4w4fV4sA2NuqcuJkz1SLAfn7qsXpTmgvJOyqHWAsTwcRa3bKr72pwHwHN6is5CiGEEA2rTnPsPvvsMz788EOSkpLw9vbmk08+YdCgQdWeGx4ezuDBg6scP336NJ06darR58kcu8altBSOHdPvjbtyRX2tbVs1wA0YoPbGeXuDcX12kCkK5J6rXPiQGgHaUrDtWFmOxHkQGN/ppDwhhBDC8NS6x+6HH37g5Zdf5rPPPmPgwIF88cUXjBgxglOnTuHldfNCrGfPntULZc612mhTGLJr19QdHCpC3MGD6lCrmZla+PfJJyt749zc7kIDyosgJaKyVy7vIhiZg+tg8PlIDXM2D9yFDxZCCCEMS6177Pr160evXr1YtWqV7ljnzp159NFHWbx4cZXzK3rsMjMzsbe3r1MjpcfOcFQscri+N+70afU1V1f93rhevcDc/C41JP+Kuv9qYpg61FpeAM1aqr1yLUapoc7E6i59uBBCCGGYatVjV1JSQkxMDPPnz9c7PmzYMPbt23fL9/r4+FBUVESXLl1YuHBhtcOzFYqLiykuLtY9z8nJqU0zRT3KzVUXOVT0yEVFqT10Gg107w5BQbBggRrm2rS5i9VAtGWQHlXZK5d1HDTG4DwQur2l9srZeUs5EiGEEPe1WgW79PR0ysvLcXV11Tvu6upKcnJyte9xd3dn9erV9O7dm+LiYr799luCg4MJDw8nICCg2vcsXryYt99+uzZNE/VAq4UzZ9TCvxWPkyfV47a26iKH2bPVENevn3rsripK+7NXbrNalqQ0Cyxc1AUP3gvBfRiY2d/lRgghhBCNR62GYhMTE2nRogX79u3Dz89Pd/zdd9/l22+/5cyZMzW6zujRo9FoNGzatKna16vrsWvZsqUMxdaztDQ4cEB97N+vzo3LyVE7vbp2VYNcv37qr5061fMih+ooWrgWW7kPa0Y0oIBDH7VHrsUocOitFg4WQgghRBW16rFzcnLC2Ni4Su9campqlV68W+nfvz/r16+/6evm5uaY37XJWfenkhI4elQNcBVBrqIAsIuLGt7mz1eDXJ8+9Vxy5JYNy1a37EoMU3vnilLA1FYtDtz+RbVYsGXNf7aEEEKI+1mtgp2ZmRm9e/dm27ZtjB07Vnd827ZtPPLIIzW+zuHDh3F3d6/NR4taUBSIj9cfUo2NheJidaWqjw88/HBlj1zr1vdwapqiQM7pyiLBaXtBKVPnx7WZ/Gc5kgFgZHqPGiSEEEI0HbUudxISEsLTTz+Nr68vfn5+rF69mitXrjB9+nQAQkNDSUhI4JtvvgHgk08+oXXr1nh7e1NSUsL69evZsGEDGzZsqN87uY/l5KjBraInbv9+qOhUbdNGDW/jxqlBrmfPu7hS9WbKCiBlV+UQa/5lMLYE12DwXaaGOatW97hRQgghRNNT62A3btw4MjIyWLRoEUlJSXTt2pXNmzfTqpX6F3NSUhJXKqrRoq6kffXVV0lISMDS0hJvb2/CwsIYOXLkbT9Ldp6oqqgIjhyB6OjKx9mzakeYtTX07QtTplT2xtVihLx+5cWpQS4hDFJ3qbXmrNpAi9FqSRKXQDCxbKDGCSGEEE1TnXaeuNfu1zp2paXqqtToaLXkSHQ0HD+ubsVlZgY9eqjz4Xx91V87d74HCxxuprwE0iMrh1hzToPGBFwCKnd8sO0o5UiEEEKIu8ig94q9n2i1cO5cZYCLjlb3Uy0qAiMj6NJFDW9Tp6q/duvWAEOqNypMuq4cyVYoywVLdzXE9fg7uD2oLoQQQgghxD0hwa4BKIq6d+r1w6kxMepcOYB27dTw9sQT6q8+PmBlCJsoaMvhWnTlEGtmLKABp/7Q5TW1Z655T+mVE0IIIRqIDMXeZYoCcXFq71tsrPqIiVFryAF4elYOpVYMqzZv3rBt1lN8Te2NSwyDpN+hOB3MmqtlSDxGqWVJLJwaupVCCCGEwMB77Brb4onycnU4NTa2MsgdPgxZWerr7u7q/qnTp1eGOIOr+qIo6nZdFVt3pe9TCwfb94B209RhVsd+YGTQPzpCCCHEfUl67OqopAROnarshYuNVQsAFxSor7dpo4Y4H5/KX93cGrbNN1WaByk7/ixHshkKroKJFbgNVYOcxwho5tnQrRRCCCHEbUi3Sw1kZqqrUY8eVR+HD8OJE2q402jU7bZ8fODxx9UQ17OngQ2nVifnfGVdudQI0JaATQdo+Rd16y7nQWDc0KszhBBCCFEbEuyuU1YGFy6o4e3YMfVx9Ki6iwOoJUa6dFHD21//qoa57t3V+nEGr7wYUndXDrHmngcjM3AJAp8P1Z45m3YN3UohhBBC3IH7NthlZFSGt4oAd/KkWl4EwMNDrRM3YYL6a/fu0KEDmDamna4KrlYOryZvh7J8dUjVYxT4/ANch4BpY0ilQgghhKgJgw529bF4IjdXnQt38mTl48QJSEhQXzc3B29vNbxNnKgGuO7dwakxLvTUlkH6/soh1qxjoDEGpwHgvVAdYrXrKuVIhBBCCAN39OhR/vGPfxAXF8f8+fMZOHAgb7/9NsXFxSQnJ/PWW2/Rs2fPKu9r8osnKjKMRqMuaPD2rgxyFb1wJgYdb2+jKF0tQ5IYBklboCQTzJ3AfYQa5NyHqeVJhBBCCNFo/PWvf2X16tW8//77LFu2jICAAD799FPOnTvH8OHDef7551m+fHmV9zXmSFMj69apQa5zZ2jWrKFbUw8ULWQeqdy6K+MAoIBDb+gwS50r5+ALRg21t5gQQggh7sTFixfx8PDAxMSExMRErl27xoIFC2jRogVRUVFYW1szevToat/b5HvsmoTSHEjaVjlfrigZTGzU3jiPUWo5EktDraUihBBCiNrYt28flpaW+Pj40L17dxwcHAgPD6/Rew26x66xFSiuN4oCOWeuK0eyB5QysO0MbSaqvXJOA8HYrKFbKoQQQoh6NmDAAADS09M5ceIEb775Zo3fa1SXD/zss89o06YNFhYW9O7dmz179tzy/IiICHr37o2FhQVt27bl888/r9HnzJgxg1OnThEdHV2XZjYuZYWQ+BtEz4RND0BYFzi2EIwtofcnMOYPePiUWprEdbCEOiGEEKKJ27VrF4qiEBQUVOP31LrH7ocffuDll1/ms88+Y+DAgXzxxReMGDGCU6dO4eXlVeX8uLg4Ro4cydSpU1m/fj2RkZG8+OKLODs78/jjj9f245uW/MuVc+VSdkJ5IVi1+nN4dZQa4EwsG7qVQgghhGgAu3btwtzcnP79+9f4PbWeY9evXz969erFqlWrdMc6d+7Mo48+yuLFi6ucP2/ePDZt2sTp06d1x6ZPn87Ro0eJioqq0Wc2mTl22lJIi6wcYs0+BRoTcPZXV7B6jFSHW6UciRBCCHHf69y5M66urjWeXwe17LErKSkhJiaG+fPn6x0fNmwY+/btq/Y9UVFRDBs2TO/Y8OHDWbNmDaWlpZhWU/G3uLiY4uJi3fOcnJzaNFNHURRyc3Pr9N56U5iiFgdO2qL2ypXmgoWzuvCh9Ty1V87MrvL8hm6vEEIIIeqdjY0Nmlp03CQnJ3PmzBnGjRtXq8+pVbBLT0+nvLwcV1dXveOurq4kJyfftGHVnV9WVkZ6ejru7u5V3rN48WLefvvt2jStWrm5udjZ2d3+xHsuDfjuz4cQQgghmrrajjqmpKTg6urKk08+WavPqdOq2BsTp6Iot0yh1Z1f3fEKoaGhhISE6J7n5OTQsmXLWrfTxsaG7OzsGp3bp0+fui/SKMmC5B2QvFUtS1KcQXaRBrv2Y8F9OLgFq710d6DiO4iPj6+34eg7uudGeD35Du/M3fj+wLDvub6vJ9/hnWsMv4/vxjXlOzSs69XlO7SxsanVZ/To0eOmnWa3Uqtg5+TkhLGxcZUPSk1NrdIrV8HNza3a801MTHB0dKz2Pebm5pibm9emadXSaDQ1/sKNjY1r/gOuKJB9Up0nlxAG6ftAKQf7btBtKniMZODgaRw/ueEOWl89W1vbevuNWKt7bgLXqyDf4Z2pz+8PDP+e5Ts0vOuBYf8+vhvXlO/Q8K4H9f97uT7UKtiZmZnRu3dvtm3bxtixY3XHt23bxiOPPFLte/z8/Pj111/1jm3duhVfX99q59c1lBkzZtT8ZI0G7Luqjy7zqj1l+osz66lld0+t7rkJXO9uMPR7lu/Q8K53Nxj6PRv6d3g32iffoeFd09C/w/pS61WxP/zwA08//TSff/45fn5+rF69mi+//JKTJ0/SqlUrQkNDSUhI4JtvvgHUciddu3bl+eefZ+rUqURFRTF9+nT+/e9/17jcScUiiNpOPGxKmszK4AYk3+Gdke/vzsl3eOfkO7xz8h3eOUP+Dms9x27cuHFkZGSwaNEikpKS6Nq1K5s3b6ZVq1YAJCUlceXKFd35bdq0YfPmzcyZM4eVK1fi4eHBsmXLalXDrjZDqk2Vubk5b731Vr0MUd+v5Du8M/L93Tn5Du+cfId3Tr7DO2fI32Gj2CtWCCGEEELcXp22FBNCCCGEEIZHgp0QQgghRBMhwU4IIYQQoomQYCeEEEII0URIsDNwCQkJTJw4EUdHR5o1a0bPnj2JiYlp6GY1GmVlZSxcuJA2bdpgaWlJ27ZtWbRoEVqttqGbZrB2797N6NGj8fDwQKPR8PPPP+u9rigKf/vb3/Dw8MDS0pKgoCBOnjzZMI01ULf6DktLS5k3bx7dunXDysoKDw8PJk2aRGJiYsM12ADd7ufwes8//zwajYZPPvnknrWvMajJd3j69GnGjBmDnZ0dNjY29O/fX6+yxf3udt9hXl4eM2fOxNPTE0tLSzp37syqVasaprF/kmBnwDIzMxk4cCCmpqb89ttvnDp1io8++gh7e/uGblqj8cEHH/D555+zYsUKTp8+zZIlS/jwww9Zvnx5QzfNYOXn59OjRw9WrFhR7etLlizh448/ZsWKFURHR+Pm5sbQoUPJzc29xy01XLf6DgsKCoiNjeWNN94gNjaW//73v5w7d44xY8Y0QEsN1+1+Div8/PPPHDhwAA8Pj3vUssbjdt/hxYsX8ff3p1OnToSHh3P06FHeeOMNLCws7nFLDdftvsM5c+bw+++/s379ek6fPs2cOXOYNWsWv/zyyz1u6XUUYbDmzZun+Pv7N3QzGrVRo0Ypf/3rX/WOPfbYY8rEiRMbqEWNC6Bs3LhR91yr1Spubm7K+++/rztWVFSk2NnZKZ9//nkDtNDw3fgdVufgwYMKoFy+fPneNKqRudl3ePXqVaVFixbKiRMnlFatWilLly69521rLKr7DseNGyd/FtZCdd+ht7e3smjRIr1jvXr1UhYuXHgPW6ZPeuwM2KZNm/D19eWJJ57AxcUFHx8fvvzyy4ZuVqPi7+/Pjh07OHfuHABHjx5l7969jBw5soFb1jjFxcWRnJzMsGHDdMfMzc0JDAxk3759Ddiyxi07OxuNRiO98bWg1Wp5+umnmTt3Lt7e3g3dnEZHq9USFhZGhw4dGD58OC4uLvTr1++WQ96iKn9/fzZt2kRCQgKKorBr1y7OnTvH8OHDG6xNEuwM2B9//MGqVato3749W7ZsYfr06cyePVu3XZu4vXnz5vHUU0/RqVMnTE1N8fHx4eWXX+app55q6KY1SsnJyQC4urrqHXd1ddW9JmqnqKiI+fPnM2HChPt+h53a+OCDDzAxMWH27NkN3ZRGKTU1lby8PN5//30eeughtm7dytixY3nssceIiIho6OY1GsuWLaNLly54enpiZmbGQw89xGeffYa/v3+DtanWW4qJe0er1eLr68t7770HgI+PDydPnmTVqlVMmjSpgVvXOPzwww+sX7+ef/3rX3h7e3PkyBFefvllPDw8mDx5ckM3r9G6cc9mRVHu232c70RpaSnjx49Hq9Xy2WefNXRzGo2YmBg+/fRTYmNj5eeujioWkD3yyCPMmTMHgJ49e7Jv3z4+//xzAgMDG7J5jcayZcvYv38/mzZtolWrVuzevZsXX3wRd3d3HnzwwQZpkwQ7A+bu7k6XLl30jnXu3JkNGzY0UIsan7lz5zJ//nzGjx8PQLdu3bh8+TKLFy+WYFcHbm5ugNpz5+7urjuemppapRdP3FppaSlPPvkkcXFx7Ny5U3rramHPnj2kpqbi5eWlO1ZeXs4rr7zCJ598wqVLlxqucY2Ek5MTJiYm1f4ds3fv3gZqVeNSWFjIggUL2LhxI6NGjQKge/fuHDlyhH/84x8NFuxkKNaADRw4kLNnz+odO3fuHK1atWqgFjU+BQUFGBnp/5gbGxtLuZM6atOmDW5ubmzbtk13rKSkhIiICAYMGNCALWtcKkLd+fPn2b59O46Ojg3dpEbl6aef5tixYxw5ckT38PDwYO7cuWzZsqWhm9comJmZ0adPH/k75g6UlpZSWlpqcH/HSI+dAZszZw4DBgzgvffe48knn+TgwYOsXr2a1atXN3TTGo3Ro0fz7rvv4uXlhbe3N4cPH+bjjz/mr3/9a0M3zWDl5eVx4cIF3fO4uDiOHDmCg4MDXl5evPzyy7z33nu0b9+e9u3b895779GsWTMmTJjQgK02LLf6Dj08PPjLX/5CbGws//vf/ygvL9fNT3RwcMDMzKyhmm1QbvdzeGMYNjU1xc3NjY4dO97rphqs232Hc+fOZdy4cQQEBDB48GB+//13fv31V8LDwxuu0Qbmdt9hYGAgc+fOxdLSklatWhEREcE333zDxx9/3HCNbrD1uKJGfv31V6Vr166Kubm50qlTJ2X16tUN3aRGJScnR3nppZcULy8vxcLCQmnbtq3y+uuvK8XFxQ3dNIO1a9cuBajymDx5sqIoasmTt956S3Fzc1PMzc2VgIAA5fjx4w3baANzq+8wLi6u2tcAZdeuXQ3ddINxu5/DG0m5k6pq8h2uWbNGadeunWJhYaH06NFD+fnnnxuuwQbodt9hUlKS8swzzygeHh6KhYWF0rFjR+Wjjz5StFptg7VZoyiKcg/yoxBCCCGEuMtkjp0QQgghRBMhwU4IIYQQoomQYCeEEEII0URIsBNCCCGEaCIk2AkhhBBCNBES7IQQQgghmggJdkIIIYQQTYQEOyGEEEKIJkKCnRBCCCFEEyHBTgghhBCiiZBgJ4QQQgjRREiwE0IIIYRoIv4f+7KE90sMMfsAAAAASUVORK5CYII=\n",
       "text/plain": [
        "Graphics object consisting of 3 graphics primitives"
       ]
      },
-     "execution_count": 27,
+     "execution_count": 28,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -728,7 +771,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 28,
+   "execution_count": 29,
    "id": "ec524a1e",
    "metadata": {
     "scrolled": true
@@ -746,7 +789,7 @@
        "[(-sqrt(1/2)*q*sqrt(R/twisted_v2), 1), (sqrt(1/2)*q*sqrt(R/twisted_v2), 1)]"
       ]
      },
-     "execution_count": 28,
+     "execution_count": 29,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -761,7 +804,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 29,
+   "execution_count": 30,
    "id": "13ffe85d",
    "metadata": {},
    "outputs": [
@@ -777,7 +820,7 @@
        "sqrt(1/2)*q*sqrt(R/twisted_v2)"
       ]
      },
-     "execution_count": 29,
+     "execution_count": 30,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -798,7 +841,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 30,
+   "execution_count": 31,
    "id": "fc553cfa",
    "metadata": {},
    "outputs": [
@@ -814,7 +857,7 @@
        "0"
       ]
      },
-     "execution_count": 30,
+     "execution_count": 31,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -836,7 +879,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 31,
+   "execution_count": 32,
    "id": "05ba80db",
    "metadata": {},
    "outputs": [
@@ -855,7 +898,7 @@
        "  1)]"
       ]
      },
-     "execution_count": 31,
+     "execution_count": 32,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -870,7 +913,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 32,
+   "execution_count": 33,
    "id": "2da5d4a6",
    "metadata": {},
    "outputs": [
@@ -886,7 +929,7 @@
        "-1/2*sqrt(2)*sqrt(R)*q/sqrt(twisted_v2) + 1/2*sqrt(2)*sqrt(R)*twisted_v1/sqrt(twisted_v2) + R"
       ]
      },
-     "execution_count": 32,
+     "execution_count": 33,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -907,7 +950,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 33,
+   "execution_count": 34,
    "id": "e4fb002a",
    "metadata": {
     "scrolled": true
@@ -925,7 +968,7 @@
        "0"
       ]
      },
-     "execution_count": 33,
+     "execution_count": 34,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -939,7 +982,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 34,
+   "execution_count": 35,
    "id": "0e900943",
    "metadata": {},
    "outputs": [
@@ -955,7 +998,7 @@
        "1/2*sqrt(2)*sqrt(R)*min(q, sqrt(2)*sqrt(R)*sqrt(twisted_v2) - q + twisted_v1)/sqrt(twisted_v2)"
       ]
      },
-     "execution_count": 34,
+     "execution_count": 35,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -983,7 +1026,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 35,
+   "execution_count": 36,
    "id": "09b81707",
    "metadata": {},
    "outputs": [
@@ -999,7 +1042,7 @@
        "1/2*sqrt(2)*sqrt(R)*sqrt(twisted_v2) + 1/2*twisted_v1"
       ]
      },
-     "execution_count": 35,
+     "execution_count": 36,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1015,7 +1058,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 36,
+   "execution_count": 37,
    "id": "d9c2f5fc",
    "metadata": {},
    "outputs": [
@@ -1031,7 +1074,7 @@
        "1/4*sqrt(2)*sqrt(R)*twisted_v1/sqrt(twisted_v2) + 1/2*R"
       ]
      },
-     "execution_count": 36,
+     "execution_count": 37,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -1055,7 +1098,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 37,
+   "execution_count": 38,
    "id": "7b6ac93e",
    "metadata": {},
    "outputs": [
@@ -1072,7 +1115,7 @@
        " (-1/2*(R*epsilon - sqrt(R^2*epsilon^2 + 2*R*q^2*twisted_v2))/twisted_v2, 1)]"
       ]
      },
-     "execution_count": 37,
+     "execution_count": 38,
      "metadata": {},
      "output_type": "execute_result"
     }
diff --git a/notebooks/plots_and_expressions.ipynb b/notebooks/plots_and_expressions.ipynb
index 1bd5e3f217f892e947607268dc3107a15c8907e9..5a1ac6ac3be5f8ab4b07dd8d8f1adc5b5393fea3 100644
--- a/notebooks/plots_and_expressions.ipynb
+++ b/notebooks/plots_and_expressions.ipynb
@@ -13,7 +13,24 @@
    "execution_count": 1,
    "id": "b87a49bc",
    "metadata": {},
-   "outputs": [],
+   "outputs": [
+    {
+     "data": {
+      "text/html": [
+       "<html>\\(\\displaystyle {{\\beta_0}}\\)</html>"
+      ],
+      "text/latex": [
+       "$\\displaystyle {{\\beta_0}}$"
+      ],
+      "text/plain": [
+       "beta"
+      ]
+     },
+     "execution_count": 1,
+     "metadata": {},
+     "output_type": "execute_result"
+    }
+   ],
    "source": [
     "# Requires extra package:\n",
     "#! sage -pip install \"pseudowalls==0.0.3\" --extra-index-url https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple\n",
@@ -32,7 +49,9 @@
     "    return min(map(lambda s: s.rhs(), solutions))\n",
     "\n",
     "class Object(object):\n",
-    "  pass"
+    "  pass\n",
+    "\n",
+    "var(\"beta\", latex_name=r\"{\\beta_0}\")"
    ]
   },
   {
@@ -58,7 +77,7 @@
        "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = R \\\\ \\mathrm{ch}_{1} = C \\ell^{1} \\\\ \\mathrm{ch}_{2} = D \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Chern_Char object at 0x7f23aa90f810>"
+       "<pseudowalls.chern_character.Chern_Char object at 0x7f0789251610>"
       ]
      },
      "execution_count": 2,
@@ -94,7 +113,7 @@
        "$\\displaystyle \\text{Chern Character:} \\\\ \\begin{array}{l} \\mathrm{ch}_{0} = r \\\\ \\mathrm{ch}_{1} = c \\ell^{1} \\\\ \\mathrm{ch}_{2} = d \\ell^{2} \\end{array}$"
       ],
       "text/plain": [
-       "<pseudowalls.chern_character.Chern_Char object at 0x7f239fc9e090>"
+       "<pseudowalls.chern_character.Chern_Char object at 0x7f0789088dd0>"
       ]
      },
      "execution_count": 3,
@@ -170,10 +189,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle c = \\beta r + q\\)</html>"
+       "<html>\\(\\displaystyle c = {{\\beta_0}} r + q\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle c = \\beta r + q$"
+       "$\\displaystyle c = {{\\beta_0}} r + q$"
       ],
       "text/plain": [
        "c == beta*r + q"
@@ -215,10 +234,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle d > \\frac{1}{2} \\, \\beta^{2} r + \\beta q\\)</html>"
+       "<html>\\(\\displaystyle d > \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle d > \\frac{1}{2} \\, \\beta^{2} r + \\beta q$"
+       "$\\displaystyle d > \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q$"
       ],
       "text/plain": [
        "d > 1/2*beta^2*r + beta*q"
@@ -260,10 +279,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\left(\\frac{1}{2} \\, \\beta^{2} r, \\beta q, 0\\right)\\)</html>"
+       "<html>\\(\\displaystyle \\left(\\frac{1}{2} \\, {{\\beta_0}}^{2} r, {{\\beta_0}} q, 0\\right)\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\left(\\frac{1}{2} \\, \\beta^{2} r, \\beta q, 0\\right)$"
+       "$\\displaystyle \\left(\\frac{1}{2} \\, {{\\beta_0}}^{2} r, {{\\beta_0}} q, 0\\right)$"
       ],
       "text/plain": [
        "(1/2*beta^2*r, beta*q, 0)"
@@ -316,10 +335,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle 0 \\leq {\\left(\\beta r + q\\right)}^{2} - 2 \\, d r\\)</html>"
+       "<html>\\(\\displaystyle 0 \\leq {\\left({{\\beta_0}} r + q\\right)}^{2} - 2 \\, d r\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle 0 \\leq {\\left(\\beta r + q\\right)}^{2} - 2 \\, d r$"
+       "$\\displaystyle 0 \\leq {\\left({{\\beta_0}} r + q\\right)}^{2} - 2 \\, d r$"
       ],
       "text/plain": [
        "0 <= (beta*r + q)^2 - 2*d*r"
@@ -354,10 +373,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle d \\leq \\frac{{\\left(\\beta r + q\\right)}^{2}}{2 \\, r}\\)</html>"
+       "<html>\\(\\displaystyle d \\leq \\frac{{\\left({{\\beta_0}} r + q\\right)}^{2}}{2 \\, r}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle d \\leq \\frac{{\\left(\\beta r + q\\right)}^{2}}{2 \\, r}$"
+       "$\\displaystyle d \\leq \\frac{{\\left({{\\beta_0}} r + q\\right)}^{2}}{2 \\, r}$"
       ],
       "text/plain": [
        "d <= 1/2*(beta*r + q)^2/r"
@@ -395,10 +414,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\frac{1}{2} \\, \\beta^{2} r + \\beta q + \\frac{q^{2}}{2 \\, r}\\)</html>"
+       "<html>\\(\\displaystyle \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q + \\frac{q^{2}}{2 \\, r}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\frac{1}{2} \\, \\beta^{2} r + \\beta q + \\frac{q^{2}}{2 \\, r}$"
+       "$\\displaystyle \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q + \\frac{q^{2}}{2 \\, r}$"
       ],
       "text/plain": [
        "1/2*beta^2*r + beta*q + 1/2*q^2/r"
@@ -461,10 +480,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\left(\\frac{1}{2} \\, \\beta^{2} r, \\beta q, \\frac{q^{2}}{2 \\, r}\\right)\\)</html>"
+       "<html>\\(\\displaystyle \\left(\\frac{1}{2} \\, {{\\beta_0}}^{2} r, {{\\beta_0}} q, \\frac{q^{2}}{2 \\, r}\\right)\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\left(\\frac{1}{2} \\, \\beta^{2} r, \\beta q, \\frac{q^{2}}{2 \\, r}\\right)$"
+       "$\\displaystyle \\left(\\frac{1}{2} \\, {{\\beta_0}}^{2} r, {{\\beta_0}} q, \\frac{q^{2}}{2 \\, r}\\right)$"
       ],
       "text/plain": [
        "(1/2*beta^2*r, beta*q, 1/2*q^2/r)"
@@ -527,10 +546,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle 0 \\leq {\\left(\\beta r - C + q\\right)}^{2} - 2 \\, {\\left(D - d\\right)} {\\left(R - r\\right)}\\)</html>"
+       "<html>\\(\\displaystyle 0 \\leq {\\left({{\\beta_0}} r - C + q\\right)}^{2} - 2 \\, {\\left(D - d\\right)} {\\left(R - r\\right)}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle 0 \\leq {\\left(\\beta r - C + q\\right)}^{2} - 2 \\, {\\left(D - d\\right)} {\\left(R - r\\right)}$"
+       "$\\displaystyle 0 \\leq {\\left({{\\beta_0}} r - C + q\\right)}^{2} - 2 \\, {\\left(D - d\\right)} {\\left(R - r\\right)}$"
       ],
       "text/plain": [
        "0 <= (beta*r - C + q)^2 - 2*(D - d)*(R - r)"
@@ -568,10 +587,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle d \\leq D - \\frac{{\\left(\\beta r - C + q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}\\)</html>"
+       "<html>\\(\\displaystyle d \\leq D - \\frac{{\\left({{\\beta_0}} r - C + q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle d \\leq D - \\frac{{\\left(\\beta r - C + q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}$"
+       "$\\displaystyle d \\leq D - \\frac{{\\left({{\\beta_0}} r - C + q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}$"
       ],
       "text/plain": [
        "d <= D - 1/2*(beta*r - C + q)^2/(R - r)"
@@ -606,10 +625,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\left({\\operatorname{ch}_1^{\\beta}(v)}, {\\operatorname{ch}_2^{\\beta}(v)}\\right)\\)</html>"
+       "<html>\\(\\displaystyle \\left({\\operatorname{ch}_1^{\\beta_0}(v)}, {\\operatorname{ch}_2^{\\beta_0}(v)}\\right)\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\left({\\operatorname{ch}_1^{\\beta}(v)}, {\\operatorname{ch}_2^{\\beta}(v)}\\right)$"
+       "$\\displaystyle \\left({\\operatorname{ch}_1^{\\beta_0}(v)}, {\\operatorname{ch}_2^{\\beta_0}(v)}\\right)$"
       ],
       "text/plain": [
        "(ch1bv, ch2bv)"
@@ -622,8 +641,8 @@
    ],
    "source": [
     "# symbols to represent ch_i^\\beta(v) and\n",
-    "var(\"ch1bv\", domain=\"real\", latex_name=r\"\\operatorname{ch}_1^{\\beta}(v)\")\n",
-    "var(\"ch2bv\", domain=\"real\", latex_name=r\"\\operatorname{ch}_2^{\\beta}(v)\")\n",
+    "var(\"ch1bv\", domain=\"real\", latex_name=r\"\\operatorname{ch}_1^{\\beta_0}(v)\")\n",
+    "var(\"ch2bv\", domain=\"real\", latex_name=r\"\\operatorname{ch}_2^{\\beta_0}(v)\")\n",
     "\n",
     "ch1bv, ch2bv"
    ]
@@ -647,10 +666,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\frac{1}{2} \\, \\beta^{2} r + \\beta q - \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + {\\operatorname{ch}_2^{\\beta}(v)}\\)</html>"
+       "<html>\\(\\displaystyle \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q - \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + {\\operatorname{ch}_2^{\\beta_0}(v)}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\frac{1}{2} \\, \\beta^{2} r + \\beta q - \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + {\\operatorname{ch}_2^{\\beta}(v)}$"
+       "$\\displaystyle \\frac{1}{2} \\, {{\\beta_0}}^{2} r + {{\\beta_0}} q - \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}} + {\\operatorname{ch}_2^{\\beta_0}(v)}$"
       ],
       "text/plain": [
        "1/2*beta^2*r + beta*q - 1/2*(ch1bv - q)^2/(R - r) + ch2bv"
@@ -749,13 +768,13 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle 0 \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + 0 \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + \\frac{q^{2}}{2 \\, r} \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + -\\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}\\)</html>"
+       "<html>\\(\\displaystyle 0 \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + 0 \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + \\frac{q^{2}}{2 \\, r} \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + -\\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle 0 \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + 0 \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + \\frac{q^{2}}{2 \\, r} \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + -\\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}$"
+       "$\\displaystyle 0 \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + 0 \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + \\frac{q^{2}}{2 \\, r} \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + -\\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}$"
       ],
       "text/plain": [
-       "0 \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + 0 \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + \\frac{q^{2}}{2 \\, r} \\\\ \\beta q + \\frac{1}{2} \\, \\beta^{2} r + -\\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}"
+       "0 \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + 0 \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + \\frac{q^{2}}{2 \\, r} \\\\ {{\\beta_0}} q + \\frac{1}{2} \\, {{\\beta_0}}^{2} r + -\\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}"
       ]
      },
      "execution_count": 21,
@@ -871,7 +890,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByaUlEQVR4nO3dd1zU9eMH8NexkXGITAEnKrhwsRFwlWVaZqaRiqZh7r0alqZZZo70MnOBZpm5cjQ0FRQQZbgXigtUhgh37HH3+f3hL76RCxTuc3e8no/HPeruPnfv16HIi8/78/m8JYIgCCAiIiIiraUndgAiIiIiejGiFTpBENC3b1+4urrCysoKX331lVhRiIiIiLSaaIVOIpFg7969GDt2LORyOQICAsSKQkRERKTVRJ9yPX78OMzNzeHt7S12FCIiIiKtJGqhU6lUOHToEIKCgmBgYCBmFCIiIiKtJWqhO3nyJHJyctCjRw8xYxARERFpNbXtFsvLy8O8efOQnJwMBwcHuLi44J8rpvTs2VNdMYiIiIh0jkQd16F78OABevTogTZt2mDz5s2QSCTYsGEDpk6dCmNjY6Snp0MikdR2DCIiIiKdpJYp14EDB0Iul2PNmjUVxa1v376Qy+Xo0aMHyxwRERHRC6j1Qrd161YcPnwYY8eOhZmZWcXjp06dAgAeP0dERET0gmq90H3//fcAgDfeeKPS41FRUQB4/BwRERHRi6rVY+jKy8thYmKChg0b4vbt25WeCwgIQHp6Oq5du1ZbwxMRERHVCbW6hy47OxtKpRIdO3as9HhRURHi4+Mrplt37NgBuVxem1GIiIiIdFatFjo7OzuYmZmhQYMGlR7/+eefUVpaWjHdumvXLkil0tqMQkRERKSzarXQSSQSjBo1CklJSRXXnDt48CC2b98OAHB2dsa1a9fQqFGj2oxBREREpNNq/Tp0hYWF+OCDD/DgwQM4OjqiVatWmDp1KubNm4fY2FjY2tpi5cqVj+zFIyIiIqKqUcuFhYmIiIio9oi6lisRERERvTgWOiIiIiItx0JHREREpOVY6IiIiIi0HAsdERERkZZjoSMiIiLScix0RERERFqOhY6IiIhIy7HQEREREWk5FjoiIiIiLcdCR0RERKTlWOiIiIiItBwLHREREZGWY6EjIiIi0nJqL3SCIEChUEAQBHUPTURERKST1F7o8vLyIJVKkZeXp+6hSQv1/rE3XvvpNbFjEBERaTROuZJG82zoifi78dyjS0RE9BQsdKTRvJy8kFmQidvy22JHISIi0lgsdKTRPJ08AQDxd+NFTkJERKS5qlXoPvvsM0gkkko3BweH2spGBAdzB7hYuiAuLU7sKERERBrLoLovaNOmDf7++++K+/r6+jUaiOi//Fz8EJMaI3YMIiIijVXtQmdgYMC9cqRWAY0CsPOvnSgqK4KpoanYcYiIiDROtY+hu3r1Kho2bIimTZti8ODBuH79+lO3LykpgUKhqHQjqg5/F3+Uqcp4HB0REdETVKvQeXt7Y9OmTfjrr7+wdu1apKenw8/PD9nZ2U98zaJFiyCVSituLi4uLxya6pZ29u1gYWSBmNucdiUiInocifACF/gqKChA8+bNMXPmTEydOvWx25SUlKCkpKTivkKhgIuLC+RyOSwtLZ93aKpjXtr8Egz1DbE/ZL/YUYiIiDROtY+h+zczMzO0a9cOV69efeI2xsbGMDY2fpFhiBDQKADL4pZBJaigJ+HVdoiIiP7thX4ylpSU4NKlS3B0dKypPESP5e/ij9ziXFzMuih2FCIiIo1TrUI3ffp0REVF4caNGzhx4gTeeustKBQKhIaG1lY+IgCAt7M39CX6PI6OiIjoMapV6NLS0vDOO++gVatWePPNN2FkZIS4uDg0bty4tvIRAQDMjczR0bEjolOjxY5CRER1VFZBFspV5WLHeKxqHUO3devW2spB9Ez+Lv7Yc2WP2DGIiKiOySnKwTfHv8HyuOX4rs93GOYxTOxIj+DR5aQ1AhoF4EbuDdzNuyt2FCIiqgMUJQp8HvU5mq5oimVxyzDBawL6tOgjdqzHeqGzXInUyd/FHwAQfTsab7d5W+Q0RESkqwrLCiE7KcNXMV8hvzQfY7qMweyA2bA3txc72hOx0JHWcLRwRPP6zXH01lEWOiIiqnEl5SX4IfEHLDy2ENlF2RjVcRQ+CvwIzpbOYkd7JhY60irdm3bH4RuHxY5BREQ6pExZho2nN2LB0QW4k3cHwzyGYW7gXDSt31TsaFXGY+hIq3Rv2h2X7l/Cvbx7YkchIiItp1QpsenMJrjJ3PDBvg8Q0CgAF8dexMbXN2pVmQNY6EjLBDcJBgBE3owUNQcREWkvlaDCtgvb0HZ1W4TuDoWHvQfOfHAGPw34Ca1sWokd77mw0JFWcTB3QGvb1px2JSKiahMEAXuu7EHHNR0xaPsgNLVqivj347Fz0E60s28ndrwXwmPoSOt0b9Idf1z7Q+wYRESkJQRBwB/X/sCnkZ8i4W4CgpsEI3pENPwb+YsdrcaobQ+dTCZD69at4enpqa4hSUd1b9odKTkpuJV7S+woRESkwQRBwIGUA/Bd74s+P/WBiYEJDg87jCOhR3SqzAGARBAEQZ0DKhQKSKVSyOVyWFpaqnNo0hEPih7AZrENNry+AcM7DBc7DhERaaDDNw5j7pG5iEmNgY+zD+YHz0fPZj0hkUjEjlYreAwdaR1rU2t0cOiAQzcOiR2FiIg0zNFbR9Etoht6bOqBEmUJfg/5HbHvxaJX8146W+YAHkNHWuql5i9h4+mNUAkq6En4ewkRUV13PPU45kbOxd/X/0YHhw7YM3gPXmv5mk6XuH/jT0LSSr1deyOzIBOn00+LHYWIiER08s5JvLLlFfht8ENGfgZ2vr0TiWGJ6Nuqb50pcwALHWkpPxc/mBuZ469rf4kdhYiIRJB0Lwl9f+4L73XeuJV7C9ve2obTH5xGf/f+dXLmpu59YtIJRvpG6NG0B/5M+VPsKEREpEZn0s+g/y/90fmHzkjOTsZPb/6Ec2POYWCbgXWyyP2j7n5y0novN38ZsamxkBfLxY5CRES17ELmBQz8dSA6rOmAsxlnEfFGBC6MvYB32r0DfT19seOJjoWOtNbLri+jXFXOVSOIiHTY5fuX8c6Od9BudTsk3E3A+n7rcXncZQzzGAYDPZ7b+Q8WOtJazeo3Q8sGLfFXCo+jIyLSNVezr2LorqFo810bxNyOwfevfY8r46/gvY7vwVDfUOx4GofVlrRa7+a98duV3yAIQp06m4mISFddz7mOBUcXYNOZTbA3t8fKV1ZiZMeRMDYwFjuaRuMeOtJqvV1745b8Fi7fvyx2FCIiegG3cm8hbG8YWq1qhd+v/o5vXvoGKRNTMNZzLMtcFXAPHWm14CbBMDUwxb7kfXC3dRc7DhERVdPN3Jv44tgX2Hh6I+qb1MeXPb7EGM8xqGdYT+xoWoV76EirmRqa4qXmL+G3K7+JHYWIiKrhRs4NvL/nfbRY2QK/XfkNi3oswo1JNzDNbxrL3HPgHjrSev1a9cOoPaOQVZAFWzNbseMQEdFTXM+5joVHF2LT2U2wNrXGlz2+xAddPoCZkZnY0bSa2vbQyWQytG7dGp6enuoakuqIPi36AAD2Je8TOQkRET1JyoMUvPfbe2i5siX2X92Pr3p+VbFHjmXuxUkEQRDUOaBCoYBUKoVcLoelpaU6hyYd5r/BH3Zmdtg1aJfYUYiI6F+uPbiGhccWYvOZzbCpZ4NZ/rMwustoTqvWME65kk7o17If5h+dj6KyIpgamoodh4iozrv24BoWHF2AH8/+CFszWyx5aQnCOoexyNUSnhRBOuF1t9dRWFaIQzcOiR2FiKhOu5p9FaG7Q+G2yg0HUg5g6ctLcX3idUz2mcwyV4u4h450QqsGrdDCugV2X96N11q+JnYcIqI6Jzk7GQuOLsCWc1tgb2aPZS8vw6hOozhroibcQ0c6QSKRYID7AOy+vBvlqnKx4xAR1RlX7l/B0F1D4S5zx6Ebh7Ci9wpcn3QdE7wnsMypEQsd6YwBrQcguygbUTejxI5CRKTzLt+/jCE7h6D1d61x5MYRfNv7W6RMTMF4r/EwMTARO16dwylX0hmdHTujsbQxtl/cjh7Neogdh4hIJ12+fxmfH/0cP5/7GQ0tGmLlKyvxXsf3WOJExj10pDMkEgkGth6IHZd2cNqViKiGXcq6hJAdIWgta42jt45C9qqsYq1VljnxsdCRTnmn3TvIKszCoes825WIqCacyziHwdsHo813bRB9Oxrf9fkO1yZcwxjPMTA2MBY7Hv0/FjrSKR0dOqJlg5b46fxPYkchItJqiXcT0f+X/mj/fXvEpcXhuz7f4eqEq/igywd1tsgV5RdBUKl1PYYqY6EjnSKRSBDSNgS7Lu1CUVmR2HGIiLTO8dTj6PNTH3RZ2wXnM89jQ78Ndb7ICSoBx3/5FQ82tcLJnb+JHeexWOhI57zT7h3kleZh/9X9YkchItIKgiAg8mYkemzqAb8NfriZexNb3tyCS+MuYUTHETDUNxQ7omiuJV7A6aU94Kt8G2kFHeHYur3YkR6LhY50TssGLdHZsTN+Pv+z2FGIiDSaIAj469pfCAwPRLeIbnhQ9ADbB27HuTHnENIuBAZ6dfdiGPL7ckQtnYImFz1gZZyGBPM/4D3jNzRq3UzsaI9Vd/+kSKe90/YdfHT4I8iL5ZCaSMWOQ0SkUQRBwN7kvVhwdAHi78bDy8kLe9/Ziz4t+kAikYgdT1QqpQoxP0bArXg2OlsVIDpvIXxHTkbTepo93ay2PXQymQytW7eGp6enuoakOmxQ20EoVZZi56WdYkchItIYKkGFXy/8io5rOuL1ra/DxMAEB4YcQNzIOLzW8rU6X+YuRifg4go/dDV8D8mKnsgLvoLgsbNgrOFlDgAkgiCo9XQNhUIBqVQKuVwOS0tLdQ5NdUyPTT2gVCkROTxS7ChERKIqV5Xjl/O/YOGxhbh0/xJ6NuuJTwI/QWDjQLGjaYT7d7Jw8ecPEeCwHlfvt0Nxm5Xw6KVdXxtOuZLOGtFhBIbuGorrOdfRrL5mHvNARFSbSpWl+PHsj1gUvQjXHlxDnxZ9sOH1DfBx9hE7mkYoLy1HTMT38JB8gvZWwLHilfAfOxoGRtpXj3hSBOmsN93fhKWxJcJPh4sdhYhIrYrLi7E6fjVarGyBkXtGor19eySFJWFfyD6Wuf935uBRXP+uE7qaTsTZ3IEofyUZQaPGaWWZA7iHjnRYPcN6GNRmECLOROCz4M+gJ+HvL0Sk2wrLCvFD4g/4OvZrpOenY1CbQdgfsh9t7dqKHU1j3Lt+B9d3zIC/0884r/LG5SYnETiki9ixXhgLHem0ER1GYG3SWhy+cRg9m/UUOw4RUa3ILc6F7KQMy08sR05RDoZ6DMWcgDlo2aCl2NE0RklhCY6HL0MXkwVoaWmG6PKN8Js0DHr6uvHLPgsd6TQfZx+427hjbdJaFjoi0jkZ+RlYFrcM38V/h1JlKUZ2HInpftPRtH5TsaNplPg9f8Dm1iQEWF1HTNYEdBj2GQJsdOuSVix0pNMkEglGdx6N6QenIz0/HQ7mDmJHIiJ6YTdzb2JJ7BKsP7UehnqGGOs5FpN9JvPfuP+4dSEF6b9PgbfTXpwq6QZl610I6txG7Fi1Qjf2MxI9xTCPYTDUM8T6pPViRyEieiEXsy4idHcoXL91xS8XfsFHXT/Crcm38GXPL1nm/qVQUYjIbz+BfUIbOJudxnH9begw9RBcdbTMAbwOHdUR7/32Hg7dOITrE69DX09f7DhERNUSfycei6IXYdflXXC2dMZ03+kY1WkUzIzMxI6mUQSVgLjtO9Do/lTYmGXgeO4MeA6fAzOp7n+duIeO6oQxXcbgtvw2/rj2h9hRiIiqRBAEHLlxBL0294LXOi+czzyP9f3WI2ViCib5TGKZ+49rSRdxamlP+JYPRFpBB6R3uYjgSQvqRJkDeAwd1RGeTp7o7NgZqxNW47WWr4kdh4joiVSCCvuS9+GLY1/gxJ0T6ODQAdve2oY33d/kDMNjyO/LcWrTPPjbrMQd4yaIN9sP7xmvih1L7VjoqM4Y02UM3t/7Pq49uAZXa1ex4xARVfLP8lyLohfhQtYFdG3UFX+8+wdebv5ynV9j9XFUShVit2xGy8JZ8Kyfh5j8z+E7cgqaaMG6q7WBU65UZ4S0C4FNPRusiFshdhQiogrF5cX4PuF7tFzZEkN2DUFjq8Y4NuIYjo44it6uvVnmHuNSTCIuLPdHgMFwXMvrBkXgFQSPnQ3jOlrmABY6qkNMDU0x1nMsNpzegJyiHLHjEFEdl1OUg0XHFqHJ8iYYu38sPJ08kRSWhP0h+xHQKEDseBop++59HF0yGq1ueMJEPx+nGxyB34yf4djcWexoolPbWa4ymQwymQxKpRLJyck8y5VEkZGfgcbLG2Ne8DzMCpgldhwiqoPSFGlYdnwZfkj6AWXKMoR6hGK633S0aNBC7Ggaq7y0HDGb1qC98An0JCqcFj6Hf+gYrV13tTbwsiVU54zaMwp/XPsDNybdgJG+kdhxiKiOuJh1EYtjFmPLuS0wNzLH2C5jMcF7Aq8f9wxn/j4Gk3MT0ML2LGLS34Pb4C9g62wndiyNwylXqnOm+EzB3by72HZhm9hRiEjHCYKA6NvR6PtzX7T5rg3+vv43vur5FW5Pvo2FPRayzD1F+o27iPn6XXhkBqJMMMblxifQdfo6lrkn4B46qpNe3fIqbstv4+yYs9CT8PcaIqpZKkGFvVf24quYr3A87Tha27bGTL+ZeKfdO5wZeIbS4lLEbliOziafo7jMFJdNvoL/kFDo6fPf6qfhV4fqpE8CP8GFrAvYeWmn2FGISIeUlJdgfdJ6tJa1xhu/vAEDPQPsfWcvzo05h9AOoSxzz5Cw9y/c+aEdAiw+RFLuSBi9mYyuoSNY5qqAe+iozuq1uRcyCzJxavQp7qUjohciL5ZjTeIaLI9bjvT8dLzu9jpm+s2Er4uv2NG0QuqlG7i7bwq8nX7DqbvBMA9eiRZd2oodS6vw9BCqsz4N+hRdN3bFb5d/Q3/3/mLHISItdC/vHpbHLcf3id+juLwYw9oPwzS/aXCzcRM7mlYoVBTiZPhX8JF+BX0zW8Tq/QLfqQMh0eO196qLe+ioTuse0R05xTlICkvixTuJqMou37+MJbFLsPnsZpgYmGBMlzGY6D0RDS0aih1NKwgqASd27IJz5hTYmqfjeO50eA7/sM6su1obuIeO6rS5QXPRLaIb9iXvQ99WfcWOQ0QaTBAERN6MxNK4pdiXvA+O5o5Y0G0BwjqHQWoiFTue1kg5dQm5f0+Ej9PfOFnYB8qgQwhuy+UYXxT30FGdFxQehMKyQpwcdZJ76YjoEWXKMmy7sA1L45Yi6V4S2tm1w1TfqXin7TswNqi7S01VlyJbgaRN8+HfYAXuyhsj02UFPN/oI3YsnfFCR4IvWrQIEokEkydPrqE4ROo3N3AuEu4mYP/V/WJHISINkluci69jvkazb5thyK4hsK1niwNDDuDMB2cwvMNwlrkqUilViN68CUW/toKn1WrE5M2D/XvnWeZq2HNPucbHx+OHH35A+/btazIPkdp1b9odQY2DMPvv2ejt2hsGejwSgaguu5FzAytOrMD6U+tRqizFu+3exVTfqWhrx7Muq+tSbBLKjk9AgGMsYvMGoUnPrxHs6iJ2LJ30XHvo8vPz8e6772Lt2rWoX79+TWciUiuJRIIlLy3BhawLCD8dLnYcIhJJXFoc3v71bbiudMXms5sx2Xsybk2+hQ2vb2CZq6YH97JxdMkHaHW9C0z1FThlfRh+M7aiIctcrXmuQjdu3Dj06dMHPXv2rOk8RKLo0rALQtqF4JMjnyC/NF/sOESkJkqVEjsv7YT/Bn/4rvfF6fTTWPXKKqROScXn3T/n0lzVpCxT4uj61ZDsawEPq604VrgcTceeQsfe3cSOpvOqPbe0detWJCUlIT4+vkrbl5SUoKSkpOK+QqGo7pBEarGw+0K4rXLDN7Hf4NPgT8WOQ0S1KL80H+Gnw7E8bjlSclIQ2DgQvw3+Da+1fI0XGn9OZ/+OhtG5CQi0P41jd9+D2+BFCOK6q2pTrUKXmpqKSZMm4cCBAzAxManSaxYtWoR58+Y9VzgidWpi1QQTvSdicexihHUOg6OFo9iRiKiGpSnSIDspw5rENVCUKDCwzUBsfWsrujTsInY0rZVx8x6u/joTAU4/4oLgifNOcega4i12rDqnWpct2b17N/r37w99ff2Kx5RKJSQSCfT09FBSUlLpOeDxe+hcXFx42RLSSLnFuWj+bXO83up1bHh9g9hxiKgGCIKA42nHseLECuy4uANmRmZ4v9P7mOg9EY2kjcSOp7VKi0sRu3EFOhvPR0m5CS4ZfQn/oVx3VSzVKnR5eXm4detWpcdGjBgBNzc3zJo1C23bPvugUV6HjjTdmoQ1+GD/Bzg24hgCGgWIHYeInlOpshTbLmzDihMrkHA3AS2sW2Ci90SEeoTCwthC7HhaLXHfAdS/PhGNra8iOmMcPIbOg5UdT5IU0wtfWDg4OBgdOnTA8uXLq7Q9Cx1pOpWggt96PxSUFSApLAmG+oZiRyKiasgsyMT3Cd9jdcJqpOeno1ezXpjkPQmvtHiFx8e9oNRLN3Bn31T4OO3G6buBqBe4Ei29ePkyTcALbhH9h55ED9+/9j06/9AZy+OWY4b/DLEjEVEVnLp3CitOrMDP53+GvkQfwzyGYaL3RLS2bS12NK1XlF+EExu/grfFVzAwa4BYyc/wnToIEj2urqMpuPQX0RNM+XMKfkj6AZfGXeJxNkQaqlxVjt8u/4YVJ1bg2O1jcLF0wXiv8RjVaRSsTa3Fjqf1BJWAEzt3wzljCuws7iL2wTR0Gf4RzK3MxY5G/8FCR/QEeSV5cJO5wbOhJ3YP3i12HCL6l5yiHKxLWodV8atwW34bAY0CMMl7Et5we4OrvdSQ66cvI+fgRHR2Ooj4O6/AtvcKNGnXQuxY9AT8W0/0BBbGFljRewUG/joQ2y9ux1ut3xI7ElGddyb9DGTxMmw5twXlqnIMbjsYE70monPDzmJH0xmKbAWSNn0O/wbLoW/aCCdN98Bz2mucXtVw3ENH9BSCIOCtX9/C0VtHcWHsBdiZ8SKZROpWqizFjos7IIuXISY1Bo7mjhjdeTRGdxnNlRxqkKASEPvTFrjmz4CFsRwnCz6Cz4hpMDGr2nVnSVwsdETPkFmQiTbftUFg40BsH7gdEgl/SyVShzRFGtYkrMHapLXIKMhAUOMgjPMchzfc3uDZ5zXs8vFTKI2dgPaOMTh+ZyAavb4ETi157LA24ZQr0TPYmdnh+z7f461f38KWc1swpP0QsSMR6SxBEBB5MxKyeBl2X94NU0NTDGs/DGM8x6Ct3bOvdUrV8+BeNs7/9An87dfghoEbTtU/BN+Q7mLHoufAPXREVTRs1zDsurwLCe8noJVNK7HjEOkURYkCm89sxncJ3+Fi1kW427hjnOc4DPUYCktj/qyoacoyJWI2rUVb1UfQ1yvH6fJ58Bs+DobG3POprVjoiKoovzQfnms9YaRvhLiRcTA1NBU7EpHWu5B5Ad/Ff4dNZzehqKwIb7i9gXGe4xDcJJiHN9SSc4djYXBmPNztT+HYneFwG/QlbBvZix2LXhALHVE1nM88D6+1Xni33btY22+t2HGItFKpshS7L+/G6oTViLwZCXsze4R1DkNY5zA4WzqLHU9nZdy8h6u/zkKA02ZcTO8CVaeVaBvsI3YsqiE8ho6oGtratYXsVRne2/MeAhsHYqjHULEjEWmNlAcpWJu0FhtPb0RmQSYCGgXg5wE/4033N2GkbyR2PJ1VVlKGmI3fopPhPLhJjXGsZC38J70HPX0ug6ZL1FboZDIZZDIZlEqluoYkqhUjOo5A1K0ofLD/A3Ru2JnLChE9RamyFHuu7MGaxDX4+/rfsDKxwrD2wxDWOQxt7NqIHU/nJe4/CKuUiehqnYzojLHwGDofXe3qix2LagGnXImeQ0FpAbzWeQEATo46CTMjM5ETEWmW6znXsTbx4d64jIIM+Lv4I6xzGAa2HsjjT9Ug7cotpO2ZCh+nnThztytMuq5EK28PsWNRLWKhI3pOl7IuwXOtJ15t8Sp+eesXHsBNdV6Zsgx7ruzBD0k/4EDKAUiNpRjm8XBvHC85oh5F+UU4sfFreFssQm6RNW5Il8B38GCu8lAH8Bg6oufkbuuOzf03481tb8I90h3zus0TOxKRKFIepGD9qfXYcGoDMgoy4Ovsi/DXwzGwzUDUM6wndrw6QVAJOLlrDxremww/6R3EPpiKLsM/hp+VudjRSE1Y6IheQH/3/ljUYxHmHJqDRtJGGNlppNiRiNSisKwQOy7uwIbTGxB5MxJSYymGth+KsM5haGffTux4dcr1M1fw4MAkeDv9hfii3igP/AvB7VuKHYvUjIWO6AXN8p+F2/LbGL1vNBwtHPFqi1fFjkRUKwRBQPzdeKxPWo+tF7ZCUaJAtybdHu6pdn+Te+PULC8nD4kRC+BnvQwGps44YfIbvKb15fRqHcVj6IhqgFKlxIBtA3Dw+kFEhkbC08lT7EhENSazIBM/nv0RG05twIWsC3C2dMaIDiMwvMNwNKvfTOx4dY6gEhD7809orpgBS5NcnCyYA58RM2BiZiJ2NBIRCx1RDSksK0TPTT2RnJ2Mw6GH0d6+vdiRiJ5buaocf177ExtObcDe5L3Qk+jhDbc3MLLjSPRo2gP6evpiR6yTrsSdRnHMBHg4RuP4nbfg0m8JnFs1FjsWaQAWOqIa9KDoAXpu6olURSqOhB7hmX2kda7cv4Lw0+GIOBOBe/n34GHvgZEdRyKkXQga1Gsgdrw6Kyf9Ac5u+QQB9t/jZnYryFusRKdXe4gdizQICx1RDcsuzEaPTT1wN+8ujoQe4cVTSeNlFWRh6/mt2Hx2M+LvxsPKxArvtnsX73V8D50cO4kdr05TlikRs3kd2pR/BEP9UiSVz4P/8PEwNDYUOxppGBY6olpwv/A+ukd0R0ZBBo6EHuFqEqRxisuLsffKXmw6uwl/XvsTAPBqi1cxtP1QvNbyNZgY8HgssZ07chwGp8fD3T4J0XdC0fLtL2HX2EHsWKShWOiIaklWQRa6b+qOe3n3sD9kP7ydvcWORHWcSlAh+nY0Np/ZjF8v/gp5iRxeTl4Y1n4YBrUdBJt6NmJHJACZt9KRvG02ApwicCmjE8o7rEK7br5ixyINx0JHVIseFD1Av5/7IeleEn4d+Cv6tOwjdiSqg5Kzk7H5zGZsPrsZt+S30MSqCYa0G4Ih7YeglU0rsePR/ysrKUPMxpXoZPgZypRGuGDwBfyHjoS+IU9AoWdjoSOqZUVlRXhnxzvYl7wPa/uuxYiOI8SORHXAbflt/HL+F2y9sBVJ95IgNZbi7TZvY2j7ofBv5A89iZ7YEelfkn4/BOnVCWjS4AqiMz5A+3c/R30Ha7FjkRbhhYWJapmpoSm2v70d438fj/f2vIfrOdcxr9s8/kClGpeRn4FfL/6Kree3IiY1BiYGJujTog/mBMzhcXEaKu3KLaTumQZfpx04Ux6Aa66JCBrSQexYpIXUVuhkMhlkMhmUSqW6hiTSGAZ6BljdZzWaWjXFnENzcDrjNH7s/yOkJlKxo5GWyynKwc5LO7H1wlYcvnEYehI9vNz8ZWzuvxn9WvWDpTFnQjRRcUEx4jZ+DS+zRTAwt0KM8CP8poRwlQd6bpxyJVKzP67+gZCdIbAzs8PuQbvhbusudiTSMg+KHmDvlb3Yfmk7/rr2F8pV5ejWtBsGtxmMN93f5PXiNJigEnBy91443p0MB8s0xGZPRufhn8CivoXY0UjLsdARieDag2t4Y+sbuJF7Ayt6r8DIjiMhkfA3c3qyjPwM7L68Gzsu7cCRm0egVCnh5+KHQW0G4a3Wb8HRwlHsiPQMN84m4/5fk+Dp9CcS7rwE65e+RTMPnpRCNYOFjkgkBaUFmPznZKw7tQ4D3Afgh74/wNqUB0HT/6TKU7Hz0k7suLQD0bejoSfRQ3CTYAxwH4A33N5gidMS+bn5SAhfAD/rpchQOOGuwzJ4vfk6p1epRrHQEYlsx8UdeH/v+zAzMsPG1zeiZ7OeYkciEV17cA07Lu7Azss7cfLOSRjqGaJX814Y4D4A/Vr147XitIigEhC79Wc0k8+AlekDnMibA+8RM2Bqbip2NNJBLHREGiBVnorQ3aE4cvMI3uvwHr55+RtYmViJHYvUQKlSIi4tDvuS92Fv8l5cyLoAUwNT9HbtjQHuA/Bay9d48owWSj55FoVHJ6BDw6OIu/MmnPt+A2e3JmLHIh3GQkekIVSCCuuT1mP6wekwNTDFlz2/xDCPYby8iQ6SF8txIOUA9ibvxe9Xf0d2UTZs6tmgT4s+6NuyL3q79oaZkZnYMek55Gbm4MzmuQiw/w43H7REbvNv0blPL7FjUR3AQkekYe4o7mD6wenYen4rPBt64ttXvoWPs4/YsegFpTxIqdgLF3UrCuWqcrSza4fXWr6Gvi37wsvJC/p6XBFAWynLlIj5cQNal30II/0SJJV9Cr/hE2BkYiR2NKojWOiINNSxW8cw6c9JOJV+CkPaD8G84HloVr+Z2LGoihQlCkTejMSBlAM4kHIAVx9chZG+Ebo16Ya+LfuiT8s+aGLVROyYVAPOR52AXuJ4tHZIQPSdYWgx8EvYN+EJK6ReLHREGkypUmLj6Y346PBHyC7MRqhHKD4K/IjFTgMpVUok3kusKHDH046jXFWOplZN8XLzl/FS85fQq3kvmBuZix2VakjW7Qxc/mU2ujqF41JGR5R7rEK77n5ix6I6ioWOSAsUlhViTcIaLI5djKyCLAz1GIoPAz5EiwYtxI5WZwmCgJSclIq9cH9f/xs5xTmwNLZE96bd8VKzl/BS85fQ3Lq52FGphpWVlCE2XIYOBp9CqTLAef0v4D90FPQNOWVO4mGhI9IiRWVF+CHxB3wV8xXS89PxaotXMd5rPF5q/hJPnqhlgiDgSvYVRN2MQtSth7e7eXehJ9GDt5P3wz1wzXrBy8kLhvqGYselWnLqj8MwT56IZg0uISZjNNqGfA5rR67MQeJjoSPSQkVlRfj5/M9YdXIVTqWfgqu1K8Z2GYthHsO47FMNUQkqXMi8gKhbUTh66yiO3jqKjIIM6Ev00blhZwQ1DkJQ4yAENArgZUXqgDvJt3H7t+nwdfoVZ+/5w8hvJdx8O4odi6gCCx2RFhMEAXFpcVgVvwq/XvgVANCnZR+82+5d9HbtzeO1qiG7MBsn7pxAXFocjqcdx8k7J6EoUcBQzxBeTl4PC1yTIPg6+8LCmOtu1hXFBcWI2/gNvMwWIq9EimvmX8Mv5F2u8kAah4WOSEdkFmRi6/mtiDgTgaR7STDWN0av5r3weqvX0bdlX9ib24sdUWPkFOXgVPopJN1Lwqn0U0i4m4Dk7GQAgE09G/g6+8LX2Rc+zj7wdvZGPcN6IicmMZzctQ/2dyahoeVtxGRPRqdhn8CyAX9ukWZSW6GTyWSQyWRQKpVITk5moSOqRSkPUvDbld+w+/JuxKTGQBAE+Ln4obdrb3Rt1BVeTl4wNdT95YcEQcC9/Hs4de9UpQJ3M/cmAKCeYT142Hugk2Mn+Dj7wNfZF83qN4NEwr0vddnNc1eR9edkeDr9jsQ7vVC/17do1sFN7FhET8U9dEQ6LqsgC/uS92H3ld2IuhkFeYkcRvpG8GzoicDGgejaqCs6OXbS6j14SpUSN3Nv4tL9S7iUdenhf////+UlcgBAfZP66OjYEZ0cOqGjY0d0dOiIlg1a8mK+VCE/Nx8J4QvhW38psvIdkWa/DN5vvsHpVdIKLHREdYhSpcS5zHM4dusYjt4+imO3jiGjIAMAYG9mjw4OHeBh7wF3W3c0q98Mzeo3Q0OLhqKfQasSVMjIz8DN3Ju4Jb/18L+5t3BT/vC/13Ouo0RZAgAwNzKHm40b3G3cH95s3dHRoSMaSRtxzxs9lqAScPyXX9A0Zzqs6mXjRN4seI+YBVNz3d+LTbqDhY6oDhMEAddzruN0+mmcyThT8d/b8tsV2xjpG6GJVRM0q98MzhbOsDWzhZ2ZHWzr2cLWzBYWRhYwMTCBqaEpTA1MK/2/gZ4BAEApKKESVChXlaOgtAD5pfnIL81HXmlexf/nl+YjtzgXmQWZFbeMggxkFmQiTZGGUmVpRSYrEys0ljZGE6smaCxtjGb1m8Hd9mGBc7Z0ZnGjKks+eRaFRyeiQ8MoxN3pD+e+S+Hs1kTsWETVxkJHRI8oKivCLfnDPV//3FJyUnA37y6yCrKQWZCJovKiGh/XWN8Y9ub2sDOz+9+tnh2cLZ3R2Op/BY6XCaEXlZuZgzObP0WAvQy3HrRATrNv0fm1l8SORfTcWOiI6LkUlBYgqzALBaUFKCovQlFZEYrLiyv+v6i8CGXKMuhJ9CpuBnoGMDcyf+LN2MBY7I9FOk6lVCFm0wa4l82BsUExEks+hd+IiTAyMRI7GtELMRA7ABFpJzMjM5gZmYkdg6jKLhw9CSSMR1eHeETfHwLXt75CcNOGYsciqhEsdEREpNOy0jJxeescdG24AZclHXDW7hgCQgLEjkVUo1joiIhIJ5WXliMmXIYOep+irVQPR4u+g//4MOgb8lI1pHtY6IiISOec/isSZpcmoKvNBUSnh6FNyAIENrQROxZRrWGhIyIinXH3Wipu7poOP6dtOKf0xZVmCQgc0knsWES1joWOiIi0XklhCY5v/Aae9RbC1cIC0coI+E0eAj19cS+KTaQuLHRERKTV4nfvh13qJPhLbyEmeyI6DfsUAQ14WSyqW1joiIhIK906fw0Zf0yGl9N+JBb3RHnAXgR3dBc7FpEoWOiIiEirFMgLEB/+BXytlkC/ngOOG2yHz7Q3IdHjkm9Ud6mt0MlkMshkMiiVSnUNSUREOkRQCTj+yzY0yZkOH6ssHJfPhtfwWXC2rCd2NCLRcekvIiLSeFcTziM/cgI6NozEiTuvw7HPUjRq3UzsWEQag1OuRESkseRZuTi9+TP4265CqlFzJFj8Ce8ZL4sdi0jjsNAREZHGUSlViPkxHG7Fs9HJqgjR+YvgFzYJTU2MxI5GpJFY6IiISKNcPBYPVfx4dHU4iZjMd9H8rcUIbtpQ7FhEGo2FjoiINML9O1m49PMc+DtswFVJe5yxOwr/kK5ixyLSCix0REQkqvLScsRErIaHZC7aSiU4VrwK/uPCYGDEH1FEVcXvFiIiEs3pA1God3ECutqcR3T6+2gTshBBDW3EjkWkdVjoiIhI7e6lpOHGzhnwc9qKc0ofXGkaj8AhncWORaS1WOiIiEhtSgpLcDx8GbqYLICrhTmiy8PhN3ko9PT1xI5GpNWq9R20evVqtG/fHpaWlrC0tISvry/++OOP2spGREQ6JP6333F3fTsEWHyMhNwwGL91BQHDQlnmiGpAtfbQOTs748svv4SrqysAICIiAq+//jpOnTqFNm3a1EpAIiLSbrcupCDj98nwctqHpJIeULbZjeBOrcWORaRTXnjpL2tra3z99dcYOXJklbbn0l9ERHVDgbwA8eGL4Gv1Ne4X2OO2zVL4vDUAEj2J2NGIdM5zH0OnVCrx66+/oqCgAL6+vjWZiYiItJigEhD363Y0yp4GH6tMHJfPgtfw2XCyrCd2NCKdVe1Cd+7cOfj6+qK4uBjm5ubYtWsXWrd+8q7zkpISlJSUVNxXKBTPl5SIiDTetcQLyDsyAb4Nj+BEQT8og5chuHUzsWMR6bxqH4naqlUrnD59GnFxcRgzZgxCQ0Nx8eLFJ26/aNEiSKXSipuLi8sLBSYiIs0jvy9H1NIpaHLRA1bGaYg3/x3eM35DI5Y5IrV44WPoevbsiebNm2PNmjWPff5xe+hcXFx4DB0RkQ5QKVWI+TECbsWzYWpYgITiT+A7fDKM6xmLHY2oTnnh69AJglCpsP2XsbExjI35jU1EpGsuRidAdXI8ujqcQEzmO2g24GsEN3MSOxZRnVStQvfhhx/ilVdegYuLC/Ly8rB161ZERkbizz//rK18RESkYe7fycLFnz9EgMN6XNNri9M2kfAPCRI7FlGdVq1Cl5GRgaFDh+LevXuQSqVo3749/vzzT/Tq1au28hERkYYoLy1HTMT38JB8gvZWwLGib+E/9gMYGHHRISKxvfAxdNXF69AREWmfMwePwuTCBLSwOYfo9JFo/c4XsHGyFTsWEf0//lpFRERPdO/6HVzfMQP+Tj/jvMoblxufQOAQT7FjEdF/sNAREdEjSgpLcDx8ObqYfI6WlmY4VrYB/pO47iqRpmKhIyKiShL2/IkGtyYiwOo6YrImoMPQT9HV1krsWET0FCx0REQEALh98Tru7Z8Cb6c9OFXSDeXuOxE0tK3YsYioCljoiIjquEJFIU6Gfwkf6WIYmNkiVu8X+E4dCImeROxoRFRFLHRERHWUoBIQt30HXLKmwVeajuO5M+A5fA78pGZiRyOiamKhIyKqg64lXYTi8ET4NjyEE4V9oQw+jOA2zcWORUTPiYWOiKgOkd+X49SmefC3WYk7xk0Qb7Yf3jNeFTsWEb0gFjoiojpApVQhdstmtCycBc/6eYjJ/xy+I6egST2utU2kC9RW6GQyGWQyGZRKpbqGJCIiAJdik1B+fDwCHI8jNm8wmvb6GsHNncWORUQ1iEt/ERHpqOy793Hhp48Q4LAWKffboMB9JTq8HCx2LCKqBZxyJSLSMcoyJaIj1qC98DE8rFQ4VrQC/mPHwMCI/+QT6Sp+dxMR6ZCzf0fD+Nx4dLU9i5j09+A2+AsEOduJHYuIahkLHRGRDki/cRcp22fC32kLLgieuNQoDl2HeIkdi4jUhIWOiEiLlRaXInbDcnQ2+RwtLU1xrGw9/CcNh56+ntjRiEiNWOiIiLRUwt6/0ODGRATUT0FM1jh0GDoPXW2txI5FRCJgoSMi0jKpl27g7r4p8Hb6DadKg1Hmth1BQ9uJHYuIRMRCR0SkJQoVhTgZ/hV8pF9B38wWsZKt8J36NiR6ErGjEZHIWOiIiDScoBJwYscuOGdOga80Hcdzp8Nz+Ifwk5qJHY2INAQLHRGRBks5dQm5f0+Ej9PfOFnYB8qgQwhu6yp2LCLSMCx0REQaSJGtQNKm+fBvsAIGJo1x0nQvvGa8JnYsItJQLHRERBpEpVQh9qcf0aJgFjytFIjJmwef96aisZmJ2NGISIOx0BERaYhLsUkoOz4BAY6xiM17G016LkGwq4vYsYhIC6it0MlkMshkMiiVSnUNSUSkFR7cy8b5LR8hwOEHpBi0xinrw/AL6SZ2LCLSIhJBEAR1DqhQKCCVSiGXy2FpaanOoYmINIqyTImYTT+grepj6OuV47RyPvxCx8LQ2FDsaESkZTjlSkQkgrOHYmB0djwC7U/j2N0RcHt7EYIa2Ysdi4i0FAsdEZEaZdy8h6u/zkSA04+4KHTBeac4dA3xFjsWEWk5FjoiIjUoLS5F7MZv0dl4HtykJjhWshb+k96Dnr6e2NGISAew0BER1bLEfQdQ//pEdLW+iuiMcfAYOg9d7eqLHYuIdAgLHRFRLUm7fBNpe6fCx2kXTpcGIqXlNgQNaS92LCLSQSx0REQ1rCi/CCc2Loa3xZfQN2uAWMnP8J06CBI9idjRiEhHsdAREdUQQSXgxM7dcEqfCj/pHcQ+mIYuwz+Cn5W52NGISMex0BER1YDrpy/jwcFJ8HE6gPiiV6AMOoDgdi3EjkVEdQQLHRHRC8jLyUNi+Hz4N1gOfdNGOGm6B57TXuP0KhGpFQsdEdFzEFQCYn/aguZ5M+FllYsYxWfwGTENjc1MxI5GRHUQCx0RUTVdiTuNkpjx8HeMwfH8gWjUYwmCWzYSOxYR1WEsdEREVZST/gDntnwMf/s1uGHghlP1D8E3pLvYsYiIWOiIiJ5FWaZEzOZ1aFP+ETysyhBd8A38PhgHQ2NDsaMREQFQY6GTyWSQyWRQKpXqGpKI6IWdOxwLgzMTEGifhGN3hsNt0JcIamQvdiwiokokgiAI6hxQoVBAKpVCLpfD0tJSnUMTEVVZ5q10JG+bhQCnTbiY3hmqTqvQNthH7FhERI/FKVcion8pKylDzMZv0clwHtylRjha8gP8J7wHfUN9saMRET0RCx0R0f9L3H8QVikT0dU6GdEZY9D+3fkIdLAWOxYR0TOx0BFRnZd25RbS9kyFj9NOnCntimsttiJoiIfYsYiIqoyFjojqrKL8IpzY+DW8LRZB39waMdgCv6nvcJUHItI6LHREVOcIKgEnd+1Bw3uT4Se9g9gHU9E59CP417cQOxoR0XNhoSOiOuX6mSt4cGASvJ3+QnxRb5R1/RPBHq3EjkVE9EJY6IioTsjLyUNixAL4WS+DgakzTpj8Bq9pfTm9SkQ6gYWOiHSaoBIQ+/NPaK6YAW+rHMQqPoH38OloZG4qdjQiohrDQkdEOuvKiTMoPjYB/g2P4Xj+ALh0/wbBrRqLHYuIqMax0BGRzslJf4CzWz5BgP33uGnYCklWB+Eb0lPsWEREtYaFjoh0hrJMiZjN69Gm/EN0tCrFsfyv4f/BBBgaG4odjYioVrHQEZFOOHfkOPRPTUCgQyKi7wxDy7e/QnBjB7FjERGpBQsdEWm1zFvpSN42GwFOEbgk6YRzDjEICPETOxYRkVqprdDJZDLIZDIolUp1DUlEOqyspAwx4avQ0eAztLYywNHi7+E/fhT0DfXFjkZEpHYSQRAEdQ6oUCgglUohl8thaWmpzqGJSEck/X4IllcnommDy4jO+ADt3/0c9R2sxY5FRCQaTrkSkda4k3wbt3+bBl+n7ThTHoBrrokIGtJB7FhERKJjoSMijVdcUIy4jUvgZfYF9M2tECP8CL8pIVzlgYjo/7HQEZHGElQCTu7eC4e7U+BnmYrY7MnoPPwT+Ne3EDsaEZFGYaEjIo1042wy7v81Gd5OfyCh6CUou/6OYI9WYsciItJILHREpFHyc/OREL4AftZLYWDqhBNGu+A17XVOrxIRPQULHRFpBEEl4PjWrWiaOwPeVtmIlX8M7xEz4GJuKnY0IiKNx0JHRKJLPnkWhUcnwK/hUcQVvAll928Q7NZE7FhERFqDhY6IRJObmYMzm+ciwP473DRqiUTpAfiE9BI7FhGR1mGhIyK1UylViNm0Ae5lc9DRqgTH8hfDL2wCmpsYiR2NiEgr6VVn40WLFsHT0xMWFhaws7PDG2+8gStXrtRWNiLSQeejTuDyCm90NX4fl+WvoKjHFQR/MA1GLHNERM+tWoUuKioK48aNQ1xcHA4ePIjy8nK89NJLKCgoqK18RKQjsm5n4NjXI9D2jg/0JOU4ax+NgBmbYN/EUexoRERa74XWcs3KyoKdnR2ioqIQGBhYpddwLVeiuqWspAyx4TJ0MPgUSpUBzusthP+w96FvqC92NCIinfFCx9DJ5XIAgLX1kxfFLikpQUlJScV9hULxIkMSkRY59cdhmCdPRNcGFxGdMRptQxYg0LGB2LGIiHROtaZc/00QBEydOhUBAQFo27btE7dbtGgRpFJpxc3FxeV5hyQiLXEn+TaOf/02Oub0QFG5FMnNExE4bTWsWeaIiGrFc0+5jhs3Dvv370d0dDScnZ2fuN3j9tC5uLhwypVIBxUXFCNu4zfwMluIvBIprpovhn/IEK7yQERUy55rynXChAnYs2cPjh49+tQyBwDGxsYwNjZ+rnBEpD1O7toH+zuT4G95GzHZk9Fp2CcIaMBf2oiI1KFahU4QBEyYMAG7du1CZGQkmjZtWlu5iEhL3Dx3FVl/ToaX0+9ILOqFcv99CO7oLnYsIqI6pVqFbty4cfjpp5/w22+/wcLCAunp6QAAqVQKU1Out0hUl+Tn5iMh4gv4Wn0Dg3qOiDPaCe9pb3B6lYhIBNU6hk4iefw/1Bs3bsTw4cOr9B68bAmRdhNUAo7/8gua5kyHVb1snMibBa/QmahnWU/saEREdVa1p1yJqO5Kjj+HwqgJ8GsYhbiCN1DebSmC3XnoBRGR2LiWKxE9kzwrF6c3zYW/3XdINWqOBIs/4TPjZbFjERHR/2OhI6InUilViNm8EW4lc9CpfhGi8xfBL2wSmnLdVSIijcJCR0SPdeHoSSBhPLo6xCMm6100f2sxgps2FDsWERE9BgsdEVWSlZaJy1vnoGvDDbgi8cBZu2PwDwkQOxYRET0FCx0RAQDKS8sRE/4dOujNRVupHqIKZQgYPxr6hvpiRyMiomdgoSMinP4rEmaXJqCrzQVEp4ehTcgCBDW0ETsWERFVEQsdUR12LyUNN3ZOh5/TLzin9MWVZgkIHNJJ7FhERFRNLHREdVBJYQmOb1wKz3oL4GphgWhlBPwmD4Gevp7Y0YiI6DmordDJZDLIZDIolUp1DUlEjxG/ez9sUyfDX3oTMdkT0WnYpwhowFVbiIi0WbWW/qoJXPqLSBy3zl9Dxh9T4OW0D4l3esKq57do3tFd7FhERFQDOOVKpOMK5AWID/8CvlZLoF/PAccNtsNn2puQ6D1+bWYiItI+LHREOkpQCTi+7Vc0eTANPlZZOC6fDa/hs+BsWU/saEREVMNY6Ih00NWE88iPnAi/hkdwouB1lAcvRXDrZmLHIiKiWsJCR6RD5Fm5OL35M/jbrkKqUXMkmP8B7xm9xY5FRES1jIWOSAeolCrE/BgOt+LZ6GxViOi8L+AXNhlNTYzEjkZERGrAQkek5S4ei4cqfjy6OpxETGYImg1YjOBmTmLHIiIiNWKhI9JS9+9k4dLPc+DvsAFX9drhjN1R+Id0FTsWERGJgIWOSMuUl5YjJmI1PCRz0c4KOFa8Ev5jR8PAiN/ORER1FX8CEGmR0weiUO/iBHS1OY/o9FFo/c5CBDnZih2LiIhExkJHpAXupaThxs4Z8HPainNKH1xuchKBQ7qIHYuIiDQECx2RBispLMHx8GXoYrIALSzNEF2+EX6Th0FPX0/saEREpEFY6Ig0VPxvv8Pm9mQEWF1HdNZEdBz2KQJspGLHIiIiDcRCR6Rhbl1IQfrvU+DttBdJJd2hbL0LwZ3biB2LiIg0mNoKnUwmg0wmg1KpVNeQRFqlUFGIk+GL4CP9GgZmdjhu8Ct8pg6ARE8idjQiItJwEkEQBHUOqFAoIJVKIZfLYWlpqc6hiTSSoBIQ9+t2NMqehgZmmYiTz4Bn6GyYSc3EjkZERFqCU65EIrqWeAGKIxPh2/AwThT0RXnQMgS3aS52LCIi0jIsdEQikN+X4/Smz+BvuxKpxs0Qb/47vGe8InYsIiLSUix0RGqkUqoQu2UTWhXNQmerAkTnLYDvyCloWs9Y7GhERKTFWOiI1ORidAKUJyYgwDEOsYrBaPrm1whu7ix2LCIi0gEsdES1LPvufVz46UMEOKzDNf22OG0TCb+QILFjERGRDmGhI6ol5aXliNm0Bh74GO2tgGNF38J/7AcwMOK3HRER1Sz+ZCGqBWf+PgaT8+PR1eYcotNHovU7XyDIyVbsWEREpKNY6Ihq0L3rd3B9x0z4O/2E8ypvXG58AoFDPMWORUREOo6FjqgGlBaXInbDcnQxmY+WlmY4VrYB/pNCoaevJ3Y0IiKqA1joiF5Qwp4/0eDmJATUT0FM1gR0GPoputpaiR2LiIjqEBY6oud0++J13Ns/Fd5Ov+FUaTeUu+9A0NC2YsciIqI6iIWOqJoKFYU4Gf4lfKSLYWBmi1i9X+A7dSAkehKxoxERUR3FQkdURYJKQNz2nXDJmgpfaTqO586A5/A58JOaiR2NiIjqOLUVOplMBplMBqVSqa4hiWrMtaSLUByeCN+Gh3Cy8DUogw4huK2r2LGIiIgAABJBEAR1DqhQKCCVSiGXy2FpaanOoYmqTX5fjlOb5sHfZiXuyJsgy2U5PN/oI3YsIiKiSjjlSvQYKqUKsVs2o2XhLHjWz0NM3nz4jpyKJvWMxY5GRET0CBY6ov+4FJuE8uPjEeB4HLF5g9Ck59cIdnUROxYREdETsdAR/b/su/dx4aePEOCwFin6bXC6wRH4hQSLHYuIiOiZWOiozlOWKREdsQbthY/hYaXCscLl8B87FgZG/PYgIiLtwJ9YVKed/TsaxufGI8j+DI7dHQm3wV8gyNlO7FhERETVwkJHdVL6jbtI2T4T/k5bcEHwxAXnE+ga4iV2LCIioufCQkd1SmlxKWI3rkBn4/loaWmKY6Xr4D9pBPT09cSORkRE9NxY6KjOSNj7F6xvTEJA/WuIyRqHDkPnoautldixiIiIXhgLHem81Es3cGffVPg47cbp0iBcd/sVQUPbiR2LiIioxrDQkc4qVBTiZPhX8LZcDAOzBoiVbIXv1Lch0ZOIHY2IiKhGsdCRzhFUAk7s2AXnzKnwld7D8dxp6BL6IfyszMWORkREVCtY6EinXD99GTkHJ8LH6SDiC19FeeBBBLdrIXYsIiKiWsVCRzpBka1A0qb58G+wAvomjXHSdC+8ZrwmdiwiIiK1UFuhk8lkkMlkUCqV6hqS6gBBJSDmpx/RIn8mPK0UiFF8Bp/3pqGxmYnY0YiIiNRGIgiCoM4BFQoFpFIp5HI5LC0t1Tk06ZjLx0+hNHY82jvGIvbO22jSfwkaurqIHYuIiEjtOOVKWufBvWyc/+ljBNivQYpBa5yyPgy/kG5ixyIiIhINCx1pDWWZEjGb1qKt6iN4WJXjWOEy+H0wFobGhmJHIyIiEhULHWmFs4diYHh2AgLtT+HY3RFwe3sRghrZix2LiIhII7DQkUbLuHkPV3+dhQCnzbgodMF5pzh0DfEWOxYREZFGYaEjjVRaXIrYjd+ik9F8uEmNcaxkLfwnvQc9fT2xoxEREWkcFjrSOIn7D8IqZSK6WicjOmMcPIbOQ1e7+mLHIiIi0lgsdKQx0i7fRNreafBx2onTpYFIafkLgoa0FzsWERGRxmOhI9EV5RfhxMbF8Lb4Evrm1ojFT/CdOhgSPYnY0YiIiLRCtQ9IOnr0KPr27YuGDRtCIpFg9+7dtRCL6gJBJSBu+y7cD28NP+lCnMidDIt3rsAv5B2WOSIiomqodqErKCiAh4cHVq1aVRt5qI64fvoyEr/pDZ/SN5Fe5I47Hc4jePIimFuZix2NiIhI61R7yvWVV17BK6+8UhtZqA7Iy8lDYvh8+DdYDn3TRjhpugee017jHjkiIqIXwGPoSC0ElYDYn7aged5MeFnlIkbxKXxGTEdjMxOxoxEREWm9Wi90JSUlKCkpqbivUChqe0jSMFfiTqMkZjz8HWNwPP8tNOrxDYJbNhI7FhERkc6o9au0Llq0CFKptOLm4uJS20OShshJf4Cj34yF67XOqGeQgySrv+E741c4scwRERHVKIkgCMJzv1giwa5du/DGG288cZvH7aFzcXGBXC6HpaXl8w5NGkxZpkTM5nVoU/4RDPTLcKr8M/gPHw9DY0OxoxEREemkWp9yNTY2hrGxcW0PQxri3OFYGJyZgED7JBy7Mxyt3l6E4MYOYsciIiLSadUudPn5+bh27VrF/Rs3buD06dOwtrZGo0acSqurMm+lI3nbLAQ4bcJFoTPOOcaia4iv2LGIiIjqhGpPuUZGRqJbt26PPB4aGorw8PBnvl6hUEAqlXLKVUeUlZQhZuNKdDL8DGVKI1ww+AL+Q0dC31Bf7GhERER1xgsdQ/c8WOh0R9Lvf0N6dSKaNLiC6IwxaP/ufNR3sBY7FhERUZ3D69BRtaVduYXUPdPg67QDZ8oDcK1FEoKGeIgdi4iIqM5ioaMqK8ovwomNX8PL/EsYmFshBlvgN4XrrhIREYmNhY6eSVAJOLlrDxzvTYGfNA2xD6agc+jH8K9vIXY0IiIiAgsdPcP1M1fw4MAkeDv9hYSil1He9Q8Ee7QSOxYRERH9CwsdPVZeTh4SIxbAz3oZDEydccJ4N7ym9eP0KhERkQZioaNKBJWA2K0/o5l8BrytHiBW8Qm8h09HI3NTsaMRERHRE7DQUYUrJ86g+NgE+Dc8huP5A+DS/RsEt2osdiwiIiJ6BhY6Qk76A5zdMhcB9qtx07AVkqwOwjekp9ixiIiIqIpY6OowZZkSMT9uQJuyOehoVYpj+V/D/4MJMDQ2FDsaERERVYPaCp1MJoNMJoNSqVTXkPQU5yPjoJc0HoEOiYi+Pwwt3/4KwY0dxI5FREREz4FLf9UxWbczcPmX2ejqFI5LGZ1Q7rES7br7iR2LiIiIXgCnXOuIspIyxISvQkeDz9DGygBHi7+H//hR0DfUFzsaERERvSAWujrg1B+HYZE8AV0bXEZ0xgdo/+7nCHSwFjsWERER1RAWOh12J/k2bv82Db5O23G23B/XXBMRNKSD2LGIiIiohrHQ6aDigmLEbVwCL7MvoG9uhRjhR/hNCeEqD0RERDqKhU6HCCoBJ3fvhcPdKfC3vI2Y7CnoPPwT+Ne3EDsaERER1SIWOh1x42wy7v81Gd5OfyCh6CUoA/YjuIOb2LGIiIhIDVjotFx+bj4SwhfAz3opDEydcMJoF7ymvc7pVSIiojqEhU5LCSoBx7duRdPcGfC2ykas/CN4j5gJF3NTsaMRERGRmrHQaaHkk2dReHQC/BoeRVxBfyi7L0WwWxOxYxEREZFIWOi0SG5mDs5snosA++9w06glEqUH4BPSS+xYREREJDIWOi2gUqoQs2kD3MvmoFP9YhzL+wp+YRPR3MRI7GhERESkAVjoNNz5qBPQSxyPrg4JiL4/FC0GfoXgJo5ixyIiIiINwkKnobJuZ+Dytjno2nAjLks64Kx9NAJC/MWORURERBpIbYVOJpNBJpNBqVSqa0itVFZShtiI79BBfy7aSA1wtGg1/Me/D31DfbGjERERkYaSCIIgqHNAhUIBqVQKuVwOS0tLdQ6t8U79eQTmVyageYOLiM4YjbYhC2Dt2EDsWERERKThOOWqAe5eS8XNXdPh57QNZ8v9cKVZAgKHdBI7FhEREWkJFjoRFRcUI27jN/A0+wKuFhaIVm2C/5QhXOWBiIiIqoWFTiQnd+2Dfdpk+EtvISZ7EjoNm4uABpyCJiIioupjoVOzm+euIuvPyfBy+h2Jxb1QHrAXwR3dxY5FREREWoyFTk0K5AWID18IX6tvYFDPEXFGO+E97Q1OrxIREdELY6GrZYJKwPFftqFJznR4S+/juGIOvEJnwtmyntjRiIiISEew0NWi5PhzKIiaCL+GkYgreAPKbksR7N5U7FhERESkY1joaoE8KxenN38Kf1sZUo2aI8HiT/jMeFnsWEREz620tBTl5eVixyDSOAYGBjAyEn9tdRa6GqRSqhDzYzjcimejk1URovMXwS9sEpqaiP8HTUT0vEpLS3HhwgWoVCqxoxBpHD09PbRp00b0UsdCV0MuHD0JIWECujqcREzmu2j+1mIEN20odiwiohdWXl4OlUqFJk2awNTUVOw4RBqjqKgIN2/eRHZ2NoyNjWFsbAwzMzNRsrDQvaCstExc3vohujZcjysSD5y1Owb/kACxYxER1ThTU1PUq8cTuoj+a9++fSgoKIClpSUGDRokSqljoXtO5aXliAn/Dh305qKtVA9RhTIEjB8NfUN9saMRERGRGpmZmaGsrAwKhQIlJSUsdNri9F+RMLs0AV1tLiA6PQxtQhYgqKGN2LGIiIhIBP9Mt5aWloqWQW2FTiaTQSaTQalUqmvIGncvJQ03dk6Hn9MvOKf0xZWm8Qgc0lnsWERERFTH6alroHHjxuHixYuIj49X15A1pqSwBJGyRbA82gquFpGIVkagzeRouPuzzBEREZH4OOX6DPG798M2dTL8pTcRkz0RHYfORYCNVOxYRERERBVY6J7g1vlryPhjCryc9iGppAfK2/6G4E6txY5FRERE9AgWuv8okBcgPvwL+FotgX49Bxw32A6fqW9CoicROxoRERHRY6ntGDpNJ6gExG7dBvkWN/hYfYPj8lmwHnoJvm8PYJkjIqrDgoODMXnyZLFjPJE68126dEkt41D1sdABuJpwHqeX9oCfahBSCzoh0/MigifORz1LXkCTiIgIAJYvXw5jY2NRM2RlZWHJkiVP3ebu3btqSqNZ6nShk2flImrpZDS91AFWxmlIMP8D3jN+Q6PWzcSORkREaiTm9cPEFhwcjJ07dz51mwMHDsDW1hbNmon789HW1haBgYGQyWRP3CYyMhJhYWE4cuRIld83Pj4ekydPRkREBMLCwnDjxo2aiKtWdbLQqZQqHIvYiNKdrdDZah2i8xai4chz6NKvt9jRiIh0WpMmTbB8+fJKj3Xo0AGfffYZgIflYvz48Rg/fjysrKzQoEEDfPzxxxAEoWL7qmwjCAIWL16MZs2awdTUFB4eHti+ffsj7zF16lTY2NigV69eT81dXl7+xPFKSkowceJE2NnZwcTEBAEBAY9coutZn/ufTBMnTsTMmTNhbW0NBweHSs8DQEFBAYYNGwZzc3M4Ojrim2++eWruZ9m9ezf09fUxe/ZslJWVPXG7b7/9FoMHD36hsWqKl5cXTp48ifv37z/2+ZCQEHz33XdITU3FqFGj8Mcffzz1/UpKSjBw4EDMmTMHoaGhGDFiBEaMGFEb0WtVnSt0F4/F4+IKP3Q1fA/Jip7IC76C4LGzYFxP3N3IRETapLCsEEn3kp55KywrrPZ7R0REwMDAACdOnMC3336LZcuWYd26ddXa5uOPP8bGjRuxevVqXLhwAVOmTMGQIUMQFRX1yHvExMRgzZo1z51p5syZ2LFjByIiIpCUlARXV1e8/PLLePDgwXN9djMzM5w4cQKLFy/G/PnzcfDgwYrnZ8yYgSNHjmDXrl04cOAAIiMjkZiYWPF8eHg4JJKqHfddXl6OxMREbNu2DZmZmU/8Gpw9exbOzs7Q19ecpS379euH8PDwJz5vYGCAYcOG4YcffoBCocB7772HXbt2VSr9/zh69CgsLS1hb28P4GFhjIuLQ0ZGRm3Frx2CmsnlcgGAIJfL1TpuVlqmEPX1KEG5WSJcXtZeOH0gSq3jExFpq4KCAiEhIUEoKCioeCzxbqKAz/DMW+LdxErv1bhxY2HZsmWVHvPw8BA+/fRTQRAEISgoSHB3dxdUKlXF87NmzRLc3d0r7j9rm/z8fMHExESIjY2tNM7IkSOFd955p+I9OnToUKXP/7Tx8vPzBUNDQ2HLli0Vz5WWlgoNGzYUFi9eXOXP/c84AQEBlbbx9PQUZs2aJQiCIOTl5QlGRkbC1q1bK57Pzs4WTE1NhUmTJgmCIAg7d+4UWrVqVaXPtW7dOuHq1auCIAjCl19+Kdja2j72Z/PSpUuFdevWVdwvLy8XVq1aJQwZMkQ4efKkIAiCEBISIkRERFRp3KcpLy8XVq5cKYSGhla8d2pqqhAUFFRpu6ysLKFbt25Vfl+VSiXs3r1bePfdd4W///670nM//PDDI+9vY2MjHDp06Jnv+8/3xvbt24V169YJy5YtE7Kzs6ucqybp/B668tJyRK1dBYM/WqK91XYcK16J5mMT4dErUOxoRERay83GDYlhic+8udm4Vfu9fXx8Ku1l8vX1xdWrVystHfm0bS5evIji4mL06tUL5ubmFbdNmzYhJSWl4jVdunR54UzXrl1DWVkZ/P39K54zNDSEl5fXc50R2r59+0r3HR0dkZmZCQBISUlBaWkpfH19K563trZGq1atKu73798fly9ffuY4+fn5yMrKgqurKwBg0qRJqFevHr766qtHtk1LS4OdnV3F/d9++w2DBg1CYWEhbt68CQDo27cvFApF1T/oE+zZsweDBw9GUVFRxXFsBw8ehLOzc6XtbGxsKv1ZPsv9+/eRlJSEBg0aoGnTpo88Z2JiUukxExMT5ObmPt+HEIlOX4fuzMGjML0wHl1tziM6fRRav7MQQU62YsciItJ69QzroZNjp2q/Tk9P75Fpr6cdu/U8VCoVAGD//v1wcnKq9Ny/z9I0MzOrsTH/O80pCEKlx6r6uQ0NDR95338+z39f/yLWrl2L999/v+K+iYkJFi5ciLCwMIwdO7bS1y0/Px+mpqYV97t37w6VSoVjx47hxx9/BAA0b978sSdMrFix4qknGAQFBaF///4V93v06AEAOHz4MDZs2ADg4UkOjzvGsSpTy3fv3sXKlStRVlaGCRMmoHHjxo9sI5VKH/na5ufnw8bG5pnvr0l0stDdu34H13fMgL/Tzziv8sblJicROKTqv4kREVHtsLW1xb179yruKxSKR37gx8XFPXK/RYsWlY7heto2rVu3hrGxMW7fvo2goKAayf2k8VxdXWFkZITo6GiEhIQAeFjUEhISKl0briqf+1lcXV1haGiIuLg4NGrUCACQk5OD5OTkan3O9PR0mJiYoEGDBpUeDwkJwbJlyzB37lysX7++4nEbGxvk5ORU3LeyssLmzZsRHBxcUfTOnTuH4cOHPzLWpEmTqvMRYWlpia1btyIwMLCicEdFReGLL75Abm4urKysKrY1MHhyhbl58yZkMhmMjIwwceJEODo6PnFbNzc3rF27tuJ+SUkJ8vLyHlv+NJlOFbqSwhIcD1+GLiYL0NLSDNHlG+E3aRj09HV+ZpmISCt0794d4eHh6Nu3L+rXr49PPvnkkYPtU1NTMXXqVIwePRpJSUlYuXLlI2dzPm0bCwsLTJ8+HVOmTIFKpUJAQAAUCgViY2Nhbm6O0NDQaud+0nhmZmYYM2YMZsyYAWtrazRq1AiLFy9GYWEhRo4cWa3P/Szm5uYYOXIkZsyYgQYNGsDe3h4fffQR9PT+9zNu165dmDNnzlOnXVevXo2wsLDHniU6e/ZsDB48GFOmTEHbtm0BAO7u7rh9+3al7TIyMiqVSnNz80o5XkRqamrFVPD58+dhaGgIOzs7REREYNSoUQAelmYLC4vHvn7JkiUoLCzE7NmzHymtjxMYGIjMzEykpaXB2dkZUVFR8PT0ZKF7EplMBplMVukYiJoUv+cP2NyahACr64jOmoiOwz5FgI20VsYiIqLnM2fOHFy/fh2vvfYapFIpPv/880f2VA0bNgxFRUXw8vKCvr4+JkyYgLCwsGpt8/nnn8POzg6LFi3C9evXYWVlhU6dOuHDDz98rtxPG+/LL7+ESqXC0KFDkZeXhy5duuCvv/5C/fr1q/W5q+Lrr79Gfn4++vXrBwsLC0ybNg1yubzieblcjitXrjzx9cnJyVi4cCHmz5//1HE+/PBD7NmzBwDQu3dvvP/++5g2bVrF84MHD8bUqVOxefNmlJeXP1dJfpIBAwZg1qxZ2LZtGwCgc+fOWLVqVaU9gPHx8ejevftjXz99+vRqjWdgYICIiAgsXLgQPj4+iIqKwpYtW547v1gkQk1OyleBQqGAVCqFXC6HpaXlC7/frQspSP99Cryd9iLpbndYdvsWrp3b1EBSIiICgMLCQly6dAnu7u6oV692V9AJDg5Ghw4dHrlmW3W3oZoVFhaG+fPnw8HBQewoAB5elqZfv37w8vISNcc/3xs3b95Ebm4u8vLyMGzYMFhbW6s9i9ZOuRYqCnEyfBF8pF/DwMwOxw1+hc9UrrtKRERU0+bOnYtVq1ZhwYIFYkeBQqFAVlbWE8vcsmXLnnoGbLdu3TBgwIDaiicarSt0gkpA3PYdaHR/KnykmYiTz4Bn6Gw4SWvubCUiIiL6H2dnZ/Tv3x+///47Xn31VdFyCIKAZcuWPbVYTpkyRY2JNIdWFbprSRehODwBvg0P40RBX5QHLUNwm+ZixyIiohoSGRlZI9tQzevcubPYEZCdnY0xY8bA1lZ3L0F25swZLFmyBDdu3MDs2bPh7++PefPmoaSkBOnp6fj000/RoUOHR16nFYVOfl+OU5vmwd9mJdKMmyLe/Hd4z3hF7FhERESkRtp2bbjnsWLFCmzcuBFffvkl3nvvPQQGBmLFihVITk7Gyy+/DGdnZ6xcufKR12l0oVMpVYjdshktC2ehi1U+YvI/h+/IKWjKdVeJiIhIx6SkpKBhw4YwMDDA3bt38eDBA3z44YdwcnLC8ePHYW5ujr59+z72tRpb6C7FJKI8bjwCHOMQmzcYTd/8GsHNnZ/9QiIiIiItlJGRUXHCRnR0NAICAtCp08MVWd566y289dZbT3ytxl1xN/vufRxdMhqtbnjCWL8Ap20i4TfjZziyzBERkQiCg4MrrfqgadSZ73nWp6Wq8/PzQ8eOHXH//n2cP38ewcHBVX6txhS68tJyRK2TQW9/S7S32oZjRSvQbGwSOrxUM8u2EBER0fNbvnx5pbVwnyQrKwtLlix56jZ3796tqVg66ciRIxAEQfsK3Zm/jyHlu87oajIB5+QDUP5KMoLenwADI42dESYiIh1SWloqdgTRBAcHY+fOnU/d5sCBA7C1tUWzZs2e+X62trYIDAyETCZ74jaRkZEICwvDkSNHqpwzPj4ekydPRkREBMLCwp5rpQ1tceTIERgbG8PHx6fKrxG10N27fgcxX78Lj8xAlKlMcLnxCQROXwsbJ909HZmIqC5r0qTJIys8dOjQAZ999hmAh+Vi/PjxGD9+PKysrNCgQQN8/PHH+PeiRlXZRhAELF68GM2aNYOpqSk8PDywffv2R95j6tSpsLGxQa9evZ6au7y8/InjlZSUYOLEibCzs4OJiQkCAgIQHx9frc/9T6aJEydi5syZsLa2hoODQ6XnAaCgoADDhg2Dubk5HB0dH1njtrp2794NfX19zJ49G2VlZU/c7ttvv8XgwYOr/L5eXl44efLkY9eLBYCQkBB89913SE1NxahRo/DHH3889f1KSkowcOBAzJkzB6GhoRgxYgRGjBhR5Tza5siRI/Dx8YGJiUmVXyNaoTu2djksIluhpeVBHCvbgNaTjqN1V0+x4hARkYaIiIiAgYEBTpw4gW+//RbLli3DunXrqrXNxx9/jI0bN2L16tW4cOECpkyZgiFDhiAqKuqR94iJicGaNWueO9PMmTOxY8cOREREICkpCa6urnj55Zfx4MGD5/rsZmZmOHHiBBYvXoz58+fj4MGDFc/PmDEDR44cwa5du3DgwAFERkYiMTGx4vnw8HBIJFVbMam8vByJiYnYtm0bMjMzn/g1OHv2LJydnaGvr1+tz9KvXz+Eh4c/8XkDAwMMGzYMP/zwAxQKBd577z3s2rULj1uR9OjRo7C0tIS9vT2Ah4UxLi4OGRkZ1cqkDdLT03H58uVqTbcCNXCWqyAIyMvLe+LzJSUlKCkpqbgfv+9PAEAbg89wNH002g2eAw8bK+QX5L9oFCIiqgXFxcWPPFZYCFy+/OzXurkB1V3+1cXFBcuWLYNEIkGrVq1w7tw5LFu2DO+//36VtikoKMDSpUtx+PBh+Pr6AgCaNWuG6OhorFmzBkFBD4/NdnV1xeLFi18oU0hICFavXo3w8HC88srD66OuXbsWBw8exPr16zFjxoxqffb27dvj008/BQC0aNECq1atwqFDh9CrVy/k5+dj/fr12LRpU8UexYiICDg7/++kQalUilatWlVprIiICISGhqJBgwaYM2cO5s+fj2HDhj2yzvqhQ4fg6fm/HS5KpRKrV69GQkICxo0bB09PT6SlpWHIkCGVLvocFBQEmUyG6dOnPzWHnp4eBg0ahLfffht79uzB0KFDMWLECPTo0aNim5s3b1ZaH1VfXx8WFha4cOFCRckTU1lZGUpLS1FaWoq8vDwYGPyvXllYWFS5ZAMPz3S1t7fH22+/Xa0ML1zo8vLyIJVKq/26ppMFAN8DH33/ohGIiKgWtWrVClu2bKn02OXLQFUWDkhMBP7/qgtV5uPjU+kHoK+vL7755hsolcqKvURP2+bixYsoLi5+ZBq1tLQUHTt2rLjfpUuXF8507do1lJWVwd/fv+I5Q0NDeHl5PdcZoe3bt69039HREZmZmQAeXqOstLS0oqQCgLW1daUC179/f/Tv3/+Z4+Tn5yMrKwuurq4AgEmTJmH16tX46quvsHDhwkrbpqWlVdpbtGfPHgwePBjHjh3DjRs34OnpiYMHD1YqlsDDiwA/bU3V/7p//z6SkpLQoEEDNG3a9JHn/jv9aGJigtzc3Cq/f23auHEjUlNTYWxsjLlz51bakSWXyx8pyU/j4eGB9PT0amd44UJnYWEBuVz+xOf/u4fuxF9H8NaoYbh48SKcnJxedPgq8fT0fOR4Bo6nHeMpFAq4uLggNTW1Wt8QL0KXv566Ph7/vtTOeEePHkVqamqlx93cHpa1Z3Fzq3xfT0/vkSm1px279TxUKhUAYP/+/Y/8nPn3WZpmZjW3Bvh/98AIglDpsap+bkNDw0fe95/P87ipyOe1du3aSns8TUxMsHDhQoSFhWHs2LGVvm75+fkwNTWtuP/PnrPDhw9jw4YNAB6e5PC44xCrsmfq7t27WLlyJcrKyjBhwgQ0btz4kW2kUukjnz8/P19jVo4YMWIEcnJykJeXh0GDBqF+/foVz1lYWKglwwsXOolEUr1/OF/uBuDhB1TXP7j6+vpqG4vj1Q5LS0v+feF4Vca/LzU7nrm5+SOP16tX/T1vwMMzIO/du1dxX6FQPHK2Ylxc3CP3W7RoUekYrqdt07p1axgbG+P27dsV06sv6knjubq6wsjICNHR0QgJCQHwsKglJCRUujZcVT73s7i6usLQ0BBxcXFo1KgRACAnJwfJycnV+pzp6ekwMTFBgwYNKj0eEhKCZcuWYe7cuVi/fn3F4zY2NsjJyam4b2lpia1btyIwMLCiFEdFReGLL75Abm4urKysKrb999Tjf928eRMymQxGRkaYOHEiHB0dn7itm5sb1q5dW3G/pKQEeXl5jy1/YjA0NISRkRGMjIzU2m/+rU5cF2TcuHEcT4vHUzdd/3rq+njqputfz5oer3v37ggPD0ffvn1Rv359fPLJJ48cbJ+amoqpU6di9OjRSEpKwsqVKx85m/Np21hYWGD69OmYMmUKVCoVAgICoFAoEBsbC3Nzc4SGhlY795PGMzMzw5gxYzBjxgxYW1ujUaNGWLx4MQoLCzFy5Mhqfe5nMTc3x8iRIzFjxgw0aNAA9vb2+Oijj6Cn97/zG3ft2oU5c+bg8lMOcFy9ejXCwsIeewbq7NmzMXjwYEyZMgVt27YFALi7u+P27duPfD3+ma49f/48DA0NYWdnh4iICIwaNQrAw2L7pL1TS5YsQWFhIWbPnv1IsXycwMBAZGZmIi0tDc7OzoiKioKnp6fGFDqNIKhZamqqAEBITU1V99CkheRyuQBAkMvlYkchLcC/L7WjoKBASEhIEAoKCl74veRyufD2228LlpaWgouLixAeHi54eHgIn376qSAIghAUFCSMHTtW+OCDDwRLS0uhfv36wuzZswWVSlXxHlXZRqVSCStWrBBatWolGBoaCra2tsLLL78sREVFVbzHpEmTqpT5WeMVFRUJEyZMEGxsbARjY2PB399fOHnyZLU+95Myvf7660JoaGjF/by8PGHIkCFCvXr1BHt7e2Hx4sWVXrdx40bhaT/ar1y5Iujr6wsAnnrr27dvxWuysrKEN954o9L7pKSkCG+99Zbwyy+/CL/88oswaNAgYenSpcKDBw8qtomJiRGmTp1alS9xlRw8eFD44IMPhPDwcGHEiBFCSkpKjb338/rne2P79u3CunXrhGXLlgnZ2dmiZJEIQg1OyldBVlYW7OzskJmZCVtbXm+Onq6kpASLFi3CnDlzqnSFcqrb+PeldhQWFuLSpUtwd3dHveqeslpNwcHB6NChwyPXbKvuNlSzwsLCMH/+fDg4OFT5NR9//DH69esHLy+vWkwmrn++N27evInc3Fzk5eVh2LBhlc7IVRe1T7n+848s/7GlqjA2Nn7kwppET8K/L0S1Y+7cuVi1ahUWLFhQpe0VCgWysrKeWOaWLVv21DNgu3XrVrFIPVVNnTiGjoiIiJ6fs7Mz+vfvj99//x2vvvrqU7cVBAHLli17avmbMmVKTUes81joiIhIY/z7wrQvsg3VvM5VufAggOzsbIwZM4aHVakZCx0RERHVGE25NlxdI9parkRERERUM1joSON89tlnkEgklW7VObOKdN/Ro0fRt29fNGzYEBKJBLt37670vCAI+Oyzz9CwYUOYmpoiODgYFy5cECcsEem8ffv2ITs7W9QMLHSkkdq0aYN79+5V3M6dOyd2JNIgBQUF8PDwwKpVqx77/OLFi7F06VKsWrUK8fHxcHBwQK9evZCXl6fmpES6IzExEbGxsThz5ozYUTSOqakptm/fXuPL2FUHj6EjjWRgYMC9cvREr7zyCl555ZXHPicIApYvX46PPvoIb775JgAgIiIC9vb2+OmnnzB69Gh1RiXSCbt27ULv3r2hr6+PsLAwhIeHix1Jo3Tr1g1xcXG4fv26aBm4h4400tWrV9GwYUM0bdoUgwcPFvWbhLTLjRs3kJ6ejpdeeqniMWNjYwQFBSE2NlbEZAQ8vCjwv9c41VSanlOd+c6dO4dOnTrhwIEDGDp0KMLCwqr82kuXLtViMs2hp6cHZ2dnZGZmipdBXQPJZDK0bt0anp6e6hqStJS3tzc2bdqEv/76C2vXrkV6ejr8/PxEPz6BtEN6ejoAwN7evtLj9vb2Fc8R0f8UFhaioKDgic/fvXsXzs7OKC8vR0ZGBgwMqja5t3z58iovIpCVlYUlS5ZUaVtNZWpqiuLiYtHGV1uhGzduHC5evIj4+Hh1DUla6pVXXsGAAQPQrl079OzZE/v37wfwcNqMqKokEkml+4IgPPIYUWlpqdgRRLV//3506tQJX3/99RO3EQQB+vr6GDBgAPr164fc3Nxnvu+BAwdga2uLZs2aVSmHra0tAgMDIZPJqhq9SuLj4zF58mREREQgLCwMN27cqNH31yScciWNZ2Zmhnbt2uHq1atiRyEt8M+xl//dG5eZmfnIXjsSV0lJCSZOnAg7OzuYmJggICCg0i/9e/fuhZWVFVQqFQDg9OnTkEgkmDFjRsU2o0ePxjvvvAPgYfFYvHgxmjVrBlNTU3h4eGD79u2VxgwODsb48eMxdepU2NjYoFevXk/MV15ejvHjx8PKygoNGjTAxx9/jH8vf/6s/E2aNHlkvdkOHTpUWp4uODgYEydOxMyZM2FtbQ0HB4dHlq8rKCjAsGHDYG5uDkdHR3zzzTdP/8JWQ58+fTBo0KAnPp+ZmYnLly8DAIqKinD58mV069YNaWlp+PPPPytup0+frvS6b7/9FoMHD65WFi8vL5w8eRL379+v9ud4nJKSEgwcOBBz5sxBaGgoRowYgREjRtTIez9OUVERTExMau39n4WFjjReSUkJLl26BEdHR7GjkBZo2rQpHBwccPDgwYrHSktLERUVBT8/PxGT0X/NnDkTO3bsQEREBJKSkuDq6oqXX34ZDx48AAAEBgYiLy8Pp06dAgBERUXBxsYGUVFRFe8RGRmJoKAgAA8Xg9+4cSNWr16NCxcuYMqUKRgyZEil7YGHe/sNDAwQExODNWvWPDHfP9udOHEC3377LZYtW4Z169ZVOX9VRUREwMzMDCdOnMDixYsxf/78Sn9/Z8yYgSNHjmDXrl04cOAAIiMjkZiYWOk9wsPDn3sP9NNel5iYiJdffhkxMTE4dOgQVqxYAUNDQzg7O6N3794Vtw4dOlS85uzZs3B2doa+vn61s/Tr1++JJ1ysWLEC8+fPr/KhE0ePHoWlpWXFL3JeXl6Ii4tDRkZGtXM9i0qlQlpaGuzs7Gr8vauKZ7mSxpk+fTr69u2LRo0aITMzEwsWLIBCoUBoaKjY0UhD5Ofn49q1axX3b9y4gdOnT8Pa2hqNGjXC5MmT8cUXX6BFixZo0aIFvvjiC9SrVw8hISEiptYx5YWA4vKzt7N0AwzqPfJwQUEBVq9ejfDw8IozlteuXYuDBw9i/fr1mDFjBqRSKTp06IDIyEh07twZkZGRmDJlCubNm4e8vDwUFBQgOTkZwcHBKCgowNKlS3H48GH4+voCAJo1a4bo6GisWbOmovQBgKurKxYvXvzM6C4uLli2bBkkEglatWqFc+fOYdmyZXj//ferlL+q2rdvj08//RQA0KJFC6xatQqHDh1Cr169kJ+fj/Xr12PTpk0VexMjIiLg7Oxc6T2kUilatWr11HFiY2OxdetWtGvXDikpKXjttdcQEBAA4OGfxz+HtezevRs//vgjzMzMIJFI4O7uXuXPAgCHDh165Hh5pVKJ1atXIyEhAePGjYOnpyfS0tIwZMiQSku5BQUFQSaTYfr06Y+876RJk5CRkYHvv/8eBQUFGDly5FM/882bN2FtbV1xX19fHxYWFrhw4UKN760/cuQIDAwMqjzFXBtY6EjjpKWl4Z133sH9+/dha2sLHx8fxMXFoXHjxmJHIw2RkJCAbt26VdyfOnUqACA0NBTh4eGYOXMmioqKMHbsWOTk5MDb2xsHDhyAhYWFWJF1j+Iy8GcV1vbsnQhYd3rk4ZSUFJSVlcHf37/iMUNDQ3h5eVU6MzI4OBiRkZGYOnUqjh07hgULFmDHjh2Ijo5Gbm4u7O3t4ebmhvj4eBQXFz8yhVpaWoqOHTtWeqxLly5V+og+Pj6V9l75+vrim2++gVKprHL+qmjfvn2l+46OjhVnS6akpKC0tLSipAKAtbX1I0Wmf//+6N+//xPHuHfvHgYMGIBTp05VTOsmJiZWFLoTJ05UHEe3Y8cO/PXXX3jzzTcrfZ9VVVpaGoKDgys9tmfPHgwePBjHjh3DjRs34OnpiYMHDz5STG1sbJCSkvLE97a3t8enn36KvLw8rFu3DqtWrUJISEilr88/7t+//8gUqImJSZWOAayuwsJCDBgwAIaGhjX+3lXFQkcaZ+vWrWJHIA0XHBxc6Vim/5JIJPjss88eORaJapCl28OyVpXtHuOfP79nnbwSHByM9evX48yZM9DT00Pr1q0RFBSEqKgo5OTkVOx5++c4u/3798PJyanSe/73TEszM7Nn536GquTX09N75O/p4y48+98SIJFIKj7P0/6eV8eOHTvQqFGjimNM//u90bnz/8q5tbU1FAoFgEe/dlWRn58PU1PTSo/16NEDAHD48GFs2LABwMPp8scdw1iVqWMLCwtMmTIFpaWl2LJlCzZs2IDQ0NCKggo83Gv5369ffn5+raw127dvX+Tm5op68XIeQ0dERNVnUO/hnrdn3R4z3Qo8nPY0MjJCdHR0xWNlZWVISEioNMX3z3F0y5cvR1BQECQSCYKCghAZGVnp+LnWrVvD2NgYt2/fhqura6Wbi4vLc33EuLi4R+63aNEC+vr6Vcpva2uLe/fuVTyvUCiqfZalq6srDA0NK2XJyclBcnJytd5HpVI9tRw+z/FuT2JjY4OcnJxKj1laWuL3339HYGBgRaGOiopCz549H9ljVtXLogAPv6Z37tyBubn5I8evubm5VbouXElJCfLy8nR2tod76IiISO3MzMwwZswYzJgxo+LYx8WLF6OwsBAjR46s2O6f4+h+/PFHrFixAsDDkjdw4ECUlZVVTO1ZWFhg+vTpmDJlClQqFQICAqBQKBAbGwtzc/PnOgY3NTUVU6dOxejRo5GUlISVK1dWnGFalfzdu3dHeHg4+vbti/r16+OTTz6pdnEyNzfHyJEjMWPGDDRo0AD29vb46KOPoKdXeX/Mrl27MGfOnIozUv+rf//++Pzzz3H79m00atQIwMPZkGediZqZmYkDBw5AT08PiYmJ+Oqrr55ZuNzd3XH79u1HHk9NTYWrqysA4Pz58zA0NISdnR0iIiIwatQoAA9LcVUOjbhx4wZ++OEH6Onp4YMPPnhsaQ8MDERmZibS0tLg7OyMqKgoeHp6stARERHVpC+//BIqlQpDhw5FXl4eunTpgr/++gv169evtF23bt2QlJRUUd7q16+P1q1b4+7du5X25n3++eews7PDokWLcP36dVhZWaFTp0748MMPnyvfsGHDUFRUBC8vL+jr62PChAmVVkl4Vv45c+bg+vXreO211yCVSvH5558/13XQvv76a+Tn56Nfv36wsLDAtGnTIJfLK20jl8tx5cqVJ76Hi4sLduzYgY8//hgBAQFQqVR49dVX8eeff2Lfvn0oKyvDvn37kJeXh5iYGKSlpcHNzQ03b95Ebm4uxo8fj7i4OPz999/o3bv3U/P27t0b77//PqZNm1bp8QEDBmDWrFnYtm0bgIfTvKtWrcLw4cMrtomPj0f37t2f+N6nTp1CREQEHBwcMHPmzEf+rvybgYEBIiIisHDhQvj4+CAqKgpbtmx5anZtJhFqaoK+ihQKBaRSKeRyOSwtLdU5NBERPYfCwkJcunQJ7u7uqFfv8VOopPvefvttLF68GE2aNHnmtmFhYZg/f3611+T++OOP0a9fP3h5eT3y3IoVK2BiYoLQ0FBRr/f2b/98b/xTfPPy8jBs2LBKZ9eqC4+hIyIioqfav38/Bg4cWKUyBwBz587FqlWrqjWGQqFAVlbWY8sc8PCyJaNHj9aYMqdpWOiIiIjoieLj42Fvb4+BAwfi4sWLVXqNs7Mz+vfvj99//71K2wuCgGXLlmHBggUvErVO4zF0RERE9FjHjx/H6NGjYWdnh9LSUqxevbrKr/33pVCeJTs7G2PGjIGtre3zxCSw0BEREdET+Pr64uzZs7U+Tm1cG66uUduUq0wmQ+vWrR9ZDoSIiIiIXozaCt24ceNw8eJFxMfHq2tIIiIiojqBJ0UQERERaTkWOiIiIiItx0JHREREpOVY6IiIiIi0HAsdERERkZZjoSMiIiLScrywMBERVUlRUZHYEYg0iiZ9T7DQERHRUxkYGEBPTw83b94UOwqRxhEEAUqlUuwYLHRERPR0RkZGaNOmDcrLyyGXy7Fv3z6YmZnB2NhY7GhEolMqlSgvLxc7BgsdERE9m5GREYyMjFBcXIyCggKUlZWx0BH9S0lJiajjs9AREVGVGRsbw9LSEgqFAqWlpWLHIdIolpaWov2iIxEEQVDngAqFAlKpFHK5HJaWluocmoiIakBBQYHoeyOINJGxsTHMzMxEGZt76IiIqFrMzMxE+6FFRI+ntuvQyWQytG7dGp6enuoakoiIiKhO4JQrERERkZZTe6ETBAF5eXmwsLCARCJR59BEREREOknthY6IiIiIahbXciUiIiLScix0RERERFqOhY6IiIhIy7HQEREREWk5FjoiIiIiLcdCR0RERKTlWOiIiIiItNz/AWvzI/+9lMYJAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHWCAYAAAD+VRS3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAByiUlEQVR4nO3dd1hTZ+M+8DtsZAQZogJOFJzgYCPgarVVW+uoUhWteyuOanet1lZr1Wrq6watra2rVWur1oECst0LFQeoCCIkzADJ+f3hr3xLXaCQk8D9uS6u901ycp47VOT2POecRyIIggAiIiIi0ll6YgcgIiIiolcjWqETBAF9+/aFs7MzrKys8M0334gVhYiIiEiniVboJBIJ9u3bh0mTJkEul8Pf31+sKEREREQ6TfQp11OnTsHc3BxeXl5iRyEiIiLSSaIWOrVajSNHjiAwMBAGBgZiRiEiIiLSWaIWuri4OGRnZ6N79+5ixiAiIiLSaRo7LJabm4svvvgCycnJqF+/PpycnPDPHVN69OihqRhERERENY5EE/ehe/ToEbp37442bdpg69atkEgk2LRpE0JDQ2FsbIz09HRIJJLqjkFERERUI2lkynXQoEGQy+VYu3ZtWXHr27cv5HI5unfvzjJHRERE9AqqvdBt374dR48exaRJk2BmZlb2/OnTpwGA588RERERvaJqL3T/+9//AABvv/12uecjIiIA8Pw5IiIioldVrefQlZaWwsTEBA0bNsSdO3fKvebv74/09HRcv369uoYnIiIiqhWq9QhdVlYWVCoVOnToUO75wsJCxMfHl0237tq1C3K5vDqjEBEREdVY1Vro6tWrBzMzM9jY2JR7/ueff0ZxcXHZdOuePXsglUqrMwoRERFRjVWthU4ikWDMmDFISkoqu+fc4cOHsXPnTgCAo6Mjrl+/jkaNGlVnDCIiIqIardrvQ1dQUIAJEybg0aNHaNCgAVxcXBAaGoovvvgC0dHRsLOzw6pVq544ikdEREREFaORGwsTERERUfURdS1XIiIiInp1LHREREREOo6FjoiIiEjHsdARERER6TgWOiIiIiIdx0JHREREpONY6IiIiIh0HAsdERERkY5joSMiIiLScSx0RERERDqOhY6IiIhIx7HQEREREek4FjoiIiIiHcdCR0RERKTjNF7oBEGAQqGAIAiaHpqIiIioRtJ4ocvNzYVUKkVubq6mhyYd1HNrT7y1/S2xYxAREWk1TrmSVvNo6IH4u/FixyAiItJqLHSk1TwdPHE/7z7SFGliRyEiItJaLHSk1bwcvAAAMWkxIichIiLSXpUqdJ9//jkkEkm5r/r161dXNiI0sGiAJlZNcCr1lNhRiIiItJZBZd/Qpk0b/P3332WP9fX1qzQQ0X/5OvkiOi1a7BhERERaq9KFzsDAgEflSKN8HX2x4+IOFJUWwcTAROw4REREWqfS59Bdu3YNDRs2RNOmTTFkyBCkpKQ8d3ulUgmFQlHui6gyfJx8UKIuQeK9RLGjEBERaaVKFTovLy9s2bIFBw8exPr165Geng5fX19kZWU98z2LFy+GVCot+3Jycnrl0FS7tLdvjzqGdXAqjefRERERPY1EeIUlG/Lz89G8eXPMnTsXoaGhT91GqVRCqVSWPVYoFHBycoJcLoelpeXLDk21TLfwbrAyscLud3eLHYWIiEjrVPocun8zMzNDu3btcO3atWduY2xsDGNj41cZhgi+Tr7YkLQBgiBAIpGIHYeIiEirvNJ96JRKJS5fvowGDRpUVR6ip/Jx9MGD/AdIyX7+OZtERES1UaUK3ezZsxEREYGbN28iNjYWAwcOhEKhQEhISHXlIwLw+MIICSSIvBMpdhQiIiKtU6lCl5aWhqFDh8LFxQXvvPMOjIyMEBMTg8aNG1dXPiIAgLWpNdrZt8OJ2yfEjkJERLVUZn4mStWlYsd4qkqdQ7d9+/bqykH0QgGNAvDn9T/FjkFERLVMdmE2lp1ahhUxK/DDmz9ghNsIsSM9gWu5ks4IbBKIG9k3cFdxV+woRERUCyiUCnwZ8SWarmyK5THLMdVzKt5s8abYsZ7qla5yJdKkLo26AABO3D6Boe2GipyGiIhqqoKSAsjiZPgm6hvkFedhYueJmOc/D/bm9mJHeyYWOtIZ9ub2cLV1ZaEjIqJqoSxVYl3iOiw6uQhZhVkY23EsPuzyIRwtHcWO9kIsdKRTAhsHIuJ2hNgxiIioBilRlWDzmc1YeGIh7ubeRYhbCD4J+ARN6zYVO1qF8Rw60ikBjQNw+eFlZORniB2FiIh0nEqtwpazW+Aqc8WE/RPg38gflyZdwqa3NulUmQNY6EjHBDYOBABE3OJROiIiejlqQY1fL/6KtmvaIuS3ELjZu+HshLP4acBPcLF1ETveS2GhI53iYOkAV1tX/J3yt9hRiIhIxwiCgL1X96LD2g54d+e7aGrVFAljE7D73d1oZ99O7HivhOfQkc7p2awn9ifvFzsGERHpCEEQ8Of1P/HZ8c+QcC8BXZt0ReSoSPg18hM7WpXR2BE6mUyG1q1bw8PDQ1NDUg3Vo1kP3My5iRuPbogdhYiItJggCDh04xB8NvrgzZ/ehImBCY6MOIKjIUdrVJkDAIkgCIImB1QoFJBKpZDL5bC0tNTk0FRDKJQKWH9jjdVvrMaEzhPEjkNERFro6M2j+PTYp4hKjYK3ozcWBC1Aj2Y9IJFIxI5WLXgOHekcS2NLeDt643DKYbGjEBGRljlx+wS6hndF9y3doVQpcSD4AKLfj0bP5j1rbJkDWOhIR/Vs1hNHbx6FSq0SOwoREWmB6NRo9NzaE4FhgcgpysHeIXsRNyYOvVv0rtFF7h8sdKSTejbviZyiHCTcSxA7ChERiSjubhx6b+sNv01+yMjPwO7Bu5E0Lgl9XfrWiiL3DxY60kmeDp6wMLLgtCsRUS2VdD8JfX/uC68NXrgjv4Mdg3bg9PjT6N+qf60qcv9goSOdZKBngK5Nu/J+dEREtczZ9LPo/0t/dFrXCdeyruHnAT/j3IRzGNh6IPQktbfW1N5PTjqvZ7OeiE6NRl5xnthRiIioml3IuIBBOwbBfa07LmRcwNb+W3Fx0kUMaTsE+nr6YscTHQsd6ayezXqiRF3CZcCIiGqwKw+vYOiuoWi/pj0S7iVgU79NuDz5Moa1H8Yi9y8sdKSzWtq0RFOrpvjz+p9iRyEioip2Lesahu8ZjjY/tEF0ajTW9lmL5CnJGNVhFAz0uNDVf7HQkc6SSCTo07IP9ifvh4bvj01ERNUkJTsFo34fhVayVjh28xhW916N5CnJGNtpLAz1DcWOp7VY6Ein9WnZB7flt3Ex86LYUYiI6BXcyrmFsXvHouWqlvjr+l9Y/vpyXJ92HRM9JsLYwFjseFqPxyxJpwU2DoSZoRn2J+9H23ptxY5DRESVdDvnNhZHLsam05tQ17QulvZcigmdJ8DU0FTsaDqFR+hIpxkbGOO15q9hf/J+saMQEVEl3M65jfH7xqPFqhbYfXk3FnVbhJRpKZjpM5Nl7iXwCB3pvD4t+2DsvrF4WPAQtnVsxY5DRETPcSvnFr46+RU2n9kMa1NrfNX9K0zsPBFmRmZiR9NpGit0MpkMMpkMKhXX3qSq9UaLN6AW1Pjr+l8Y1n6Y2HGIiOgpbmbfxKKTixB+NhzWptb4uvvXmNB5AotcFZEIGr48UKFQQCqVQi6Xw9LSUpNDUw3mud4Tja0aY8egHWJHISKif0nJTsGiE4uw5dwW2JjaYK7fXEzoPAF1DOuIHa1G4ZQr1Qj9Xftj0clFKCwp5LkXRERa4MajG1h0chG2nN0C2zq2WNJjCcZ3Hs8iV014UQTVCO+0egf5Jfk4nHJY7ChERLXa9UfXMer3UXBZ7YI/r/+Jb1/7FinTH1/swDJXfXiEjmoEF1sXtLZrjd2Xd6OfSz+x4xAR1TrXH13HwhML8eO5H1HPrB6WvbYM4zqN46yJhrDQUY0xoNUArI5bjRJVCe8mTkSkIdeyrmHhycdFzt7MHt+9/h3GdhzLIqdhnHKlGuOdVu8guygbx28dFzsKEVGNl5yVjBF7RsBV5oq/U/7GitdXIGV6CqZ5TWOZEwGP0FGN4WbvhqZWTbH78m70bN5T7DhERDXS1YdXsfDkQvx0/ic0MG+Alb1WYkzHMTAxMBE7Wq3GI3RUY0gkEgxoNQC7Lu9CqbpU7DhERDXK5czLGLZ7GFr/0BrHbh7D972+x/Vp1zHFcwrLnBZgoaMaZUjbIcgsyMTRm0fFjkJEVCOcTT+LQTsGoc0PbXDi9gms6r0KN6bdwGTPySxyWoSFjmqUjg06ooV1C/x84WexoxAR6bSEewl4a/tbcF/rjsR7iVjbZy2uT7uOSR6TYGxgLHY8URTmFUJQa3Q9hgpjoaMaRSKRYGjbodh9eTeKSovEjkNEpHOiU6PRe1tveKz3wJWHVxD2VhiuTrmKsZ3GwkjfSOx4ohDUAk79sgOPtrggbvfvYsd5KhY6qnGGthsKhVKBP6/9KXYUIiKdIAgCjt86jm7h3eC3yQ+p8lT8POBnXJp0CSHuIbX6VlDXEy/izHfd4aMajLT8DmjQur3YkZ6KhY5qHFdbV7jXd+e0KxHRCwiCgIPXDyIgLABdw7siuygbuwbvwrmJ5zCk7RDo6+mLHVE08odyRHw3E00uucHKOA0J5n/Ca87vaNS6mdjRnoq3LaEaaWjbofjs+GdQKBWwNLYUOw4RkVYRBAH7k/dj4cmFiLsbB08HT+wbug9vtngTEolE7HiiUqvUiPoxHK5F89DJKh+RuYvgM3oGmtbR7vMGNXaETiaToXXr1vDw8NDUkFSLDW07FMpSJXZe2il2FCIiraEW1Nh1aRc6ruuIftv7wUjfCAeHHUTM6Bj0admn1pe5S5EJuLTSF10M30eyogdyg64iaNIHMNbyMgcAEkEQNHq5hkKhgFQqhVwuh6Ulj5xQ9Xlt62soKi3CiVEnxI5CRCQqlVqFXy/+ikUnF+Fi5kV0a9oNnwZ8isAmgWJH0woP72bi0s8fwr/+Rlx72A5FbVbBrWeA2LEqhVOuVGONch+F4N3BuP7oOpytncWOQ0SkcSWqEmw7vw1fnfwK1x5dQ2/n3ljXdx18nXzFjqYVSotLERX+P7hJPkF7K+Bk0Sr4TRoPAyPdq0e8KIJqrLdd34alsSXCz4SLHYWISKOUpUqsS1wHl9UuGPX7KLS2a434sfE48N4Blrn/7+zhE0j5oSO6mE7DuZxBKO2djMAxk3WyzAE8Qkc1mKmhKYa0GYLws+H4POjzWn21FhHVDnnFeViXuA7LTi3D/dz7GNh6IH4b8hva22vnrTbEcD/lLlJ2zYGfw8+4oPbClSZxCBjWWexYr4yFjmq0ke4jsS5pHY7ePIqezXuKHYeIqFo8KnyE1XGrsTJ2JRRKBYa1H4YP/D6Aq62r2NG0hrJAiVNhy9HZZCFaWpohsnQzfKePgJ5+zZis5EURVKMJgoA2P7RBm3ptsGPQDrHjEBFVqfu597E8ZjnWJKxBqboUYzuOxWzf2WgkbSR2NK0Sv/dP2N6eDierFERlToX7iM8htZWKHatK8Qgd1WgSiQQTO0/EzIMzcS/3HhpaNBQ7EhHRK7uZfRNLo5di0+lNMDYwxlTPqZjuNR325vZiR9Mqty/eQPqBmfBy2IfTyq5Qtd6DwE5txI5VLWrGcUai5xjhNgImBiZYl7hO7ChERK/kUuYljNgzAi1WtcCOSzvwaeCnuD3jNr7q/hXL3L8UKApw/PtPYJ/QBo5mZ3BK/1e4hx6Bcw0tcwCnXKmWmLB/AvZe3YvbM27X6jUJiUg3xd+Nx+LIxdhzZQ8cLR0xx3cOxnQcgzqGdcSOplUEtYCYnbvQ6GEobM0e4FTOHHiMnA8zqZnY0aodj9BRrTDJYxLu593H71d/FzsKEVGFCIKA47eO47Wtr8FzgycuZFzAxn4bcWPaDUzzmsYy9x/Xky7h9Hc94FM6CGn57kjvfAlB0xfWijIH8Agd1SJdNneBgZ4BjoUcEzsKEdEz/bPO6leRXyEmLQZu9m74sMuHGNBqAG+/9BTyh3Kc3vIF/GxX4a68CTIbrYTHW2+IHUvjeFEE1RqTPSZj6K6huJR5Ca3tWosdh4ionFJ1KXZc3IHFkYtxPuM8/Jz88EfwH+jt3LvWr7H6NGqVGtHbtqJlwQfwqJuLqLwv4TN6JprowLqr1YFTrlRrvNPqHdib2WNN/BqxoxARlSksKcSa+DVwXe2K4N3BaGjRECdGnkDk+5F4o8UbLHNPcTkqERdX+MHfYCSu53aFIuAqgibNg3EtLXMAj9BRLWKkb4SxHcdiZexKLOq+CJbGnPInIvFkF2bjh/gf8H3c93hY8BADWw/ELwN/QaeGncSOprWy7j3ExZ8+gn/99bih3wZnbI7BNzhI7FhaQWPn0MlkMshkMqhUKiQnJ/McOhLFvdx7aLKiCb7u8TVCfULFjkNEtVCqPBXLY5ZjXeI6lKpLMcp9FGb5zoKztbPY0bRWaXEporasRXvhE+hJ1DgjfAm/kIk6u+5qdeBFEVTrjPxtJI7ePIob027wFiZEpDGXMi9hSdQSbDu/DeZG5pjUeRKmeU3j/eNe4OzfJ2Fyfipa2J1DVPr7cB3yFewc64kdS+vwHDqqdUJ9QpGqSMWOS1wKjIiqX+SdSPT7uR/a/NAGf6f8jW96fIM7M+5gUfdFLHPPkX7zHqKWvge3jACUCMa40jgWXWZvYJl7Bh6ho1qp97beSFOk4eyEs9CT8N81RFS11IIa+5P345uobxCdGo1Wtq0w128ugtsFw0jfSOx4Wq24qBjRm1agk8mXKCoxxRWTb+A3LAR6+vy7+nn43aFa6UP/D3Eh4wL2Xd0ndhQiqkGKVcXYfHoz2v7QFm9tfwsSSLB3yF5cmHQBI91Hssy9QMK+g7i7rh38LT5EUs5oGL2TjC4ho1jmKoBH6KjWCtgcgKLSIsSOieVtAYjoleQqc7EucR2WxyzH3dy76NuyLz7w+wB+jfzEjqYTUi/fxL39M+Hl8DtO3wuCedAqtOjcVuxYOoWXh1Ct9VGXj9BrWy/8nfI3ejbvKXYcItJB93PvY3XcavyQ8APyivMwrP0wzPaZjTb1au4i8FWpQFGAuLBv4C39BvpmdojW+wU+oYMg0eM/siuLR+io1hIEAZ4bPGFqYIqIkRE8SkdEFXYh4wK+O/Udtp3fBiN9I4zrOA4zfWbC0dJR7Gg6QVALiN21B44ZM2Fnno5TObPhMfLDWrPuanXgETqqtSQSCT4P/Bx9fu7Do3RE9EKCIODvlL+x7NQyHLxxEA4WDviy65cY12kcrEysxI6nM26cvoycv6fB2+FvxBW8CVXgEQS15T34XhWP0FGtJggCfDf5Qi2oETM6hkfpiOgJxapibL+wHctOLcO5B+fgXt8ds3xmYXCbwbzIoRIUWQokbVkAP5uVuCdvjAynlfB4+02xY9UYr3TZyOLFiyGRSDBjxowqikOkWRKJBAu7LkTc3TjsS+YVr0T0f7ILs/F15NdourIpQn4LgaOlI46MOIKkcUkY1n4Yy1wFqVVqRG7dgsIdLvCwWoOo3C9g//4Flrkq9tJTrvHx8Vi3bh3at29flXmINK57s+7o2qQrPjn2Cfq07MP70hHVcinZKVgRswKbTm9CiboEw9sPR6hPKFrbtRY7ms65HJ2EklNT4d8gGtG576JJj6UIcnYSO1aN9FK/ufLy8vDee+9h/fr1qFu3blVnItK4Rd0W4dyDc/jx3I9iRyEikcSkxWDQjkFosaoFfjr/E0J9QnFnxh1s6LeBZa6SHt3PwolvJ8AlpTNM9RU4bX0UvnO2oyHLXLV5qUI3efJkvPnmm+jRo0dV5yEShY+TDwa1HoQPj3yIgpICseMQkYao1Crsvrwbfpv84LPRB2fTz0L2hgx3Zt7Bgq4LuDRXJalKVDixcQ0k+1vAzWo7ThasQNNJp9GhV1exo9V4lZ5y3b59O5KSkhAfH1+h7ZVKJZRKZdljhUJR2SGJNOLrHl+jlawVlkUvwyeBn4gdh4iqUX5xPjaf2YwVMStwI/sGAhoH4Pchv/O0i1dw7u9IGJ2figD7Mzh57324DlmMQK67qjGVKnSpqamYPn06Dh06BBMTkwq9Z/Hixfjiiy9eKhyRJjWr2wzTPKfhm6hvMKbjGDSwaCB2JCKqYqnyVMjiZViXuA4KpQIDWw/EzwN+hoeDh9jRdNaDW/dxbcdc+Dv8iIuCBy44xKBLsJfYsWqdSt225LfffkP//v2hr69f9pxKpYJEIoGenh6USmW514CnH6FzcnLibUtIK+UU5cD5e2e85fIWNr61Uew4RFQFBEHAqbRTWBm7Ersu7YK5kTlGdxiNaV7T0NiqsdjxdFZxUTGiN69EJ+MFUJaa4LLR1/AbznVXxVKpQpebm4vbt2+Xe27UqFFwdXXFBx98gLZtX7zuGu9DR9puTfwaTDowCdHvR8PHyUfsOET0kopVxdhxcQdWxK5Awr0EtLBugele0xHiHgJzI3Ox4+m0xP2HUDdlGhpbX0Pkg8lwG/4FrOrxIkkxvfKNhYOCguDu7o4VK1ZUaHsWOtJ2KrUK3hu9UaIqQcK4BBjocUEVIl2SmZ+JtYlr8UP8D7ifdx+vNX8N072mo5dzL54f94pSL9/E3f2h8Hb4DWfuBaBOwCq09OTty7QBf1MR/Ye+nj7WvLkGnus9sSp2FWb6zBQ7EhFVwNn0s1gZuxI/nf8JehI9jHAbgWle03jLkSpQmFeI2M3fwMviGxiY2SBa8jN8Qt+FRI+r62gLLv1F9AxTDkxB+NlwXJl8BQ6WDmLHIaKnUKlV2Je8DytjV+L4reNwtHTEFI8pGNtpLKxNrcWOp/MEtYDY3b/B8cFM1LO4h+hHs9B55Ecwt+KUtbZhoSN6hpyiHLiudoWPkw92D97NdV6JtEh2YTY2n9mM1XGrcTPnJnydfDHdazr6u/aHob6h2PFqhJQzV5B9eBo6ORxG/N3esOu1Ek3atRA7Fj0Dp1yJnsHKxAqyN2QYuGMgtp3fhmHth4kdiajWO5t+FqvjVmPb+W0oVZdicJvB+GXgL7ztSBVSZCmQtOVL+NmsgL5pI8SZ7oXHrD6cXtVyPEJH9ALv7X4PB64dwIWJFzj1SiSCYlUx9lzeg9XxqxF5JxIOFg6Y2HkixnQcw5UcqpCgFhD90zY4582BhbEccfkfwXvULJiYVey+syQuFjqiF3hU+Ahtf2gLt/puOBB8gFOvRBpyL/ce1iWuw9rEtUjPS0dQkyBM8ZiCt1zf4tXnVezKqdMojp6K9g2icOruIDR661s4tGwkdiyqBP5EEL2Atak1NvTbgDd/ehMbT2/EmI5jxI5EVGMJgoDIO5FYHb8auy/vhrG+MUa4jcBkj8loU6+N2PFqnEf3s3Dhp0/gZ78WNw1ccbruEfgEdxM7Fr0EHqEjqqAxe8fgl4u/4PzE82hi1UTsOEQ1Sn5xPrad3wZZvAznHpxDS5uWmOIxBSPcRkBqIhU7Xo2jKlEhast6tFV/BH29Upwp/QK+IyfD0JgXlOgqFjqiClIoFWi/pj0aWDRAxMgIGOkbiR2JSOddzLiItYlrseXsFuQW56Jvy76Y7DEZ3Zt1502Aq8n5o9EwODsFrexP4+TdkXB992vYNeK5iLqOhY6oEmLTYtFlcxdM9ZyKZa8vEzsOkU4qKi3Czks7sTZxLSLvRKKeWT287/4+xncez6Pf1ejBrfu4tuMD+DtsxaX0zlB3XIW2Qd5ix6IqwnPoiCrBy9ELS3suxYyDM9ClcRe87fq22JGIdMbVh1exLnEdws6G4VHhI3Rr2g2/DvwVb7m+xSPe1ahEWYKozd+jo+EXcJUa46RyPfymvw89fR4BrUk0doROJpNBJpNBpVIhOTmZR+hIZwmCgIE7BuJIyhEkjU9Cs7rNxI5EpLX+ueXI2sS1OHbrGGxMbTDSfSTGdRqHljYtxY5X4yX+cRhWN6ahiXUyIh9MgtvwBbCqV1fsWFQNOOVK9BJyinLQeV1nmBqaIur9KFga888y0b+lZKdgXeI6bD6zGRn5GejSqAsmdJ6Ad1q9AxMD3tesuqVdvY20vaHwdtiNs/e6wKTLKrh4uYkdi6oRCx3RS7qUeQk+G33g6+SLfUP38b5YVOuVqEqwL3kf1iauxaEbh2BlYoUQtxCM6zQOre1aix2vVijMK0Ts5qXwsliMnEJr3JR+C58hQ7jKQy3AQkf0Cg7fOIze23pjYueJWPXGKrHjEIni+qPr2HR6E8LOhOF+3n14O3pjQqcJGNRmEOoY1hE7Xq0gqAXE7dmLhvdnwN7yLqIfhaLzyI9hbmUudjTSEB5SIHoFPZv3hOwNGSb8MQEtbVpiqtdUsSMRaUR+cT52Xd6Fjac34sTtE5AaS/Feu/cwrtM4uNXn1J4mpZy9ikeHpsPL4SDiC3uhNOAggtrz/MTahoWO6BWN7zweV7OuYsbBGWhu3RxvtHhD7EhE1UIQBMTfi8fGpI34+cLPyC3ORbem3bDtnW3o79ofpoamYkesVXKzc5EYvhC+1sthYOqIWJPf4TmrL6dXaylOuRJVAZVahf6/9MexW8dwaNgh+Dj5iB2JqMpk5mfix3M/YuPpjbiYeRGOlo4Y5T4Ko9xHoWndpmLHq3UEtYDon39Cc8UcWJrkIC5/PrxHzYGJGS82qc1Y6IiqSH5xPnpv640z6WdwePhheDl6iR2J6KWp1CocvHEQm05vwt6rewEAb7u+jdEdRqNHsx7Q19MXOWHtdDXmDIqipsKtQSRO3R0Ip37fwtGlsdixSAuw0BFVobziPPT6sRfOZ5zH38P/hoeDh9iRiCrlYsZFbD23FT+e+xF3c++iXb12GN1hNN5r/x5s69iKHa/Wyk5/hHPbPoG//f9wK8sF8har0PGN7mLHIi3CQkdUxXKVuXj9x9dx+eFl/D38b3Rq2EnsSETP9SDvAX6+8DO2ntuKpPtJsDa1xrtt3sX7Hd5HpwadIJHwnCyxqEpUiNq6AW1KP4KhfjGSSr+A38gpMDQ2FDsaaRkWOqJqIC+S47UfX8O1rGs4MuIIOjToIHYkonIKSwqx9+pebDm3BQevH4SeRA99WvbBCLcReKPFG1yKSwucP3YKBmemoJV9EiLvhqDl4K9Rr3F9sWORlmKhI6omOUU56Lm1J1KyU3Bo2CEeqSPRqQU1Tt4+ia3ntmLHpR1QKBXwcfTB8PbDMbjNYNjUsRE7IgHIuJ2O5F/nwd8hHJcfdESp+2q068oLrej5WOiIqlF2YTZ6b+uN8xnn8cvAX9CnZR+xI1EtdPXh1bLz4m7Lb6OpVVMMbz8cw9oPQwubFmLHo/+vRFmCqM2r0NHwc5SojHDR4Cv4DR8NfUNegEIvxkJHVM0KSgowbPcw/H71d6zqvQqTPCaJHYlqgds5t/HLxV+w/cJ2nE4/DamxFIPbDMYItxHwc/LjeXFaJunAEUivTUUTm6uIfDAB7d/7EnXrW4sdi3QIbyxMVM3qGNbBjkE7MPvQbEw+MBkp2SlY0nMJ9CR6YkejGiY9Lx07Lu7A9ovbEZ0aDRMDE/Rt2RcfdfkIb7Z8EyYGvE+Ztkm7ehupe2fBx2EXzpb647pzIgKHuYsdi3SQxgqdTCaDTCaDSqXS1JBEWkNfTx/Ley1H07pNMeOvGbiRfQPhb4fD0phHqenVPCp8hN2Xd2P7he04dusY9CR66OXcCz/2/xH9XPrBwthC7Ij0FEX5RYjZvBSeZothYG6FKOFH+M4M5ioP9NI45UqkYfuu7sOwPcNgb2aPnYN3or19e7EjkY7JLszGvuR92HFpBw5ePwiVoELXJl0xpO0QvNPqHVibcqpOWwlqAXG/7UODezNQ3zIN0Vkz0GnkJ7Coy+JNr4aFjkgE1x9dx8BfB+Jq1lX88MYPGNVhlNiRSMs9yHuA36/+jl2Xd+HozaMoVZfC18kXQ9oMwaA2g1DfnLez0HY3zyXj4cHp8HD4Cwl3X4P1a9+jmZuL2LGohmChIxJJYUkhpv05DRtOb8DQtkOx+o3VPLJC5aTKU7Hnyh7surwLkXciAQCBjQMxoNUA9G/VHw0tGoqckCoiLycPCWEL4Wv9HR4oHHCv/nJ4vvMWp1epSrHQEYnsp/M/YfKByTAxMMG6PuvQ16Wv2JFIRNcfXcfuy7ux6/IuxN2Ng6GeIXo064EBrQbgLde3uPyWDhHUAqK3/4xm8jmwMn2E2Nz58Bo1B6bmpmJHoxqIhY5IC9zLvYex+8biwLUDCHELwYpeK2BlYiV2LNIAlVqF2Lux2Hd1H/Zf248LGRdgamCKXs69MKDVAPRp2QdSE6nYMamSkuPOoeDEVLg3PIGYu+/Ase8yOLo2ETsW1WAsdERaQhAEhJ0Jw4yDM2BiYIKvu3+NEPcQ3t6kBpIXyXHoxiHsS96HA9cOIKswC7Z1bPFmizfRt2Vf9HLuBTMjM7Fj0kvIycjG2a2fwt/+B9x61BI5zb9Hpzd7ih2LagEWOiItc1dxF3MOz8HPF36Gp4MnVvVeBU8HT7Fj0Su68egG9iXvw/7k/Yi4HYFSdSna1WuHPi37oG/LvvB08IS+HlcE0FWqEhWiftyE1iUfwkhfiaSSz+A7ciqMTLgmLmkGCx2Rljp5+ySm/jkVZx+cxbD2w/BJwCdoadNS7FhUQbnKXBy/dRyHbhzCoZRDSM5KhpG+Ebo17YY+LfrgzZZvoolVE7FjUhW4EBELvcQpaF0/AZF3R6DFoK9h36SB2LGolmGhI9JiKrUK65PW48sTXyI9Lx1D2w7FxwEfw9XWVexo9B8qtQpJ95PKClx0ajRK1aVoYtUErzd/Ha83fx09m/eEuZG52FGpimTeeYArv8xDF4cwXH7QAaVuq9Gum6/YsaiWYqEj0gFFpUXYdHoTFkcuxl3FXbzb9l18EvAJWtu1FjtarSUIAq4/uo6I2xE4nHIYf6f8jUeFj2BhZIFuTbvhteav4bXmr6F53eZcN7WGKVGWIDpMBneDz6BSG+CC/lfwGz4G+oacMifxsNAR6RBlqRKbz2zG4sjFSJWnop9LP0zymIQezXrw4olqJggCrmZdRcStCETcfvx1L/ce9CR68GjoUVbgvBy8YKhvKHZcqian/zwK8+RpaGZzGVEPxqNt8JewbmAjdiwiFjoiXVSsKsaWs1vwfez3OJ9xHs7WzpjYeSJGuI3gfcqqiEqtwqXMSzhx+wQibkfgxO0TeJD/APoSfXRq2AlBjYMQ2CQQfk5+vK1ILXA3+Q7u/D4bPg47cO6+H4x8V8HVp4PYsYjKsNAR6TBBEBCVGoU1CWuw4+IOqAU1ejTrgXfbvIu3Xd9GXdO6YkfUGRn5GYhNi0VMWgxi7sYg7m4c8orzYKBnAI+GHghqEoTAxoHwdfLlgve1SFF+EWI2L4On2SLkKqW4br4UvsHvcZUH0josdEQ1RGZ+JnZe2olfLv6CE7dPwEDPAK81fw2D2wzGWy5v8SjSv8iL5Dj74CxO3z+NuHtxiEmLQUp2CgDA3swe3o7eZV8eDT14T7haKm7PftjfnY6GlncQlTUDHUd8Aksb/t4i7aSxQieTySCTyaBSqZCcnMxCR1SN7ufeLyt3UalR0Jfow8fJB681e3yeV6eGnWCgZyB2zGonCAJuy2/jTPoZnEk/g7MPzuJM+hncyrkFADDSN0LHBh3h7fB/Ba6RtBEvYqjlbp2/hsy/ZsDD4QAS7/ZE3Z7fo5k7rywn7cYjdEQ1XJoiDX8k/4FDKYdwJOUI5Eo5zI3M4ePoAx9HH3Rq2AkdG3SEg4WDzhaZElUJUrJTkJyVjKtZV3H14VVcybqC8w/OQ66UAwBs69jCvb473Ozd4F7fHe713eFi48ILGKhMXk4eEsIWwafud8jMa4A0++XweudtTq+STmChI6pFStWliL8bjxO3T+DknZOIvRuLhwUPAQB2dezQsUFHuNm7oYVNCzhbO8PZ2hkNLRqKfgWtSq3C/bz7SJWnIlWRijvyO0iVp+Jmzk1czbqKlOwUlKpLAQBmhmZoadMSLrYuaFevXVl5a2DeQGcLK1UvQS3g1C+/oGn2bFjVyUJs7gfwGvUBTM1NxY5GVGEsdES1mCAISFOkIel+0uOv9CScf3Aed+R3IODxXw0mBiZoXrc5Gkkbwd7cHvZm9qhnVg/2ZvawM7ODmaEZ6hjWeeLLxMCkbB+CIECAAGWpEoWlhSgoKUBhSSEKSwuRq8xFVmEWsgqy8KjwUdn/zyrMQkZ+BlIVqbiruAuVoCrLbW5kjkbSRmgsbQwXGxe42Lo8LnE2Lmho0ZDFjSosOe4cCk5Mg3vDCMTc7Q/Hvt/B0bWJ2LGIKo2FjoieoCxV4mbOTVx/dL3sK02Rhgf5D/Ag7wEe5D9AQUlBlY8rNZbCpo4NbExtYFPHBrZ1bOFk6YRG0kb/979SJ0iNpSxt9EpyMrJxdutn8LeX4fajFshu9j069XlN7FhEL42FjoheSl5xHrIKslBYWoj84nwUlBSU+yoqLYJEIoEEj4uXRCKBsb4xTA1NUcewDkwNTGFqaAozQzPY1LGBtal1rbhQg8SlVqkRtWUTWpXMh7FBERKVn8F31DQYmRiJHY3olfBvTyJ6KeZG5lyXlHTKxRNxQMIUdKkfj8iHw+A88BsENW0odiyiKsFCR0RENVpmWgaubJ+PLg034YrEHefqnYR/sL/YsYiqFAsdERHVSKXFpYgKk8Fd7zO0lerhROEP8JsyDvqG+mJHI6pyLHRERFTjnDl4HGaXp6KL7UVEpo9Dm+CFCGjIdY6p5mKhIyKiGuPe9VTc2jMbvg6/4rzKB1ebJSBgWEexYxFVOxY6IiLSecoCJU5tXgaPOovgbGGBSFU4fGcMg56+uDfFJtIUFjoiItJp8b/9gXqp0+EnvY2orGnoOOIz+NvwtlhUu7DQERGRTrp94Toe/DkDng5/ILGoB0r99yGoQyuxYxGJgoWOiIh0Sr48H/FhX8HH6lvo16mPUwY74T3rHUj0uHoI1V4aK3QymQwymQwqlerFGxMREf2HoBZw6pdf0SR7NrytMnFKPg+eIz+Ao2UdsaMRiY5LfxERkda7lnABecenokPD44i9+xYavPkdGrVuJnYsIq3BKVciItJa8swcnNn6OfzsViPVqDkSLP6C15zXxY5FpHVY6IiISOuoVWpE/RgG16J56GhViMi8xfAdNx1NTYzEjkaklVjoiIhIq1w6GQ91/BR0qR+HqIz30HzgEgQ1bSh2LCKtxkJHRERa4eHdTFz+eT786m/CNUl7nK13An7BXcSORaQTWOiIiEhUpcWliApfAzfJp2grleBk0Wr4TR4HAyP+iiKqKP60EBGRaM4cikCdS1PRxfYCItPHok3wIgQ2tBU7FpHOYaEjIiKNu38jDTd3z4Gvw3acV3njatN4BAzrJHYsIp3FQkdERBqjLFDiVNhydDZZCGcLc0SWhsF3xnDo6euJHY1Ip1XqJ2jNmjVo3749LC0tYWlpCR8fH/z555/VlY2IiGqQ+N8P4N7GdvC3+BgJOeNgPPAq/EeEsMwRVYFKHaFzdHTE119/DWdnZwBAeHg43nrrLZw+fRpt2rSploBERKTbbl+8gQcHZsDTYT+SlN2havMbgjq2FjsWUY3yykt/WVtbY+nSpRg9enSFtufSX0REtUO+PB/xYYvhY7UUD/Ptccf2O3gPHACJnkTsaEQ1zkufQ6dSqbBjxw7k5+fDx8enKjMREZEOE9QCYnbsRKOsWfC2ysAp+QfwHDkPDpZ1xI5GVGNVutCdP38ePj4+KCoqgrm5Ofbs2YPWrZ996FypVEKpVJY9VigUL5eUiIi03vXEi8g9NhU+DY8hNr8fVEHLEdS6mdixiGq8Sp+J6uLigjNnziAmJgYTJ05ESEgILl269MztFy9eDKlUWvbl5OT0SoGJiEj7yB/KEfHdTDS55AYr4zTEmx+A15zf0YhljkgjXvkcuh49eqB58+ZYu3btU19/2hE6JycnnkNHRFQDqFVqRP0YDteieTA1zEdC0SfwGTkDxnWMxY5GVKu88n3oBEEoV9j+y9jYGMbG/MEmIqppLkUmQB03BV3qxyIqYyiaDViKoGYOYsciqpUqVeg+/PBD9O7dG05OTsjNzcX27dtx/Phx/PXXX9WVj4iItMzDu5m49POH8K+/Edf12uKM7XH4BQeKHYuoVqtUoXvw4AGGDx+O+/fvQyqVon379vjrr7/Qs2fP6spHRERaorS4FFHh/4Ob5BO0twJOFn4Pv0kTYGDERYeIxPbK59BVFu9DR0Ske84ePgGTi1PRwvY8ItNHo/XQr2DrYCd2LCL6//jPKiIieqb7KXeRsmsO/Bx+xgW1F640jkXAMA+xYxHRf7DQERHRE5QFSpwKW4HOJl+ipaUZTpZsgt90rrtKpK1Y6IiIqJyEvX/B5vY0+FulICpzKtyHf4YudlZixyKi52ChIyIiAMCdSym4/8dMeDnsxWllV5S22o3A4W3FjkVEFcBCR0RUyxUoChAX9jW8pUtgYGaHaL1f4BM6CBI9idjRiKiCWOiIiGopQS0gZucuOGXOgo80Hady5sBj5Hz4Ss3EjkZElcRCR0RUC11PugTF0WnwaXgEsQV9oQo6iqA2zcWORUQviYWOiKgWkT+U4/SWL+Bnuwp3jZsg3uwPeM15Q+xYRPSKWOiIiGoBtUqN6G1b0bLgA3jUzUVU3pfwGT0TTepwrW2imkBjhU4mk0Emk0GlUmlqSCIiAnA5Ogmlp6bAv8EpROcOQdOeSxHU3FHsWERUhbj0FxFRDZV17yEu/vQR/Ouvx42HbZDfahXcXw8SOxYRVQNOuRIR1TCqEhUiw9eivfAx3KzUOFm4En6TJsLAiH/lE9VU/OkmIqpBzv0dCePzU9DF7hyi0t+H65CvEOhYT+xYRFTNWOiIiGqA9Jv3cGPnXPg5bMNFwQOXG8WgyzBPsWMRkYaw0BER6bDiomJEb1qBTiZfoqWlKU6WbITf9JHQ09cTOxoRaRALHRGRjkrYdxA2N6fBv+4NRGVOhvvwL9DFzkrsWEQkAhY6IiIdk3r5Ju7tnwkvh99xujgIJa47ETi8ndixiEhELHRERDqiQFGAuLBv4C39BvpmdoiWbIdP6GBI9CRiRyMikbHQERFpOUEtIHbXHjhmzISPNB2ncmbDY+SH8JWaiR2NiLQECx0RkRa7cfoycv6eBm+HvxFX8CZUgUcQ1NZZ7FhEpGVY6IiItJAiS4GkLQvgZ7MSBiaNEWe6D55z+ogdi4i0FAsdEZEWUavUiP7pR7TI/wAeVgpE5X4B7/dD0djMROxoRKTFWOiIiLTE5egklJyaCv8G0YjOHYwmPb5FkLOT2LGISAdorNDJZDLIZDKoVCpNDUlEpBMe3c/ChW0fwb/+OtwwaI3T1kfhG9xV7FhEpEMkgiAImhxQoVBAKpVCLpfD0tJSk0MTEWkVVYkKUVvWoa36Y+jrleKMagF8QybB0NhQ7GhEpGM45UpEJIJzR6JgdG4KAuzP4OS9UXAdvBiBjezFjkVEOoqFjohIgx7cuo9rO+bC3+FHXBI644JDDLoEe4kdi4h0HAsdEZEGFBcVI3rz9+hk/AVcpSY4qVwPv+nvQ09fT+xoRFQDsNAREVWzxP2HUDdlGrpYX0Pkg8lwG/4FutSrK3YsIqpBWOiIiKpJ2pVbSNsXCm+HPThTHIAbLX9F4LD2YsciohqIhY6IqIoV5hUidvMSeFl8DX0zG0RLfoZP6LuQ6EnEjkZENRQLHRFRFRHUAmJ3/waH9FD4Su8i+tEsdB75EXytzMWORkQ1HAsdEVEVSDlzBY8OT4e3wyHEF/aGKvAQgtq1EDsWEdUSLHRERK8gNzsXiWEL4GezAvqmjRBnuhces/pwepWINIqFjojoJQhqAdE/bUPz3LnwtMpBlOJzeI+ahcZmJmJHI6JaiIWOiKiSrsacgTJqCvwaROFU3iA06v4tglo2EjsWEdViLHRERBWUnf4I57d9DD/7tbhp4IrTdY/AJ7ib2LGIiFjoiIheRFWiQtTWDWhT+hHcrEoQmb8MvhMmw9DYUOxoREQANFjoZDIZZDIZVCqVpoYkInpl549Gw+DsVATYJ+Hk3ZFwffdrBDayFzsWEVE5EkEQBE0OqFAoIJVKIZfLYWlpqcmhiYgqLON2OpJ//QD+DltwKb0T1B1Xo22Qt9ixiIieilOuRET/UqIsQdTm79HR8Au0khrhhHId/Ka+D31DfbGjERE9EwsdEdH/l/jHYVjdmIYu1smIfDAR7d9bgID61mLHIiJ6IRY6Iqr10q7eRtreUHg77MbZ4i643mI7Aoe5iR2LiKjCWOiIqNYqzCtE7Oal8LJYDH1za0RhG3xDh3KVByLSOSx0RFTrCGoBcXv2ouH9GfCV3kX0o1B0CvkIfnUtxI5GRPRSWOiIqFZJOXsVjw5Nh5fDQcQX9kJJl78Q5OYidiwiolfCQkdEtUJudi4SwxfC13o5DEwdEWvyOzxn9eX0KhHVCCx0RFSjCWoB0T//hOaKOfCyyka04hN4jZyNRuamYkcjIqoyLHREVGNdjT2LopNT4dfwJE7lDYBTt2UIcmksdiwioirHQkdENU52+iOc2/YJ/O3/h1uGLkiyOgyf4B5ixyIiqjYsdERUY6hKVIjauhFtSj9EB6tinMxbCr8JU2FobCh2NCKiasVCR0Q1wvljp6B/eioC6ici8u4ItBz8DYIa1xc7FhGRRrDQEZFOy7idjuRf58HfIRyXJR1xvn4U/IN9xY5FRKRRGit0MpkMMpkMKpVKU0MSUQ1WoixBVNhqdDD4HK2tDHCi6H/wmzIG+ob6YkcjItI4iSAIgiYHVCgUkEqlkMvlsLS01OTQRFRDJB04Astr09DU5goiH0xA+/e+RN361mLHIiISDadciUhn3E2+gzu/z4KPw06cLfXHdedEBA5zFzsWEZHoWOiISOsV5RchZvO38DT7CvrmVogSfoTvzGCu8kBE9P+x0BGR1hLUAuJ+24f692bC1zIV0Vkz0GnkJ/CrayF2NCIircJCR0Ra6ea5ZDw8OANeDn8iofA1qLocQJCbi9ixiIi0EgsdEWmVvJw8JIQthK/1dzAwdUCs0R54znqL06tERM/BQkdEWkFQCzi1fTua5syBl1UWouUfw2vUHDiZm4odjYhI67HQEZHokuPOoeDEVPg2PIGY/Heg6rYMQa5NxI5FRKQzWOiISDQ5Gdk4u/VT+Nv/gFtGLZEoPQTv4J5ixyIi0jksdESkcWqVGlFbNqFVyXx0sFLiZN4S+I6biuYmRmJHIyLSSXqV2Xjx4sXw8PCAhYUF6tWrh7fffhtXr16trmxEVANdiIjFlZVe6GI8FlfkvVHY/SqCJsyCEcscEdFLq1Shi4iIwOTJkxETE4PDhw+jtLQUr732GvLz86srHxHVEJl3HuDk0lFoe9cbepJSnLOPhP+cLbBv0kDsaEREOu+V1nLNzMxEvXr1EBERgYCAgAq9h2u5EtUuJcoSRIfJ4G7wGVRqA1zQWwS/EWOhb6gvdjQiohrjlc6hk8vlAABr62cviq1UKqFUKsseKxSKVxmSiHTI6T+Pwjx5GrrYXELkg/FoG7wQAQ1sxI5FRFTjVGrK9d8EQUBoaCj8/f3Rtm3bZ263ePFiSKXSsi8nJ6eXHZKIdMTd5Ds4tXQwOmR3R2GpFMnNExEwaw2sWeaIiKrFS0+5Tp48GX/88QciIyPh6Oj4zO2edoTOycmJU65ENVBRfhFiNi+Dp9ki5CqluGa+BH7Bw7jKAxFRNXupKdepU6di7969OHHixHPLHAAYGxvD2Nj4pcIRke6I27Mf9nenw8/yDqKyZqDjiE/gb8N/tBERaUKlCp0gCJg6dSr27NmD48ePo2nTptWVi4h0xK3z15D51wx4OhxAYmFPlPrtR1CHVmLHIiKqVSpV6CZPnoyffvoJv//+OywsLJCeng4AkEqlMDXleotEtUleTh4Swr+Cj9UyGNRpgBij3fCa9TanV4mIRFCpc+gkkqf/Rb1582aMHDmyQvvgbUuIdJugFnDql1/QNHs2rOpkITb3A3iGzEUdyzpiRyMiqrUqPeVKRLVXcvx5FERMhW/DCMTkv43Srt8hqBVPvSAiEhvXciWiF5Jn5uDMlk/hV+8HpBo1R4LFX/Ce87rYsYiI6P9joSOiZ1Kr1IjauhmuyvnoWLcQkXmL4TtuOppy3VUiIq3CQkdET3XxRByQMAVd6scjKvM9NB+4BEFNG4odi4iInoKFjojKyUzLwJXt89Gl4SZclbjhXL2T8Av2FzsWERE9BwsdEQEASotLERX2A9z1PkVbqR4iCmTwnzIe+ob6YkcjIqIXYKEjIpw5eBxml6eii+1FRKaPQ5vghQhsaCt2LCIiqiAWOqJa7P6NNNzcPRu+Dr/gvMoHV5slIGBYR7FjERFRJbHQEdVCygIlTm3+Dh51FsLZwgKRqnD4zhgGPX09saMREdFL0Fihk8lkkMlkUKlUmhqSiJ4i/rc/YJc6A37SW4jKmoaOIz6Dvw1XbSEi0mWVWvqrKnDpLyJx3L5wHQ/+nAlPh/1IvNsDVj2+R/MOrcSORUREVYBTrkQ1XL48H/FhX8HH6lvo16mPUwY74T3rHUj0nr42MxER6R4WOqIaSlALOPXrDjR5NAveVpk4JZ8Hz5EfwNGyjtjRiIioirHQEdVA1xIuIO/4NPg2PIbY/LdQGvQdglo3EzsWERFVExY6ohpEnpmDM1s/h5/daqQaNUeC+Z/wmtNL7FhERFTNWOiIagC1So2oH8PgWjQPnawKEJn7FXzHzUBTEyOxoxERkQaw0BHpuEsn46GOn4Iu9eMQlRGMZgOWIKiZg9ixiIhIg1joiHTUw7uZuPzzfPjV34Rreu1wtt4J+AV3ETsWERGJgIWOSMeUFpciKnwN3CSfop0VcLJoFfwmjYeBEX+ciYhqK/4GINIhZw5FoM6lqehiewGR6WPQeugiBDrYiR2LiIhExkJHpAPu30jDzd1z4OuwHedV3rjSJA4BwzqLHYuIiLQECx2RFlMWKHEqbDk6myxEC0szRJZuhu+MEdDT1xM7GhERaREWOiItFf/7AdjemQF/qxREZk5DhxGfwd9WKnYsIiLSQix0RFrm9sUbSD8wE14O+5Ck7AZV6z0I6tRG7FhERKTFNFboZDIZZDIZVCqVpoYk0ikFigLEhS2Gt3QpDMzq4ZTBDniHDoBETyJ2NCIi0nISQRAETQ6oUCgglUohl8thaWmpyaGJtJKgFhCzYycaZc2CjVkGYuRz4BEyD2ZSM7GjERGRjuCUK5GIridehOLYNPg0PIrY/L4oDVyOoDbNxY5FREQ6hoWOSATyh3Kc2fI5/OxWIdW4GeLND8BrTm+xYxERkY5ioSPSILVKjehtW+BS+AE6WeUjMnchfEbPRNM6xmJHIyIiHcZCR6QhlyIToIqdCv8GMYhWDEHTd5YiqLmj2LGIiKgGYKEjqmZZ9x7i4k8fwr/+BlzXb4sztsfhGxwodiwiIqpBWOiIqklpcSmitqyFGz5GeyvgZOH38Js0AQZG/LEjIqKqxd8sRNXg7N8nYXJhCrrYnkdk+mi0HvoVAh3sxI5FREQ1FAsdURW6n3IXKbvmws/hJ1xQe+FK41gEDPMQOxYREdVwLHREVaC4qBjRm1ags8kCtLQ0w8mSTfCbHgI9fT2xoxERUS3AQkf0ihL2/gWbW9PhX/cGojKnwn34Z+hiZyV2LCIiqkVY6Ihe0p1LKbj/Ryi8HH7H6eKuKG21C4HD24odi4iIaiEWOqJKKlAUIC7sa3hLl8DAzA7Rer/AJ3QQJHoSsaMREVEtxUJHVEGCWkDMzt1wygyFjzQdp3LmwGPkfPhKzcSORkREtZzGCp1MJoNMJoNKpdLUkERV5nrSJSiOToNPwyOIK+gDVeARBLV1FjsWERERAEAiCIKgyQEVCgWkUinkcjksLS01OTRRpckfynF6yxfws12Fu/ImyHRaAY+33xQ7FhERUTmcciV6CrVKjehtW9Gy4AN41M1FVO4C+IwORZM6xmJHIyIiegILHdF/XI5OQumpKfBvcArRue+iSY+lCHJ2EjsWERHRM7HQEf1/Wfce4uJPH8G//nrc0G+DMzbH4BscJHYsIiKiF2Kho1pPVaJCZPhatBc+hpuVGicLVsBv0iQYGPHHg4iIdAN/Y1Gtdu7vSBifn4JA+7M4eW80XId8hUDHemLHIiIiqhQWOqqV0m/ew42dc+HnsA0XBQ9cdIxFl2BPsWMRERG9FBY6qlWKi4oRvXklOhkvQEtLU5ws3gC/6aOgp68ndjQiIqKXxkJHtUbCvoOwvjkd/nWvIypzMtyHf4EudlZixyIiInplLHRU46Vevom7+0Ph7fAbzhQHIsV1BwKHtxM7FhERUZVhoaMaq0BRgLiwb+BluQQGZjaIlmyHT+hgSPQkYkcjIiKqUix0VOMIagGxu/bAMSMUPtL7OJUzC51DPoSvlbnY0YiIiKoFCx3VKClnriD78DR4OxxGfMEbKA04jKB2LcSORUREVK1Y6KhGUGQpkLRlAfxsVkLfpDHiTPfBc04fsWMRERFphMYKnUwmg0wmg0ql0tSQVAsIagFRP/2IFnlz4WGlQJTic3i/PwuNzUzEjkZERKQxEkEQBE0OqFAoIJVKIZfLYWlpqcmhqYa5cuo0iqOnoH2DaETfHYwm/b9FQ2cnsWMRERFpHKdcSec8up+FCz99DH/7tbhh0BqnrY/CN7ir2LGIiIhEw0JHOkNVokLUlvVoq/4IblalOFmwHL4TJsHQ2FDsaERERKJioSOdcO5IFAzPTUWA/WmcvDcKroMXI7CRvdixiIiItAILHWm1B7fu49qOD+DvsBWXhM644BCDLsFeYsciIiLSKix0pJWKi4oRvfl7dDRaAFepMU4q18Nv+vvQ09cTOxoREZHWYaEjrZP4x2FY3ZiGLtbJiHwwGW7Dv0CXenXFjkVERKS1WOhIa6RduYW0fbPg7bAbZ4oDcKPlLwgc1l7sWERERFqPhY5EV5hXiNjNS+Bl8TX0za0RjZ/gEzoEEj2J2NGIiIh0QqVPSDpx4gT69u2Lhg0bQiKR4LfffquGWFQbCGoBMTv34GFYa/hKFyE2ZwYshl6Fb/BQljkiIqJKqHShy8/Ph5ubG1avXl0deaiWSDlzBYnLesG7+B2kF7bCXfcLCJqxGOZW5mJHIyIi0jmVnnLt3bs3evfuXR1ZqBbIzc5FYtgC+NmsgL5pI8SZ7oXHrD48IkdERPQKeA4daYSgFhD90zY0z50LT6scRCk+g/eo2WhsZiJ2NCIiIp1X7YVOqVRCqVSWPVYoFNU9JGmZqzFnoIyaAr8GUTiVNxCNui9DUMtGYsciIiKqMar9Lq2LFy+GVCot+3JycqruIUlLZKc/wollk+B8vRPqGGQjyepv+MzZAQeWOSIioiolEQRBeOk3SyTYs2cP3n777Wdu87QjdE5OTpDL5bC0tHzZoUmLqUpUiNq6AW1KP4KBfglOl34Ov5FTYGhsKHY0IiKiGqnap1yNjY1hbGxc3cOQljh/NBoGZ6ciwD4JJ++OhMvgxQhqXF/sWERERDVapQtdXl4erl+/Xvb45s2bOHPmDKytrdGoEafSaquM2+lI/vUD+DtswSWhE843iEaXYB+xYxEREdUKlZ5yPX78OLp27frE8yEhIQgLC3vh+xUKBaRSKadca4gSZQmiNq9CR8PPUaIywkWDr+A3fDT0DfXFjkZERFRrvNI5dC+Dha7mSDrwN6TXpqGJzVVEPpiI9u8tQN361mLHIiIiqnV4HzqqtLSrt5G6dxZ8HHbhbKk/rrdIQuAwN7FjERER1VosdFRhhXmFiN28FJ7mX8PA3ApR2AbfmVx3lYiISGwsdPRCglpA3J69aHB/JnylaYh+NBOdQj6GX10LsaMRERERWOjoBVLOXsWjQ9Ph5XAQCYWvo7TLnwhycxE7FhEREf0LCx09VW52LhLDF8LXejkMTB0Ra/wbPGf14/QqERGRFmKho3IEtYDo7T+jmXwOvKweIVrxCbxGzkYjc1OxoxEREdEzsNBRmauxZ1F0cir8Gp7EqbwBcOq2DEEujcWORURERC/AQkfITn+Ec9s+hb/9GtwydEGS1WH4BPcQOxYRERFVEAtdLaYqUSHqx01oUzIfHayKcTJvKfwmTIWhsaHY0YiIiKgSNFboZDIZZDIZVCqVpoak57hwPAZ6SVMQUD8RkQ9HoOXgbxDUuL7YsYiIiOglcOmvWibzzgNc+WUeujiE4fKDjih1W4V23XzFjkVERESvgFOutUSJsgRRYavRweBztLEywImi/8FvyhjoG+qLHY2IiIheEQtdLXD6z6OwSJ6KLjZXEPlgAtq/9yUC6luLHYuIiIiqCAtdDXY3+Q7u/D4LPg47ca7UD9edExE4zF3sWERERFTFWOhqoKL8IsRs/haeZl9B39wKUcKP8J0ZzFUeiIiIaigWuhpEUAuI+20f6t+bCT/LO4jKmolOIz+BX10LsaMRERFRNWKhqyFunkvGw4Mz4OXwJxIKX4PK/w8EubuKHYuIiIg0gIVOx+Xl5CEhbCF8rb+DgakDYo32wHPWW5xeJSIiqkVY6HSUoBZwavt2NM2ZAy+rLETLP4LXqLlwMjcVOxoRERFpGAudDkqOO4eCE1Ph2/AEYvL7Q9XtOwS5NhE7FhEREYmEhU6H5GRk4+zWT+Fv/wNuGbVEovQQvIN7ih2LiIiIRMZCpwPUKjWitmxCq5L56Fi3CCdzv4HvuGlobmIkdjQiIiLSAix0Wu5CRCz0EqegS/0ERD4cjhaDvkFQkwZixyIiIiItwkKnpTLvPMCVX+ejS8PNuCJxxzn7SPgH+4kdi4iIiLSQxgqdTCaDTCaDSqXS1JA6qURZgujwH+Cu/ynaSA1wonAN/KaMhb6hvtjRiIiISEtJBEEQNDmgQqGAVCqFXC6HpaWlJofWeqf/Ogbzq1PR3OYSIh+MR9vghbBuYCN2LCIiItJynHLVAveup+LWntnwdfgV50p9cbVZAgKGdRQ7FhEREekIFjoRFeUXIWbzMniYfQVnCwtEqrfAb+YwrvJARERElcJCJ5K4PfthnzYDftLbiMqajo4jPoW/DaegiYiIqPJY6DTs1vlryPxrBjwdDiCxqCdK/fchqEMrsWMRERGRDmOh05B8eT7iwxbBx2oZDOo0QIzRbnjNepvTq0RERPTKWOiqmaAWcOqXX9Ekeza8pA9xSjEfniFz4WhZR+xoREREVEOw0FWj5PjzyI+YBt+GxxGT/zZUXb9DUKumYsciIiKiGoaFrhrIM3NwZutn8LOTIdWoORIs/oL3nNfFjkVE9NKKi4tRWloqdgwirWNgYAAjI/HXVmehq0JqlRpRP4bBtWgeOloVIjJvMXzHTUdTE/H/QxMRvazi4mJcvHgRarVa7ChEWkdPTw9t2rQRvdSx0FWRiyfiICRMRZf6cYjKeA/NBy5BUNOGYsciInplpaWlUKvVaNKkCUxNTcWOQ6Q1CgsLcevWLWRlZcHY2BjGxsYwMzMTJQsL3SvKTMvAle0fokvDjbgqccO5eifhF+wvdiwioipnamqKOnV4QRfRf+3fvx/5+fmwtLTEu+++K0qpY6F7SaXFpYgK+wHuep+irVQPEQUy+E8ZD31DfbGjERERkQaZmZmhpKQECoUCSqWShU5XnDl4HGaXp6KL7UVEpo9Dm+CFCGxoK3YsIiIiEsE/063FxcWiZdBYoZPJZJDJZFCpVJoassrdv5GGm7tnw9fhF5xX+eBq03gEDOskdiwiIiKq5fQ0NdDkyZNx6dIlxMfHa2rIKqMsUOK4bDEsT7jA2eI4IlXhaDMjEq38WOaIiIhIfJxyfYH43/6AXeoM+ElvISprGjoM/xT+tlKxYxERERGVYaF7htsXruPBnzPh6bAfScruKG37O4I6thY7FhEREdETWOj+I1+ej/iwr+Bj9S3069THKYOd8A59BxI9idjRiIiIiJ5KY+fQaTtBLSB6+6+Qb3OFt9UynJJ/AOvhl+EzeADLHBFRLRYUFIQZM2aIHeOZNJnv8uXLGhmHKo+FDsC1hAs48113+KrfRWp+R2R4XELQtAWoY8kbaBIREQHAihUrYGxsLGqGzMxMfPvtt8/d5t69expKo11qdaGTZ+Yg4rsZaHrZHVbGaUgw/xNec35Ho9bNxI5GREQaJOb9w8QWFBSE3bt3P3ebQ4cOwc7ODs2aifv70c7ODgEBAZDJZM/c5vjx4xg3bhyOHTtW4f3Gx8djxowZCA8Px7hx43Dz5s2qiKtRtbLQqVVqnAzfjOLdLuhktQGRuYvQcPR5dO7XS+xoREQ1WpMmTbBixYpyz7m7u+Pzzz8H8LhcTJkyBVOmTIGVlRVsbGzw8ccfQxCEsu0rso0gCFiyZAmaNWsGU1NTuLm5YefOnU/sIzQ0FLa2tujZs+dzc5eWlj5zPKVSiWnTpqFevXowMTGBv7//E7foetHn/ifTtGnTMHfuXFhbW6N+/frlXgeA/Px8jBgxAubm5mjQoAGWLVv23Nwv8ttvv0FfXx/z5s1DSUnJM7f7/vvvMWTIkFcaq6p4enoiLi4ODx8+fOrrwcHB+OGHH5CamooxY8bgzz//fO7+lEolBg0ahPnz5yMkJASjRo3CqFGjqiN6tap1he7SyXhcWumLLobvI1nRA7lBVxE06QMY1xH3MDIRkS4pKClA0v2kF34VlBRUet/h4eEwMDBAbGwsvv/+eyxfvhwbNmyo1DYff/wxNm/ejDVr1uDixYuYOXMmhg0bhoiIiCf2ERUVhbVr1750prlz52LXrl0IDw9HUlISnJ2d8frrr+PRo0cv9dnNzMwQGxuLJUuWYMGCBTh8+HDZ63PmzMGxY8ewZ88eHDp0CMePH0diYmLZ62FhYZBIKnbed2lpKRITE/Hrr78iIyPjmd+Dc+fOwdHREfr62rO0Zb9+/RAWFvbM1w0MDDBixAisW7cOCoUC77//Pvbs2VOu9P/jxIkTsLS0hL29PYDHhTEmJgYPHjyorvjVQ9AwuVwuABDkcrlGx81MyxAilo4RVFslwpXl7YUzhyI0Oj4Rka7Kz88XEhIShPz8/LLnEu8lCvgcL/xKvJdYbl+NGzcWli9fXu45Nzc34bPPPhMEQRACAwOFVq1aCWq1uuz1Dz74QGjVqlXZ4xdtk5eXJ5iYmAjR0dHlxhk9erQwdOjQsn24u7tX6PM/b7y8vDzB0NBQ2LZtW9lrxcXFQsOGDYUlS5ZU+HP/M46/v3+5bTw8PIQPPvhAEARByM3NFYyMjITt27eXvZ6VlSWYmpoK06dPFwRBEHbv3i24uLhU6HNt2LBBuHbtmiAIgvD1118LdnZ2T/3d/N133wkbNmwoe1xaWiqsXr1aGDZsmBAXFycIgiAEBwcL4eHhFRr3eUpLS4VVq1YJISEhZftOTU0VAgMDy22XmZkpdO3atcL7VavVwm+//Sa89957wt9//13utXXr1j2xf1tbW+HIkSMv3O8/Pxs7d+4UNmzYICxfvlzIysqqcK6qVOOP0JUWlyJi/WoY/NkS7a124mTRKjSflAi3ngFiRyMi0lmutq5IHJf4wi9XW9dK79vb27vcUSYfHx9cu3at3NKRz9vm0qVLKCoqQs+ePWFubl72tWXLFty4caPsPZ07d37lTNevX0dJSQn8/PzKXjM0NISnp+dLXRHavn37co8bNGiAjIwMAMCNGzdQXFwMHx+fstetra3h4uJS9rh///64cuXKC8fJy8tDZmYmnJ2dAQDTp09HnTp18M033zyxbVpaGurVq1f2+Pfff8e7776LgoIC3Lp1CwDQt29fKBSKin/QZ9i7dy+GDBmCwsLCsvPYDh8+DEdHx3Lb2dralvtv+SIPHz5EUlISbGxs0LRp0ydeMzExKfeciYkJcnJyXu5DiKRG34fu7OETML04BV1sLyAyfQxaD12EQAc7sWMREem8OoZ10LFBx0q/T09P74lpr+edu/Uy1Go1AOCPP/6Ag4NDudf+fZWmmZlZlY3532lOQRDKPVfRz21oaPjEfv/5PP99/6tYv349xo4dW/bYxMQEixYtwrhx4zBp0qRy37e8vDyYmpqWPe7WrRvUajVOnjyJH3/8EQDQvHnzp14wsXLlyudeYBAYGIj+/fuXPe7evTsA4OjRo9i0aROAxxc5PO0cx4pMLd+7dw+rVq1CSUkJpk6disaNGz+xjVQqfeJ7m5eXB1tb2xfuX5vUyEJ3P+UuUnbNgZ/Dz7ig9sKVJnEIGFbxf4kREVH1sLOzw/3798seKxSKJ37hx8TEPPG4RYsW5c7het42rVu3hrGxMe7cuYPAwMAqyf2s8ZydnWFkZITIyEgEBwcDeFzUEhISyt0briKf+0WcnZ1haGiImJgYNGrUCACQnZ2N5OTkSn3O9PR0mJiYwMbGptzzwcHBWL58OT799FNs3Lix7HlbW1tkZ2eXPbayssLWrVsRFBRUVvTOnz+PkSNHPjHW9OnTK/MRYWlpie3btyMgIKCscEdEROCrr75CTk4OrKysyrY1MHh2hbl16xZkMhmMjIwwbdo0NGjQ4Jnburq6Yv369WWPlUolcnNzn1r+tFmNKnTKAiVOhS1HZ5OFaGlphsjSzfCdPgJ6+jV+ZpmISCd069YNYWFh6Nu3L+rWrYtPPvnkiZPtU1NTERoaivHjxyMpKQmrVq164mrO521jYWGB2bNnY+bMmVCr1fD394dCoUB0dDTMzc0REhJS6dzPGs/MzAwTJ07EnDlzYG1tjUaNGmHJkiUoKCjA6NGjK/W5X8Tc3ByjR4/GnDlzYGNjA3t7e3z00UfQ0/u/33F79uzB/PnznzvtumbNGowbN+6pV4nOmzcPQ4YMwcyZM9G2bVsAQKtWrXDnzp1y2z148KBcqTQ3Ny+X41WkpqaWTQVfuHABhoaGqFevHsLDwzFmzBgAj0uzhYXFU9//7bffoqCgAPPmzXuitD5NQEAAMjIykJaWBkdHR0RERMDDw4OF7llkMhlkMlm5cyCqUvzeP2F7ezr8rVIQmTkNHUZ8Bn9babWMRUREL2f+/PlISUlBnz59IJVK8eWXXz5xpGrEiBEoLCyEp6cn9PX1MXXqVIwbN65S23z55ZeoV68eFi9ejJSUFFhZWaFjx4748MMPXyr388b7+uuvoVarMXz4cOTm5qJz5844ePAg6tatW6nPXRFLly5FXl4e+vXrBwsLC8yaNQtyubzsdblcjqtXrz7z/cnJyVi0aBEWLFjw3HE+/PBD7N27FwDQq1cvjB07FrNmzSp7fciQIQgNDcXWrVtRWlr6UiX5WQYMGIAPPvgAv/76KwCgU6dOWL16dbkjgPHx8ejWrdtT3z979uxKjWdgYIDw8HAsWrQI3t7eiIiIwLZt2146v1gkQlVOyleAQqGAVCqFXC6HpaXlK+/v9sUbSD8wE14O+5B0rxssu34P505tqiApEREBQEFBAS5fvoxWrVqhTp3qXUEnKCgI7u7uT9yzrbLbUNUaN24cFixYgPr164sdBcDj29L069cPnp6eoub452fj1q1byMnJQW5uLkaMGAFra2uNZ9HZKdcCRQHiwhbDW7oUBmb1cMpgB7xDue4qERFRVfv000+xevVqLFy4UOwoUCgUyMzMfGaZW758+XOvgO3atSsGDBhQXfFEo3OFTlALiNm5C40ehsJbmoEY+Rx4hMyDg7TqrlYiIiKi/+Po6Ij+/fvjwIEDeOONN0TLIQgCli9f/txiOXPmTA0m0h46VeiuJ12C4uhU+DQ8itj8vigNXI6gNs3FjkVERFXk+PHjVbINVb1OnTqJHQFZWVmYOHEi7Oxq7i3Izp49i2+//RY3b97EvHnz4Ofnhy+++AJKpRLp6en47LPP4O7u/sT7dKLQyR/KcXrLF/CzXYU046aINz8Arzm9xY5FREREGqRr94Z7GStXrsTmzZvx9ddf4/3330dAQABWrlyJ5ORkvP7663B0dMSqVaueeJ9WFzq1So3obVvRsuADdLbKQ1Tel/AZPRNNue4qERER1TA3btxAw4YNYWBggHv37uHRo0f48MMP4eDggFOnTsHc3Bx9+/Z96nu1ttBdjkpEacwU+DeIQXTuEDR9ZymCmju++I1EREREOujBgwdlF2xERkbC398fHTs+XpFl4MCBGDhw4DPfq3V33M269xAnvh0Pl5seMNbPxxnb4/Cd8zMasMwREZEIgoKCyq36oG00me9l1qelivP19UWHDh3w8OFDXLhwAUFBQRV+r9YUutLiUkRskEHvj5Zob/UrThauRLNJSXB/rWqWbSEiIqKXt2LFinJr4T5LZmYmvv322+duc+/evaqKVSMdO3YMgiDoXqE7+/dJ3PihE7qYTMV5+QCU9k5G4NipMDDS2hlhIiKqQYqLi8WOIJqgoCDs3r37udscOnQIdnZ2aNas2Qv3Z2dnh4CAAMhksmduc/z4cYwbNw7Hjh2rcM74+HjMmDED4eHhGDdu3EuttKErjh07BmNjY3h7e1f4PaIWuvspdxG19D24ZQSgRG2CK41jETB7PWwdau7lyEREtVmTJk2eWOHB3d0dn3/+OYDH5WLKlCmYMmUKrKysYGNjg48//hj/XtSoItsIgoAlS5agWbNmMDU1hZubG3bu3PnEPkJDQ2Fra4uePXs+N3dpaekzx1MqlZg2bRrq1asHExMT+Pv7Iz4+vlKf+59M06ZNw9y5c2FtbY369euXex0A8vPzMWLECJibm6NBgwZPrHFbWb/99hv09fUxb948lJSUPHO777//HkOGDKnwfj09PREXF/fU9WIBIDg4GD/88ANSU1MxZswY/Pnnn8/dn1KpxKBBgzB//nyEhIRg1KhRGDVqVIXz6Jpjx47B29sbJiYmFX6PaIXu5PoVsDjugpaWh3GyZBNaTz+F1l08xIpDRERaIjw8HAYGBoiNjcX333+P5cuXY8OGDZXa5uOPP8bmzZuxZs0aXLx4ETNnzsSwYcMQERHxxD6ioqKwdu3al840d+5c7Nq1C+Hh4UhKSoKzszNef/11PHr06KU+u5mZGWJjY7FkyRIsWLAAhw8fLnt9zpw5OHbsGPbs2YNDhw7h+PHjSExMLHs9LCwMEknFVkwqLS1FYmIifv31V2RkZDzze3Du3Dk4OjpCX1+/Up+lX79+CAsLe+brBgYGGDFiBNatWweFQoH3338fe/bswdNWJD1x4gQsLS1hb28P4HFhjImJwYMHDyqVSRekp6fjypUrlZpuBargKldBEJCbm/vM15VKJZRKZdnj+P1/AQDaGHyOE+nj0W7IfLjZWiEvP+9VoxARUTUoKip64rmCAuDKlRe/19UVqOzyr05OTli+fDkkEglcXFxw/vx5LF++HGPHjq3QNvn5+fjuu+9w9OhR+Pj4AACaNWuGyMhIrF27FoGBj8/NdnZ2xpIlS14pU3BwMNasWYOwsDD07v34/qjr16/H4cOHsXHjRsyZM6dSn719+/b47LPPAAAtWrTA6tWrceTIEfTs2RN5eXnYuHEjtmzZUnZEMTw8HI6O/3fRoFQqhYuLS4XGCg8PR0hICGxsbDB//nwsWLAAI0aMeGKd9SNHjsDD4/8OuKhUKqxZswYJCQmYPHkyPDw8kJaWhmHDhpW76XNgYCBkMhlmz5793Bx6enp49913MXjwYOzduxfDhw/HqFGj0L1797Jtbt26VW59VH19fVhYWODixYtlJU9MJSUlKC4uRnFxMXJzc2Fg8H/1ysLCosIlG3h8pau9vT0GDx5cqQyvXOhyc3MhlUor/b6mMwQA/wM++t+rRiAiomrk4uKCbdu2lXvuyhWgIgsHJCYC//+uCxXm7e1d7hegj48Pli1bBpVKVXaU6HnbXLp0CUVFRU9MoxYXF6NDhw5ljzt37vzKma5fv46SkhL4+fmVvWZoaAhPT8+XuiK0ffv25R43aNAAGRkZAB7fo6y4uLispAKAtbV1uQLXv39/9O/f/4Xj5OXlITMzE87OzgCA6dOnY82aNfjmm2+waNGictumpaWVO1q0d+9eDBkyBCdPnsTNmzfh4eGBw4cPlyuWwOObAD9vTdX/evjwIZKSkmBjY4OmTZs+8dp/px9NTEyQk5NT4f1Xp82bNyM1NRXGxsb49NNPyx3IksvlT5Tk53Fzc0N6enqlM7xyobOwsIBcLn/m6/89Qhd78BgGjhmBS5cuwcHB4VWHrxAPD48nzmfgeLoxnkKhgJOTE1JTUyv1A/EqavL3s6aPxz8v1TPeiRMnkJqaWu55V9fHZe1FXF3LP9bT03tiSu155269DLVaDQD4448/nvg98++rNM3Mqm4N8P8egREEodxzFf3choaGT+z3n8/ztKnIl7V+/fpyRzxNTEywaNEijBs3DpMmTSr3fcvLy4OpqWnZ43+OnB09ehSbNm0C8Pgih6edh1iRI1P37t3DqlWrUFJSgqlTp6Jx48ZPbCOVSp/4/Hl5eVqzcsSoUaOQnZ2N3NxcvPvuu6hbt27ZaxYWFhrJ8MqFTiKRVO4vzte7Anj8ATX1F66+vr7GxuJ41cPS0pJ/XjhehfHPS9WOZ25u/sTzdepU/sgb8PgKyPv375c9VigUT1ytGBMT88TjFi1alDuH63nbtG7dGsbGxrhz507Z9OqretZ4zs7OMDIyQmRkJIKDgwE8LmoJCQnl7g1Xkc/9Is7OzjA0NERMTAwaNWoEAMjOzkZycnKlPmd6ejpMTExgY2NT7vng4GAsX74cn376KTZu3Fj2vK2tLbKzs8seW1paYvv27QgICCgrxREREfjqq6+Qk5MDKyursm3/PfX4X7du3YJMJoORkRGmTZuGBg0aPHNbV1dXrF+/vuyxUqlEbm7uU8ufGAwNDWFkZAQjIyON9pt/qxX3BZk8eTLH0+HxNK2mfz9r+niaVtO/n1U9Xrdu3RAWFoa+ffuibt26+OSTT5442T41NRWhoaEYP348kpKSsGrVqieu5nzeNhYWFpg9ezZmzpwJtVoNf39/KBQKREdHw9zcHCEhIZXO/azxzMzMMHHiRMyZMwfW1tZo1KgRlixZgoKCAowePbpSn/tFzM3NMXr0aMyZMwc2Njawt7fHRx99BD29/7u+cc+ePZg/fz6uPOcExzVr1mDcuHFPvQJ13rx5GDJkCGbOnIm2bdsCAFq1aoU7d+488f34Z7r2woULMDQ0RL169RAeHo4xY8YAeFxsn3V06ttvv0VBQQHmzZv3RLF8moCAAGRkZCAtLQ2Ojo6IiIiAh4eH1hQ6rSBoWGpqqgBASE1N1fTQpIPkcrkAQJDL5WJHIR3APy/VIz8/X0hISBDy8/NfeV9yuVwYPHiwYGlpKTg5OQlhYWGCm5ub8NlnnwmCIAiBgYHCpEmThAkTJgiWlpZC3bp1hXnz5glqtbpsHxXZRq1WCytXrhRcXFwEQ0NDwc7OTnj99deFiIiIsn1Mnz69QplfNF5hYaEwdepUwdbWVjA2Nhb8/PyEuLi4Sn3uZ2V66623hJCQkLLHubm5wrBhw4Q6deoI9vb2wpIlS8q9b/PmzcLzfrVfvXpV0NfXFwA896tv375l78nMzBTefvvtcvu5ceOGMHDgQOGXX34RfvnlF+Hdd98VvvvuO+HRo0dl20RFRQmhoaEV+RZXyOHDh4UJEyYIYWFhwqhRo4QbN25U2b5f1j8/Gzt37hQ2bNggLF++XMjKyhIli0QQqnBSvgIyMzNRr149ZGRkwM6O95uj51MqlVi8eDHmz59foTuUU+3GPy/Vo6CgAJcvX0arVq1Qp7KXrFZSUFAQ3N3dn7hnW2W3oao1btw4LFiwAPXr16/wez7++GP069cPnp6e1ZhMXP/8bNy6dQs5OTnIzc3FiBEjyl2Rqykan3L95y9Z/mVLFWFsbPzEjTWJnoV/Xoiqx6efforVq1dj4cKFFdpeoVAgMzPzmWVu+fLlz70CtmvXrmWL1FPF1Ipz6IiIiOjlOTo6on///jhw4ADeeOON524rCAKWL1/+3PI3c+bMqo5Y67HQERGR1vj3jWlfZRuqep0qcuNBAFlZWZg4cSJPq9IwFjoiIiKqMtpyb7jaRrS1XImIiIioarDQkdb5/PPPIZFIyn1V5soqqvlOnDiBvn37omHDhpBIJPjtt9/KvS4IAj7//HM0bNgQpqamCAoKwsWLF8UJS0Q13v79+5GVlSVqBhY60kpt2rTB/fv3y77Onz8vdiTSIvn5+XBzc8Pq1auf+vqSJUvw3XffYfXq1YiPj0f9+vXRs2dP5ObmajgpUc2RmJiI6OhonD17VuwoWsfU1BQ7d+6s8mXsKoPn0JFWMjAw4FE5eqbevXujd+/eT31NEASsWLECH330Ed555x0AQHh4OOzt7fHTTz9h/PjxmoxKVCPs2bMHvXr1gr6+PsaNG4ewsDCxI2mVrl27IiYmBikpKaJl4BE60krXrl1Dw4YN0bRpUwwZMkTUHxLSLTdv3kR6ejpee+21sueMjY0RGBiI6OhoEZMR8PimwP9e41RbaXtOTeY7f/48OnbsiEOHDmH48OEYN25chd97+fLlakymPfT09ODo6IiMjAzxMmhqIJlMhtatW8PDw0NTQ5KO8vLywpYtW3Dw4EGsX78e6enp8PX1Ff38BNIN6enpAAB7e/tyz9vb25e9RkT/p6CgAPn5+c98/d69e3B0dERpaSkePHgAA4OKTe6tWLGiwosIZGZm4ttvv63QttrK1NQURUVFoo2vsUI3efJkXLp0CfHx8ZoaknRU7969MWDAALRr1w49evTAH3/8AeDxtBlRRUkkknKPBUF44jmi4uJisSOI6o8//kDHjh2xdOnSZ24jCAL09fUxYMAA9OvXDzk5OS/c76FDh2BnZ4dmzZpVKIednR0CAgIgk8kqGr1C4uPjMWPGDISHh2PcuHG4efNmle5fm3DKlbSemZkZ2rVrh2vXrokdhXTAP+de/vdoXEZGxhNH7UhcSqUS06ZNQ7169WBiYgJ/f/9y/+jft28frKysoFarAQBnzpyBRCLBnDlzyrYZP348hg4dCuBx8ViyZAmaNWsGU1NTuLm5YefOneXGDAoKwpQpUxAaGgpbW1v07NnzmflKS0sxZcoUWFlZwcbGBh9//DH+vfz5i/I3adLkifVm3d3dyy1PFxQUhGnTpmHu3LmwtrZG/fr1n1i+Lj8/HyNGjIC5uTkaNGiAZcuWPf8bWwlvvvkm3n333We+npGRgStXrgAACgsLceXKFXTt2hVpaWn466+/yr7OnDlT7n3ff/89hgwZUqksnp6eiIuLw8OHDyv9OZ5GqVRi0KBBmD9/PkJCQjBq1CiMGjWqSvb9NIWFhTAxMam2/b8ICx1pPaVSicuXL6NBgwZiRyEd0LRpU9SvXx+HDx8ue664uBgRERHw9fUVMRn919y5c7Fr1y6Eh4cjKSkJzs7OeP311/Ho0SMAQEBAAHJzc3H69GkAQEREBGxtbREREVG2j+PHjyMwMBDA48XgN2/ejDVr1uDixYuYOXMmhg0bVm574PHRfgMDA0RFRWHt2rXPzPfPdrGxsfj++++xfPlybNiwocL5Kyo8PBxmZmaIjY3FkiVLsGDBgnJ/fufMmYNjx45hz549OHToEI4fP47ExMRy+wgLC3vpI9DPe19iYiJef/11REVF4ciRI1i5ciUMDQ3h6OiIXr16lX25u7uXvefcuXNwdHSEvr5+pbP069fvmRdcrFy5EgsWLKjwqRMnTpyApaVl2T/kPD09ERMTgwcPHlQ614uo1WqkpaWhXr16Vb7viuJVrqR1Zs+ejb59+6JRo0bIyMjAwoULoVAoEBISInY00hJ5eXm4fv162eObN2/izJkzsLa2RqNGjTBjxgx89dVXaNGiBVq0aIGvvvoKderUQXBwsIipa5jSAkBx5cXbWboCBnWeeDo/Px9r1qxBWFhY2RXL69evx+HDh7Fx40bMmTMHUqkU7u7uOH78ODp16oTjx49j5syZ+OKLL5Cbm4v8/HwkJycjKCgI+fn5+O6773D06FH4+PgAAJo1a4bIyEisXbu2rPQBgLOzM5YsWfLC6E5OTli+fDkkEglcXFxw/vx5LF++HGPHjq1Q/opq3749PvvsMwBAixYtsHr1ahw5cgQ9e/ZEXl4eNm7ciC1btpQdTQwPD4ejo2O5fUilUri4uDx3nOjoaGzfvh3t2rXDjRs30KdPH/j7+wN4/N/jn9NafvvtN/z4448wMzODRCJBq1atKvxZAODIkSNPnC+vUqmwZs0aJCQkYPLkyfDw8EBaWhqGDRtWbim3wMBAyGQyzJ49+4n9Tp8+HQ8ePMD//vc/5OfnY/To0c/9zLdu3YK1tXXZY319fVhYWODixYtVfrT+2LFjMDAwqPAUc3VgoSOtk5aWhqFDh+Lhw4ews7ODt7c3YmJi0LhxY7GjkZZISEhA165dyx6HhoYCAEJCQhAWFoa5c+eisLAQkyZNQnZ2Nry8vHDo0CFYWFiIFbnmUVwB/qrA2p69EgHrjk88fePGDZSUlMDPz6/sOUNDQ3h6epa7MjIoKAjHjx9HaGgoTp48iYULF2LXrl2IjIxETk4O7O3t4erqivj4eBQVFT0xhVpcXIwOHTqUe65z584V+oje3t7ljl75+Phg2bJlUKlUFc5fEe3bty/3uEGDBmVXS964cQPFxcVlJRUArK2tnygy/fv3R//+/Z85xv379zFgwACcPn26bFo3MTGxrNDFxsaWnUe3a9cuHDx4EO+88065n7OKSktLQ1BQULnn9u7diyFDhuDkyZO4efMmPDw8cPjw4SeKqa2tLW7cuPHMfdvb2+Ozzz5Dbm4uNmzYgNWrVyM4OLjc9+cfDx8+fGIK1MTEpELnAFZWQUEBBgwYAENDwyrfd0Wx0JHW2b59u9gRSMsFBQWVO5fpvyQSCT7//PMnzkWiKmTp+risVWS7p/jnv9+LLl4JCgrCxo0bcfbsWejp6aF169YIDAxEREQEsrOzy468/XOe3R9//AEHB4dy+/zvlZZmZmYvzv0CFcmvp6f3xJ/Tp9149r8lQCKRlH2e5/05r4xdu3ahUaNGZeeY/vdno1On/yvn1tbWUCgUAJ783lVEXl4eTE1Nyz3XvXt3AMDRo0exadMmAI+ny592DmNFpo4tLCwwc+ZMFBcXY9u2bdi0aRNCQkLKCirw+Kjlf79/eXl51bLWbN++fZGTkyPqzct5Dh0REVWeQZ3HR95e9PWU6Vbg8bSnkZERIiMjy54rKSlBQkJCuSm+f86jW7FiBQIDAyGRSBAYGIjjx4+XO3+udevWMDY2xp07d+Ds7Fzuy8nJ6aU+YkxMzBOPW7RoAX19/Qrlt7Ozw/3798teVygUlb7K0tnZGYaGhuWyZGdnIzk5uVL7UavVzy2HL3O+27PY2toiOzu73HOWlpY4cOAAAgICygp1REQEevTo8cQRs4reFgV4/D29e/cuzM3Nnzh/zdXVtdx94ZRKJXJzc2vsbA+P0BERkcaZmZlh4sSJmDNnTtm5j0uWLEFBQQFGjx5dtt0/59H9+OOPWLlyJYDHJW/QoEEoKSkpm9qzsLDA7NmzMXPmTKjVavj7+0OhUCA6Ohrm5uYvdQ5uamoqQkNDMX78eCQlJWHVqlVlV5hWJH+3bt0QFhaGvn37om7duvjkk08qXZzMzc0xevRozJkzBzY2NrC3t8dHH30EPb3yx2P27NmD+fPnl12R+l/9+/fHl19+iTt37qBRo0YAHs+GvOhK1IyMDBw6dAh6enpITEzEN99888LC1apVK9y5c+eJ51NTU+Hs7AwAuHDhAgwNDVGvXj2Eh4djzJgxAB6X4oqcGnHz5k2sW7cOenp6mDBhwlNLe0BAADIyMpCWlgZHR0dERETAw8ODhY6IiKgqff3111Cr1Rg+fDhyc3PRuXNnHDx4EHXr1i23XdeuXZGUlFRW3urWrYvWrVvj3r175Y7mffnll6hXrx4WL16MlJQUWFlZoWPHjvjwww9fKt+IESNQWFgIT09P6OvrY+rUqeVWSXhR/vnz5yMlJQV9+vSBVCrFl19++VL3QVu6dCny8vLQr18/WFhYYNasWZDL5eW2kcvluHr16jP34eTkhF27duHjjz+Gv78/1Go13njjDfz111/Yv38/SkpKsH//fuTm5iIqKgppaWlwdXXFrVu3kJOTgylTpiAmJgZ///03evXq9dy8vXr1wtixYzFr1qxyzw8YMAAffPABfv31VwCPp3lXr16NkSNHlm0THx+Pbt26PXPfp0+fRnh4OOrXr4+5c+c+8Wfl3wwMDBAeHo5FixbB29sbERER2LZt23Oz6zKJUFUT9BWkUCgglUohl8thaWmpyaGJiOglFBQU4PLly2jVqhXq1Hn6FCrVfIMHD8aSJUvQpEmTF247btw4LFiwoNJrcn/88cfo168fPD09n3ht5cqVMDExQUhIiKj3e/u3f342/im+ubm5GDFiRLmrazWF59ARERHRc/3xxx8YNGhQhcocAHz66adYvXp1pcZQKBTIzMx8apkDHt+2ZPz48VpT5rQNCx0RERE9U3x8POzt7TFo0CBcunSpQu9xdHRE//79ceDAgQptLwgCli9fjoULF75K1FqN59ARERHRU506dQrjx49HvXr1UFxcjDVr1lT4vf++FcqLZGVlYeLEibCzs3uZmAQWOiIiInoGHx8fnDt3rtrHqY57w9U2GptylclkaN269RPLgRARERHRq9FYoZs8eTIuXbqE+Ph4TQ1JREREVCvwoggiIiIiHcdCR0RERKTjWOiIiIiIdBwLHREREZGOY6EjIiIi0nEsdEREREQ6jjcWJiKiCiksLBQ7ApFW0aafCRY6IiJ6LgMDA+jp6eHWrVtiRyHSOoIgQKVSiR2DhY6IiJ7PyMgIbdq0QWlpKeRyOfbv3w8zMzMYGxuLHY1IdCqVCqWlpWLHYKEjIqIXMzIygpGREYqKipCfn4+SkhIWOqJ/USqVoo7PQkdERBVmbGwMS0tLKBQKFBcXix2HSKtYWlqK9g8diSAIgiYHVCgUkEqlkMvlsLS01OTQRERUBfLz80U/GkGkjYyNjWFmZibK2DxCR0RElWJmZibaLy0iejqN3YdOJpOhdevW8PDw0NSQRERERLUCp1yJiIiIdJzGC50gCMjNzYWFhQUkEokmhyYiIiKqkTRe6IiIiIioanEtVyIiIiIdx0JHREREpONY6IiIiIh0HAsdERERkY5joSMiIiLScSx0RERERDqOhY6IiIhIx/0/8CBQWrok5bgAAAAASUVORK5CYII=\n",
       "text/plain": [
        "Graphics object consisting of 3 graphics primitives"
       ]
@@ -902,7 +921,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHUCAYAAACznbW8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxw0lEQVR4nO3dd1yV9f//8cdhqwiK4Ao3DsyViAKioGZby48f05ZWlg210rLSlq2PZZaZkllWUlnmt7I9NAcOHLj33ntzGMo61++P6ydFLjDgOufwvN9u54bnnOuc63nwcHjxnjbDMAxERERExGV5WB1ARERERP4dlyjoDMOgW7duhIWFUalSJd58802rI4mIiIg4DZco6Gw2Gz/99BOPPvooqampxMbGWh1JRERExGm4REF3zuLFi/H396ddu3ZWRxERERFxGi5T0DkcDmbPnk1cXBxeXl5WxxERERFxGi5T0C1btoxTp07RpUsXq6OIiIiIOBWnbOpKS0vj5ZdfZuvWrVSvXp1atWpxbnWVa6+91uJ0IiIiIs7F5mzr0J08eZIuXbpw9dVX8/nnn2Oz2fjkk08YOnQovr6+HD58GJvNZnVMEREREafhdF2uvXr1IjU1lUmTJuUXbt26dSM1NZUuXbqomBMRERH5B6cq6KZNm8acOXN49NFHqVChQv7tq1atAtD4OREREZELcKqC7oMPPgDgtttuK3B7UlISoPFzIiIiIhfiNGPocnNz8fPzo2bNmuzdu7fAfbGxsRw+fJjt27dblE5ERETEeTlNC92JEyfIy8vjmmuuKXD7mTNnSElJye9u/fbbb0lNTbUiooiIiIhTcpqCrmrVqlSoUIEqVaoUuP2rr74iOzs7v7t1xowZBAYGWhFRRERExCk5TUFns9l44IEHWLlyZf6ac7NmzeKbb74BIDQ0lO3bt1O7dm0rY4qIiIg4HacZQweQmZnJww8/zMmTJ6lRowaNGzdm6NChvPzyyyQnJxMSEsL48ePPa8UTERERKcucqqATERERkaJzmi5XEREREbkyKuhEREREXJwKOhEREREXp4JORERExMWpoBMRERFxcSroRERERFycCjoRERERF6eCTkRERMTFqaATERERcXEq6ERERERcnAo6ERERERengk5ERETExamgExEREXFxTl3QGYaB3W7HMAyro4iIiIg4Lacu6NLS0ggMDCQtLc3qKBe0ZQvYbJCUZHUSERERKcucuqBzdrVqmV/37LE2h4iIiJRtKuj+hfLlISQE9u61OomIiIiUZSro/qXatdVCJyIiItZSQfcv1amjFjoRERGxVokWdBMnTqRFixYEBAQQEBBAdHQ0v/32W0mestSphU5ERESsVqIFXWhoKG+88QbLly9n+fLldO7cmVtvvZUNGzaU5GlL1bkWOq2sIiIiIlaxGaW8yFtQUBBvvfUW/fv3P+++rKwssrKy8q/b7XZq1apFamoqAQEBpRmz0L77Dnr2hKNHzQkSIiIiIqWt1MbQ5eXlMW3aNDIyMoiOjr7gMaNGjSIwMDD/UuvcuiBOrE4d86u6XUVERMQqJd5Ct27dOqKjozl79iz+/v58+eWX3HTTTRc81hVb6I4dg6pV4dtv4T//sTqNiIiIlEVeJX2Cxo0bs3r1ak6fPs23335Lv379SEpKomnTpucd6+vri6+vb0lHKlbBwVCunFroRERExDolXtD5+PgQFhYGQJs2bUhJSWHcuHFMmjSppE9dKmw2c6arli4RERERq5T6OnSGYRToVnUHdeqohU5ERESsU6ItdCNGjODGG2+kVq1apKWlMW3aNObNm8fvv/9ekqctdXXqwMqVVqcQERGRsqpEC7ojR45wzz33cOjQIQIDA2nRogW///47Xbt2LcnTlro6dcxJESIiIiJWKNGC7uOPPy7Jp3ca9erByZNgt4OTTsYVERERN6a9XItB/frm1127rM0hIiIiZZMKumJwrqDbudPaHCIiIlI2qaArBiEhUKGCCjoRERGxhgq6YmCzmePo1OUqIiIiVlBBV0zq11cLnYiIiFhDBV0xUUEnIiIiVnHKgi4hIYGmTZsSGRlpdZRCq18fdu8Gh8PqJCIiIlLW2AzDMKwOcTF2u53AwEBSU1MJcPIF3n7+Gbp1g/374aqrrE4jIiIiZYlTttC5Ii1dIiIiIlZRQVdM6tY1v6qgExERkdKmgq6YlC8PNWpo6RIREREpfSroilG9emqhExERkdKngq4Y1a8PO3ZYnUJERETKGhV0xSgsDLZvtzqFiIiIlDUq6IpRw4Zw9CjY7VYnERERkbJEBV0xatjQ/Lptm7U5REREpGxRQVeMVNCJiIiIFVTQFaNKlSA4WAWdiIiIlC4VdMWsYUMVdCIiIlK6VNAVs0aNVNCJiIhI6XLKgi4hIYGmTZsSGRlpdZQiUwudiIiIlDabYRiG1SEuxm63ExgYSGpqKgEBAVbHKZTp06F3bzhxAoKCrE4jIiIiZYFTttC5Ms10FRERkdKmgq6YhYWZX1XQiYiISGlRQVfMKlaE6tVV0ImIiEjpUUFXAjQxQkREREqTCroS0KgRbN1qdQoREREpK1TQlYDGjWHLFnDe+cMiIiLiTlTQlYDwcEhPh/37rU4iIiIiZYEKuhIQHm5+3bzZ2hwiIiJSNqigKwF164KvL2zaZHUSERERKQtU0JUAT09zHJ0KOhERESkNKuhKSJMmKuhERESkdDhlQZeQkEDTpk2JjIy0OsoVCw9XQSciIiKlw2YYzru4ht1uJzAwkNTUVAICAqyOUyRffw19+sCJExAUZHUaERERcWdO2ULnDs7NdFUrnYiIiJQ0FXQlpFEj8PBQQSciIiIlTwVdCfHzg3r1VNCJiIhIyVNBV4I0MUJERERKgwq6EhQeDhs3Wp1CRERE3J0KuhLUrBns2QN2u9VJRERExJ2poCtBLVqYX9evtzaHiIiIuDcVdCUoPNzcBmztWquTiIiIiDtTQVeCfH3NLcDWrbM6iYiIiLgzFXQlrHlztdCJiIhIyVJBV8JatDBb6Jx3gzURERFxdSroSliLFpCaCvv2WZ1ERERE3JVTFnQJCQk0bdqUyMhIq6P8a82bm1/V7SoiIuLajh2DRYusTnFhNsNw3s5Au91OYGAgqampBAQEWB3nihgGVK4MTz8NI0ZYnUZERESK6tgxePttmDABQkPNXaBsNqtTFeSULXTuxGb7axydiIiIuI5jx+DZZ8292RMS4PHHzRY6ZyvmALysDlAWNG8O8+ZZnUJEREQK4+8tcjYbPPYYDB0KwcFWJ7s4FXSloEULmDQJsrLMtelERETE+Rw7BmPGmK1x4BqF3Dkq6EpBixaQl2f2ubdqZXUaERER+bujR+Gtt+D998HDw7UKuXNU0JWCZs3Mr2vXqqATERFxFkeOmIXcxInmVp1DhpiXKlWsTlZ0KuhKQcWK5oBKTYwQERGx3uHDMHo0fPABeHubrXFDhkBQkNXJrpwKulLSogWsWWN1ChERkbLr0KG/CjkfHxg2DJ54wlxezNWpoCslrVvDuHHmunTOON1ZRETEXR08CG++CR9+aE5OfOYZcwkSdyjkzinRdehGjRpFZGQkFStWpGrVqtx2221s2bKlJE/ptNq0gZMnYfduq5OIiIiUDQcOmBMc6teHzz4z15TbvRtGjnSvYg5KuKBLSkpi4MCBLFmyhFmzZpGbm8t1111HRkZGSZ7WKUVEmF9XrLA2h4iIiLs7cAAGD4YGDeDzz+G558xC7qWXoFIlq9OVjFLd+uvYsWNUrVqVpKQkOnbseNnj3WHrr7+rXRvuvBPeeMPqJCIiIu5n3z7zd+zkyVChgjnZYfBgCAy0OlnJK9UxdKmpqQAEXWQaSVZWFllZWfnX7XZ7qeQqLW3awPLlVqcQERFxL/v2wahR8PHH4O9vtsQNGgRu0BZUaKW2l6thGAwdOpTY2FianVuY7R9GjRpFYGBg/qVWrVqlFa9UnCvoSq9NVERExH3t3QuPPGJ2rU6fbo6N270bRowoW8UclGKX68CBA/nll19YuHAhoaGhFzzmQi10tWrVcpsu15kz4frrYds2CAuzOo2IiIhr2rMH/vc/+PRTszv1qafg0UfNdV/LqlLpch08eDA//vgj8+fPv2gxB+Dr64uvG292em5ixPLlKuhERESKavfuvwq5SpXgtdfMQs7f3+pk1ivRLlfDMBg0aBDfffcdc+bMoV69eiV5OqdXpQrUratxdCIiIkWxaxc88AA0bAg//GCOl9u9G55+WsXcOSXaQjdw4EC+/PJLfvjhBypWrMjhw4cBCAwMpFy5ciV5aqeliREiIiKFs3MnvP66uYZcUJA5g/Xhh80ZrFJQiY6hs11kS4RPP/2Ue++997KPd7dlS8Bcqfr11+H0afAotSkpIiIirmPHjr8KueBgc2eHhx6C8uWtTua8SrSFrhSXuHMZbdpAWpo5MaJxY6vTiIiIOI8tW8wxclOnQkgIjBkDAwaokCsMtRGVstatza/qdhURETFt2GAuvN+0Kfz5J7z9ttnd+sQTKuYKSwVdKatc2ZzhqoJORETKujVroFcvaN4cFi2CCRPM7tbHH4cyOtT+iqmgs0CbNrB0qdUpRERErLFiBdx2G7RqZf77ww/NoUiPPAJ+flanc00q6CwQE2O+gc+etTqJiIhI6VmyBG6+2WzY2LgRpkwxx8098AD4+FidzrWpoLNA+/aQnW0WdSIiIu5u/nzo2hWio8015b78EjZtgn79wNvb6nTuQQWdBVq0MNfQWbTI6iQiIiIlwzBgzhyIj4e4ODh61Nxvdf16uOMO8PS0OqF7ccqCLiEhgaZNmxIZGWl1lBLh5QVRUSroRETE/RgG/P47xMZCly7mUl3ffw+rVpkTIFx5DVbD4eB06i6rY1yQU35bBw4cyMaNG0lJSbE6SomJiYHkZPONLyIi4uoMA376Cdq1gxtvhLw8+OUXc1WHW2917UIOYOPmz1j9ZRUO/tgMhyPX6jjncfFvr+tq3x6OH4etW61OIiIicuUcDvjuO4iIgO7dwdcXZs6ExYvhppvgIptGuYz9BxeyaFpdmq7sR0XjDBmNh2FzwvKpRHeKkIuLijLf5MnJ2jFCRERcT14efPMNvPaaOS6uc2eYO9ccL+fqRRzA6dRdrJ5zO9GZy/F2eDC/5j3ExH1ImJdzrqvifCVmGREY+NdCiiIiIq4iNxe++AKaNYM+feCqq2DhQpg925wA4erFXFaWnXm/34bxYwMiM5azOCCeCj0P0LHLZ3g5aTEHaqGzVPv25l8zIiIizi4nBz7/3NxrdccOuOUWSEyEtm2tTlY8DIeDxclDCN31Ph08clnk14TG8V8RH9LK6miFooLOQu3bw8SJcOIEVKlidRoREZHzZWWZCwC/8Qbs3g09epjLj5zbm9wdrFk7Ac81zxLjmcEyz6pkR31Ix/q3Wh2rSFTQWah9e/NrcjJ062ZtFhERkb87exYmT4Y334QDB8wlR3780Rwu5C527vmNo4v6E8UhNlGOVU3fpm2roVbHuiIq6CxUpw7UqGGOo1NBJyIiziAjAyZNgjFj4MgRcxHg556D8HCrkxWfYyc3sHFOH9pnrcfH4cmiOo8QHfseHh6uWxa5bnI3YLOZrXQLF1qdREREyrrTpyEhAd591/z33XfDiBHQsKHFwYpR5pnjLJt9B61P/0krYGHQTUR1mUqobyWLk/17KugsFh8PTzxh/kVUoYLVaUREpKw5ftws4saPN8fL3X8/PP001K1rdbLik5ebTfKChwnbn0iMh4PF5a6heZevia/kPtWqCjqLdeliTgFfsABuuMHqNCIiUlYcPGh2q06aZF5/5BF48klzKJA7Wb78dSpueo0OnmdZ7BVKdodE4kI7Wx2r2Kmgs1jjxlCzprl+jwo6EREpabt3mxMdPvkEypWDoUPh8cchONjqZMVry7bppC97hDa2k6y1VWR9q/FEN33A6lglRgWdxWw2c3XtOXOsTiIiIu5syxYYNcpcFLhyZRg5Eh591Fzo3p0cOpLCjnl3EJO7gz0Ob5aEPU27dqOwufpmspfhlAVdQkICCQkJ5OXlWR2lVHTpAlOnwsmTEBRkdRoREXEnq1ebiwF/843ZnTpmDDz4oPuN27an72fl7N60S0umiWFjQbVexHSaQj3v8lZHKxU2wzAMq0NcjN1uJzAwkNTUVAICAqyOU2L27jWXMPnmG+jZ0+o0IiLiDpYsgddfh59/hnr14NlnoV8/8PW1OlnxysnJJHnuvTQ98g3+NoOlFWNo3eVrAvxDrY5Wqty7/dFF1K4NYWHqdhURkX/HMMwtJbt0geho2L4dPvsMtm6FAQPcq5gzHA6WLH6G/dMq0eHY/7HZtwGnuy4j/tZFZa6YAyftci2LunQxJ0aIiIgUlWHAr7+aLXKLF0OrVvB//wf/+Q+449Cx9Rsnk7fySaI87KzwCCK77UQ6NLzd6liWcsP/ZtfUpYs5YPXAAauTiIiIq3A4zOE6ERFwyy3mbb/8AitXwn//637F3J79c1j8VS2arX6QckY2yxu9RsRdJ2hcxos5UAud04iPN7/OmQP33GNpFBERcXK5ufDVV+Zkh82bzUaBOXPM3yU2m9Xpit/J09tYN/t2os+uxsfhwYLQ+4jp8AGeXj5WR3Mabla7u66QEGjZUt2uIiJycVlZ5kLAjRpB377m+OvFi+HPP6FTJ/cr5s5mnSbp15vx/LkRrc+sJjnwWgL/e4QOnT5RMfcPaqFzIl26wPTp5lgId/uhFBGRK5eRAR99BG+9BYcOQa9eMGOG2RDgjhyOXBYvfIw6ez6kvUcei/ya0bTzNOKDrrY6mtNSC50TufZa2L/fbD4XERFJTTUXA65bF556Crp2hY0b4euv3beYW7X6HbZMDaD9/ons96zK3thfifvvOkJUzF2SWuicSHw8+PmZM5XCw61OIyIiVjl6FN59F95/H86cgfvvh6efNteTc1fbd/3IycUP0pajrKcCa5qNJ6rFIKtjuQwtLOxkbrwRcnLM8RAiIlK27Nljdqt+/DF4esLDD5t7rdasaXWyknPk2Gq2zLuD9tmbOeDw4kC9gUTFvOP2W3UVN7XQOZkbbzSb1dPTwd/f6jQiIlIaNm6EN96AL7+ESpVg+HAYNMi9t4NMzzzM8j/70MaeRHPDxsKQW4nq9Bm1fctGA05xU/nrZG66yWyh02xXERH3t3Qp3HYbXH21ucPDmDFmK92LL7pvMZebe5YFs+8h49uriE5LYnmFNti67yDuhu/xVTF3xZyyoEtISKBp06ZERkZaHaXUhYWZl19/tTqJiIiUBMMwh9V06QJRUbBpk9nFumMHPPEEVKhgdcKSYTgcpCwbye6vKtHhyBds967FsU4LiO+RQqVANx4cWEo0hs4JPfmk2ex+4ID7rfItIlJWORzmUiNvvAHLl0Pr1mbXao8e5ng5d7Zp61TOLhvENR6nWeWohG+bcTRt0tfqWG5F5YITuu02OHzYbIoXERHXlp0Nn34KTZua23H5+8Mff5hF3X//697F3P5Di1g0rR7hy+8mwMhkWdgLtLrzhIq5EqBJEU4oJsbcOWLGDIiOtjqNiIhciYwMmDwZ3n4b9u2D7t1hyhSzm9Xdpdr3sGp2L6IyUvAxPFhQ8y6i4ybTwMvP6mhuSy10TsjTE2691SzonLdDXERELuTUKXjtNXMx4CefhLg4WLcOfvjB/Yu57Ox0kv7oQd4P9YjMSGFJQEfK/2c/Hbp8gZeKuRKlFjon1aOH+Zfdxo3m7CcREXFuhw7B2LEwcSLk5pqLAT/1lHsvBnyO4XCwZPGT1Nw5gViPXBb5NqZRpy+JD2ltdbQyQwWdk+rc2RxnMWOGCjoREWe2Y4e5GPCnn5q7/QwaZM5WrVbN6mSlY+269/FY8wzRHumkeIaQE/UhHevfZnWsMkezXJ1Y796wfTusWGF1EhER+adVq8xC7uuvITjYLOIefRQCA61OVjp27f2DIwvvI4pDbMorx9nmr3JNqyetjlVmqYXOifXoAXfcYS4yWaeO1WlERMQwYM4cGD0aZs40x8m9957ZvVqunNXpSsfxk5vYMKc3MVnr8HZ4sqjOw0THjsfDQyWFlTQpwonddBN4e5sDaUVExDp5eTB9OkRGwrXXwtGj5nqh27bBwIFlo5jLPHOceb9ch8+vTWl1dh2LKt9I8O3Had9xooo5J6CCzokFBJgric+YYXUSEZGy6cwZc5JDo0bmMJhKlcw15FauNHtQvMpAHZOXm83CeQ+Q+k012p+exapyrci9eTPxN/2Kn28lq+PJ/1cG3oqurUcPeOQROH7cHKMhIiIl7+RJeP99szv1xAlzAeCvv4Y2baxOVrpWrBiF/8ZXiPU8y2Kvq8iOTSSuVherY8kFqIXOyd12G9hs8M03VicREXF/e/fCkCFQuza8/rpZyG3ZUvaKua3bv2H51GAitowgy+bNupaTiL5jP3VUzDktzXJ1ATfeCOnpsGCB1UlERNzT+vXmRIevvoKKFc1xcYMHQ9WqVicrXYeOLGd70p20z9nGHoc3R8KeoF27N7BpY3Gn55RdrgkJCSQkJJCXl2d1FKdw993mZfduc0aViIj8e4Zh/qH85pvw669Qq5a5DMkDD5jrgJYl9vT9rJzdh7Zpiwg3bCyo9l9iOiVSz7u81dGkkNRC5wLS080FKp97DkaMsDqNiIhrczjM1QPefBOWLjUXb3/6aXOSg7e31elKV05OJsnz7qfp4en42wyW+kdzTZdpBFasbXU0KSK1oboAf39zcsQXX2hvVxGRK5WVZW6pGB4O//kP+PrCzz+b+6z27Vu2ijnD4WDpkuHsn1aJDke/ZotPfU5du4T425JVzLkop+xylfPddRdMnQqrV8M111idRkTEdaSmwgcfwLvvwpEj5mSzxESIirI6mTXWb/yYvJVDaedhZ4VHENlt3ye2YW+rY8m/pILORXTtCiEhZiudCjoRkcs7cADGjTOLuawssxXuqaegcWOrk1lj74F57F/QlxjHPrYZvixv9CoRrUdowoObUEHnIry8oE8fcwbW6NHg6Wl1IhER57RxI7z9Nnz+ubmDw6OPwmOPQc2aViezxsnT21g7pw8xZ1bi7fBgQei9xHSYhKeXj9XRpBipLHchd98Nhw7B3LlWJxERcS7n9li9+WZzksPvv8Nrr5nryr3xRtks5s5mnWbeb7fg8XNjIjJXkhzYhYCeh+jQ6VMVc25IBZ0LiYyEhg1hyhSrk4iIOIecHHNP1YgIc6vEffvM8XG7dpkzVwMDrU5Y+hyOXBYtGMjx6cHEnvyFtX5NOXvDOuJv+ZMK5cvYwnpliAo6F2KzQf/+8O23cOqU1WlERKxjt5vdqg0amJPGQkJg5kxYs8YcK+dTRhugVq95l81TA2m/730OeIawN/YXOv53PSHBzayOJiVMBZ2L6dfvr79IRUTKmn37YNgwcxHg4cOhc2eziPvjD3PymM1mdUJrbN/1I8u+rEarDUMwsLGm2Xu0u/MQ9evcZHU0KSUlWtDNnz+fbt26UbNmTWw2G99//31Jnq5MqF4dunWDjz7SmnQiUnasXg333AP165uff488YnarTpkCLVpYnc46R4+vZf7/hVMv+VZq5J0kufZgwu86TcsWg62OJqWsRAu6jIwMWrZsyYQJE0ryNGXOAw+Yf5EuX251EhGRkmMY5uSGa681l2tasADGjDFb6d54A666yuqE1snIPMq8nzpT/veWND+7hQVVulP19hPExL6Hh4cWsCiLSvR//cYbb+TGG28syVOUSTfcALVrw8SJ5kQJERF3kpVlLtH09tuwfj20aQPTpkHPnuYSTmVZXm42yfMfpOGBL4j2cLC4QgStOv8f8YH1rI4mFnOqMXRZWVnY7fYCFzmfp6fZ3fDll3DihNVpRESKx8mTMGoU1K0L990H9epBUhIsWwa9e5ftYs5wOEhJeZmdXwXQ4fBn7PCuxdH4JOJ7LKeSijnByQq6UaNGERgYmH+pVauW1ZGcVv/+5tePP7Y2h4jIv7VzJzz+uNnz8PLL0L07bNoEP/4IHTuW3YkO52zaOpVVXwYTuW0kGTY/Nl4zhfZ9dlPrqo5WRxMnYjOM0hlab7PZmDFjBrfddttFj8nKyiIrKyv/ut1up1atWqSmphIQEFAKKV3LvffCvHmwY4d2jhAR12IYsHAhjB0LP/wAlSvDwIHmpaqWSgPgwOHF7Eq6i9i8XezI8+F4o6doG/mqtuqSC3KqBmxfX198fX2tjuEyBg0yF9D85RfzL1oREWeXnQ3/939mIbdiBYSHm+OB774bype3Op1zSLXvYdXs24nKWIaPYWN+jTuIif+EBl5+VkcTJ+ZUBZ0UTZs20K4dvPeeCjoRcW4nTsCkSZCQAAcPwnXXwW+/mV/V4GTKzk5n8dy+NDv6PZE2gyUBHYjoPI2O/mVw3zIpshIt6NLT09m+fXv+9V27drF69WqCgoKoXbt2SZ66zBgyBPr0Mf/SjYiwOo2ISEGbN8O778Jnn5ndrPfcY46Xu/pqq5M5D8PhYMmSYdTc8R6xHrkk+zaiYaeviA9pbXU0cSElOoZu3rx5dOrU6bzb+/Xrx5RCbEhqt9sJDAzUGLpLyM2FJk2gdWuYPt3qNCIiZuH2559mt+pvv5kLog8cCA89ZG7RJX9Zt2ESrHyK5p7ppBghBEZNpFGDnlbHEhdUapMiroQKusKZNMlcxmTLFmjY0Oo0IlJWnT0LU6eaLXLr10OrVmYvQu/eoOHRBe3eO4vDi+4lyjjI5rxyZDZ7mdbXDLM6lrgwFXRu4OxZc92m7t3hww+tTiMiZc2RI/D+++bkhuPHze0JhwyBuDgtOfJPx09uYsOc3sRkreOow5Ndte8npsP72t1B/jUVdG7izTfhxRdh926oUcPqNCJSFqxZY7bGffkleHubiwE/9ph6Ci7kzNmTLJ19B9ecmgnAqsrX067Ll5TzC7I4mbgLFXRuIjXVXJTz4YfN4k5EpCTk5sJPP8G4ceYuDrVqweDB5h7TlStbnc75OBy5JM9/hPr7PiXEI49kvxZc3WkawUHhVkcTN6PJ4m4iMBAefdTs8jh92uo0IuJuTp6Et96CsDD4z3/Mwm7aNHNh82HDVMxdyMpVo9k6NYDYg5PZ41WdAx1mEtdzjYo5KRFqoXMjhw+bY+leeAGee87qNCLiDtavh/Hj4fPPIS8P7rjDbJHTMkkXt3XHt6QueZhI23HW5flD6zE0v/ohq2OJm1NB52YGD4YvvoBdu6BSJavTiIgrysszd6AZNw7mzDHH5T76KAwYoG25LuXQkeVsT7qTmJxt7HN4c6jB40RFvamtuqRUOOW7LCEhgaZNmxIZGWl1FJczYgRkZcHbb1udRERczenT8M475qSGW2+FM2fgq6/MyVbPP69i7mLS0g8y74cOBM6KpGnWdhYG/4eavU8SHfOWijkpNWqhc0NPP22Opdu5U4t4isjlbdpkdqsmJkJOjrlu3GOPgf6mvrTc3LMkz72P8MNfU9FmsMS/Hdd0mU5gRe2EJKVPBZ0bOnEC6tWDBx9US52IXJjDAb/+au4FPWsWVKtmLlD+0EPmzg5ycYbDwbJlzxOy7W3qemST7FWfenFfcFX1aKujSRmmlQzdUJUqMHQovPGGOaaubl2rE4mIszh5Ej755K9W/MhIc9xtr17g42N1Oue3cVMi2Ssep51HKittldkaOYXYRndYHUtELXTuKj3dHAfTqZO56KeIlG3Ll5u7OXz1ldk6d/vt5v6qUVFWJ3MN+w7MZ9+Ce4hx7GVbni+nm4ygTcTzGiMnTkMFnRv7+GNzsc+lS6FtW6vTiEhpO3sWpk+HhARYtsxcfPyRR+D++zXBobBOpe5gzezeRJ9ZwSmHB9uuuoeYjh/i6aXmTHEuKujcWF4eXHMNBATAggXaU1GkrNi1Cz74wPyj7sQJuO46szXu5pvB09PqdK4hK8vO4jl30fL4L3jbDJYHdiayy1dUKK9KWJyTxtC5MU9PcwmCrl3NMTL33GN1IhEpKQ4H/PGH2a36yy/m7jH33We2yGlv1cJzOHJZsmgItXZ/QKxHLsl+TQnvNI344OZWRxO5JLXQlQF9+piLg27Zou15RNzNPyc5tGpltsbdeSeUL291Oteyes04vNc+x9WeGSylGsHRk2lQ7xarY4kUigq6MuDgQQgPN7fs+eADq9OISHFYscIcG3dukkOvXn9NctDwiqLZuedXji3qTzsOszGvPNkt/kerlo9bHUukSFTQlRETJphLmCQnQ7SWShJxSRea5PDww9C/vyY5XIljx9ezaW5vYrI3csjhxb66DxPVfiweHhqNJK5HBV0ZkZcH7dqZq8CvWAFe+rwScRlbtsCHH8KUKWYXqyY5/DsZmUdJmX0HEalzyMPG6io3E915Kr6++j0jrksL6JQRnp5md+u6debK8CLi3LKyzO7UTp2gSRNzW6777zeLuz/+gO7dVcwVVV5uNgvm3Iv92xpE2+ewonwERrdtxN/4k4o5cXlqoStjBg+GTz+FNWugQQOr04jIP23b9ldr3PHjEBdnbsf1n/+Ar6/V6VyT4XCwfMVrVNr8Pxp6ZpHsUZtaHT6j1lVxVkcTKTZOWdAlJCSQkJBAXl4eW7duVUFXjNLSoGVLqFkTkpL0F76IM8jOhu+/h0mTzBnpQUHQrx8MGGC2zsmV27z1KzKXDaS1xynWOALwiniXq8PvszqWSLFzyoLuHLXQlYwFC8y/+v/3P3j2WavTiJRdO3bARx+ZreZHj0JsrNka99//gp+f1elc28HDS9mZdCcxuTvZ7fDhWMMnadv2NW3VJW5LBV0Z9cwzMHasOVOuVSur04iUHTk58OOPZmvcrFlQqRL07Wu2xl19tdXpXF9q2l5Wze5Nu/QlpBs2NlXvTXT8x3h7a1E+cW8q6MqorCxzf1eHA1JS1BogUtI2bza34vrsM7M1LjrabI3r1UsLABeH7Ox0Fs+7l6uPfEd5m8GyirFEdPmaiv41rY4mUipU0JVha9eaRd1995mrzItI8UpPN9eN+/hjcw3IoCC4+25z3bgWLaxO5x4Mh4MlS56hxo5x1PbIYZF3Q8LivqRGtTZWRxMpVVqNrAxr0cJcwuShh6BDB3OrIBH5dwwDliwxi7ivv4aMDLj2Wpg2DW67TTNVi9O6DR9irHqKaI80lnsEk9PuAzqE9bQ6logl1EJXxhmGOX5nxgxzPF3TplYnEnFNR4/C55+bhdymTeYuDvfdZ17q1LE6nXvZs282Bxf2I9o4wJY8P9KvfomI1prhJWWbCjohI8PsejUMWLoUKla0OpGIa8jLMxf5/fhjc6KDh4fZCte/P3TpomWBituJU1tYP6c3MWfXcMzhyc5a9xEdm4Cnl4/V0UQsp4JOALNFoV07iI83W+v0i0jk4nbuhE8+MRf/PXDAHL7Qvz/cdRdUqWJ1Ovdz5uxJls65i2tO/o4NWFn5Otp1+YpyfkFWRxNxGiroJN+vv0K3bvDUU/Dmm1anEXEudjv83/+ZW3AtWAABAea40/79ISICbDarE7ofhyOX5AWDqLd3MlU98kj2bc7Vnb8mOCjc6mgiTkeTIiTfTTfBmDEwdKg5lq5fP6sTiVgrL8/cuSExEb77Ds6eNbtSP//c3IpLy42UnJWr3qLc+peI9TzDEq+aZLf/hLja11sdS8RpqaCTAp54AjZuhAcegJAQs8gTKWs2bzaLuM8/N7tUGzeGF14wlxypVcvqdO5t284ZnF78EJG2Y6yz+bO2xftENXvE6lgiTk8FnRRgs5lr0h09am4/NHOmuR2RiLs7edJcWiQx0ZzxXakS9OljtlS3a6cu1ZJ2+NhKts29g5icrex3eLG4wVCiot7SVl0ihaQxdHJBZ8/CjTfCqlWQlAQtW1qdSKT4nT0LP/8MU6fCL7+YO6fccINZxHXrph1USkN6xiGWz+5NpH0BWYaNdVVvI7rTZ/j4+FsdTcSlOGVBl5CQQEJCAnl5eWzdulUFnUXsdujcGfbvh4ULISzM6kQi/15envlHytSp8M035vs8IsKcoXrHHVC9utUJy4bc3LMkz+tPk0PTCLA5WFKhLdd0mU5ggBbtE7kSTlnQnaMWOusdO2buInH2LMybB3XrWp1IpOgMA9asMYu4L7+Egwehfn2ziLvzTmjSxOqEZYfhcJCS8hJVto6mgWc2Cz3rUbfj54TWaG91NBGXpoJOLmv/fnN9upwcmD1bLXXiOvbsMQu4L74wJ/sEB0Pv3mYhFxWlcXGlbePmz8he/hitPFJZ6ahMubbjCW90l9WxRNyCCjoplAMHzOUaTp0y16uLiLA6kciFHTxorhc3fTokJ0O5cubuDXffDV27gre31QnLnv0HF7Jn/t20d+xhe54vp5oMp03EC5rwIFKMVNBJoR0/DrfcAhs2mGtyde1qdSIR05Ej8O238PXX5qK/Xl5w/fVma9xtt4G/xtdb4nTqLlbP6UV05gpOOzzYetVdRHf8EC8vzTYRKW4q6KRIMjLg9tvN5UymTDG7rkSscPy4+YfF11+b4zs9PODaa/8q4ipVsjhgGZaVZWfJ3HtocewnvG0GywPjadPlK/zLa8aJSEnROnRSJBUqwPffw4ABZhfWwYPmVmEaiySl4dQp8/339dfw55/mZIfOnWHSJOjRQ/uoWs1wOFicPITQXe8T65HLIr8mNOk0jfhgrXskUtJU0EmReXubG5PXrAlPPw2rV8NHH2kbJCkZR4/Cjz/CjBkwaxbk5kJcHIwfDz17QtWqVicUgDVrx+O1Zjgxnhks86xKdvRHdKzX3epYImWGulzlX5k2zdycPCzM7P5q0MDqROIO9uwxC7gZM8w1EMFcPqdnT3MHkxo1rM0nf9m55zeOLbqfdhxmY155slu8RquWQ6yOJVLmqKCTf23dOnOj8uPHzW2TuuuPcikiw4BNm8w/CmbMgJUrwcfHnHjTo4f5ngoJsTql/N2xE+vZNLcPMVkbOOzwZE/dh4huPw4PD3X8iFhBBZ0Ui9Onze2SfvzRbLF75x3Qf5lcisMBKSl/tcRt3WrORr35ZrOIu/FGvYecUeaZ4yyb3YeI07NxAKuq3ExU5y/w861kdTSRMk0FnRQbw4CPP4YhQ8zB6VOmmAsSi5yTkWFOZvjlF/Ny8KC52G/37mYrb5cu2j/VWeXlZrN4wcM02J9IFQ8Hi/2uoXmXrwmq1NDqaCKCCjopAbt2wb33wvz5ZnH3+uvm4q5SNu3aZRZvP/9sLi+SlQWNGpktcd27Q2ysuW6cOK/ly18nYNNrNPI8S7JHLa6KnUKd0M5WxxKRv3HKgi4hIYGEhATy8vLYunWrCjoX5HDAu+/CiBHmbNixY81f3lrexP3l5po7NPz8s1nIbdxozozu2NFcmPrmm6GhGnVcwpZtX5O+7FEibCdZ4wjAs/U7NGva3+pYInIBTlnQnaMWOte3ZQs8/jj88Ye5cv+772ojdHd04IC5pMgff8Dvv5tjKqtWNYu3m282JzfoR9h1HDqSwo55dxCTu4M9Dm+ONnyStm1f11ZdIk5MBZ2UOMOAn34yu1/37oVBg+DZZ6FaNauTyZXKzDS71GfONC8bNpitrxERcNNNZktcRIS5e4O4Dnv6Plb+2Zt26YtJN2xsrH47MfGf4O2tRSZFnJ0KOik1Z8/C22/Dm2+a3XIDB8KwYVoY1hXk5sKqVTBnjtkSt2ABZGdDaKjZ8tq1qzmhITjY6qRyJXJyMkme24+rj3xLBZvB0ortad1lGgH+oVZHE5FCUkEnpe7kSXNM3bhxkJdnFnZPPaXCzpnk5Zk7gMyda05kWLAA7HZzN5BOneC668xL48YaF+nKDIeDZUuHU3X7WOp45LDIO4ywuC+pUS3S6mgiUkQq6MQyJ0+a69WNG2e29vTubXbHtm1rdbKyJycH1qwxC7e5c83u1NRUc3Zy+/bm8jOdOkFkpDnBQVzf+o2TcawcSguPNJYbVajY9n0aN7zd6lgiZd6aNWsYM2YMu3bt4tlnn6V9+/a8/PLLZGVlcfjwYV566SVatWp13uNU0InlTp4094Z9/31ziYvISLPVrndvrUlWUk6dgsWLzdmoixbBsmXmuDg/P4iJKVjA+fpanVaK0559szm48F6ijf1syfMjvemLREQMtzqWiPx/999/Px9++CFvvPEG7733Hh07dmTcuHFs3bqV66+/noceeojx48ef9zit/iSWCwoyu1yHDDFnSE6YYK5j99hjcOutZmHXtau5FZQUXW6uuXTIihV/FXEbNpj3hYSYLXAvv2wWchERKuDc1cnT21g3+3aiz67Gx+HBwlr9iY59H08v/WCJOIsdO3ZQs2ZNvLy8OHjwICdPnmTEiBFcddVVLF68GH9/f7p163bBx6qFTpzS9u0wdSp8/bW5x2flyuZ2UL17my1H6va7sJycv4q3c5c1a8wJKTYbNG1qFnAxMebXBg00Bs7dnc06zZLZd3LNyd+wASsrd6Vt5y8pX04zWEScTXJyMuXKleOaa66hRYsWBAUFMW/evEI9VgWdODXDgPXrzcLu66/NQq9SJXNA/rXXQlycuUhtWSxKUlPNYnf9enMz+3PFW1aW+f1o3NhscTt3ueYaqFjR6tRSWhyOXBYvHEydPR9R3SOPRb7Nadr5K0KCrrY6mohcxvHjx6latSovvvgiI0eOLNRj1OUqTs1mg+bNzcurr5pLZ/z0E/z6Kzz8sLkjRY0a5i4EcXFmy1N4uHt1z546Zba6/fOyf795v81mLtYcEQF33GF+bdVKxVtZtmr12/ite4H2nmdY4lmDnNhPiKt9g9WxRKSQ5s6di2EYxBdhQ3S10InLstvNAf1JSeZl+XJzvJi3t1nUtWz51+Xqq82FjJ1xodvcXHOT+p07L3w5dsw8zsPD7CK9+mqz6/TcpXFjczkRke07f+DUkgeJ5Bjr8yrgaDWaFs0ftTqWiBTRo48+yieffMLp06fxK+TsQBV04jYyMswux9Wrza9r1sDatXDmjHm/ry/Urg116piXunXNr9Wrm2P0goLMr4GB/67wy8kxi0273ewWtdvh6FE4fBgOHTr/cuyY2bUMZmtbaCjUqwf165uXsDCziGvUSLN+5cKOHFvN1nl9iMnewn6HFwfrDyIq+m1t1SXiosLDw6lWrVqhx8+BBQWdYRikpaVd8L6srCyysrLyr6elpdG0aVP27dungk6uSF6e2cq1dSvs22duPbZvn3nZs8dcMuVCKlUyW718fMwWPx8fsyD08jK7eXNzz79kZEBamjkB4UK8vc1WwmrVzCKyevW//l2zplnE1aqlWaZSeOmZR1g17z5apy0iy4CNwTcT2eEDfH31eSniLCpWrIitCAO9Dx8+TI0aNXjppZcKPX4OLCjozrW6iYiIiLi7ovYyrlmzhuuvv545c+bQtGnTQj/OqVvoDh06RNu2bdm4cSNXXXVVqeSLjIwkJSXF7c5V2ucrzXPZ7XZq1apVai25+n9zvfOV9nsESua1GQ4HK1aOImj7WOp75LDEoza1Yj/itm6D3fL/rbTPpc8S1zxXaZ7vSt4jRW2hu1KlPsvVZrMV+QelYsWKpfYh7Onp6ZbnKu3zlfZrAwgICCiVc+r/zXXPV1rvESj+17ZpyxecTRlMZ4/TrCpfiQNt3uO6JveUyLkux53fk6DPElc7lxXnK83PksLSsiX/MHDgQLc8V2mfr7RfW2nS/5vrnq80Fddr239wIXvm30N7x252GD6khL1EmzYvFpjw4M7/b3qPuOb53Pm1OSunnuW6f//+/KbN0NBQq+OIk9JsaLkcV3yPpNp3s3r27URlppDq8GBLzTuJjvsILy9NdS4prvg+kdLlzO8Rp26h8/3/0/18Ne1PLsHX15eXXnpJ7xO5KFd6j2Rnp7N47j00P/oDbWwGiwPiaHPtNDqUr251NLfnSu8TsYYzv0ecuoXOmSthEZHiZDgcLF78JFftnECoRy6LfJrQOP4rqoW0sjqaiLgAp26hExEpC9auex+P1U8T45nBMs+q5ER9SMf6t1odS0RciAo6ERGL7Nr7O0cW3k8Uh9hEOVY1HUPbVk9aHUtEXJAKOhGRUnbs5AY2zulD+6z1eDs8WVTnEaJj38PDQx/JInJl9OkhIlJKMs8cZ9mcO2h96k9aAYuCbqJdl6mE+layOJmIuDoVdCIiJSwvN5vFCx+lwb5PifFwsLhcK5p3mU5cpYZWRxMRN+Fx+UNEnM/IkSOx2WwFLtWra1mHsm7+/Pl069aNmjVrYrPZ+P777wvcbxgGI0eOpGbNmpQrV474+Hg2bNhQoplWrBjF9q8CiT34Mbu9anIobjZxPVcRpGLOEpd7j9x7773nfbZERUVZE1YsMWrUKCIjI6lYsSJVq1bltttuY8uWLQWOseKz5HJU0InLuvrqqzl06FD+Zd26dVZHEotlZGTQsmVLJkyYcMH7R48ezTvvvMOECRNISUmhevXqdO3a9aL7S/8bW7d/w/KpwURsGUGWzZv1rT4i+o591AntXOznksK73HsE4IYbbijw2fLrr7+WYkKxWlJSEgMHDmTJkiXMmjWL3NxcrrvuOjIyMvKPKc3PkkIznNCECROM8PBwo1GjRgZgpKamWh1JnMxLL71ktGzZ0uoY4sQAY8aMGfnXHQ6HUb16deONN97Iv+3s2bNGYGCg8cEHHxTbeQ8eXmbM/zrMyPsCY+dn3sbi5KcNR15esT2/FJ9/vkcMwzD69etn3HrrrZbkEed09OhRAzCSkpIMwyi9z5KicsoWuoEDB7Jx40ZSUlKsjiJObNu2bdSsWZN69erRp08fdu7caXUkcWK7du3i8OHDXHfddfm3+fr6EhcXR3Jy8r9+fnv6fub90J7AWW0Jz9rBgpBehPY5TVT0mwX2XRXnN2/ePKpWrUqjRo148MEHOXr0qNWRxEKpqakABAUFASX/WXKl9CkjLqldu3Z89tln/PHHH3z00UccPnyYmJgYTpw4YXU0cVKHDx8GoFq1agVur1atWv59VyInJ5P5s3qTNaM27dKSWeYfg0+PPcRdNx1v7/L/KrOUvhtvvJGpU6cyZ84c3n77bVJSUujcuTNZWVlWRxMLGIbB0KFDiY2NpVmzZkDJfZb8W5rlKi7pxhtvzP938+bNiY6OpkGDBiQmJjJ06FALk4mzs9lsBa4bhnHebYVhOBwsW/YcVbe9TaxHDsk+DagfN5X46u2KK6pYoHfv3vn/btasGW3atKFOnTr88ssv/Oc//7EwmVhh0KBBrF27loULF553X3F9lhQXFXTiFipUqEDz5s3Ztm2b1VHESZ2bBX348GFq1KiRf/vRo0fP+0v7ctZv/Ji8lUNp52FnhUcQ2W3fJ7Zh78s/UFxOjRo1qFOnjj5byqDBgwfz448/Mn/+fEJDQ/NvL87PkuKkLldxC1lZWWzatKnAD5fI39WrV4/q1asza9as/Nuys7NJSkoiJiamUM+x98A8kqfVptnqByhnZLO80WtE3HWCxirm3NaJEyfYt2+fPlvKEMMwGDRoEN999x1z5syhXr16Be4vjs+SkqAWOnFJTz31FN26daN27docPXqU1157DbvdTr9+/ayOJhZKT09n+/bt+dd37drF6tWrCQoKonbt2jzxxBP873//o2HDhjRs2JD//e9/lC9fnjvvvPOSz3vy9DbWze5N9NlVeDs8WBB6HzEdPsDTy6ekX5IUs0u9R4KCghg5ciQ9e/akRo0a7N69mxEjRhAcHEyPHj0sTC2laeDAgXz55Zf88MMPVKxYMX9cXGBgIOXKlcNms13xZ0mJsmx+bSGkpqZq2RK5oN69exs1atQwvL29jZo1axr/+c9/jA0bNlgdSyw2d+5cAzjv0q9fP8MwzOUGXnrpJaN69eqGr6+v0bFjR2PdunUXfb4zZ08Zc3+5yTj9OYb9c4y5P11rZGQeK6VXIyXhUu+RzMxM47rrrjNCQkIMb29vo3bt2ka/fv2MvXv3Wh1bStGF3h+A8emnn+YfU9TPktJgMwzDKPUqspDsdjuBgYGkpqYSEBBgdRwRKSMcjlyWLHyc2nsmUd0jj2TfqwnvNI2QKs2sjiYickHqchUR+ZvVa8bis/Z5YjwzWepZnez2H9Oxzk1WxxIRuSQVdCIiwPZdP3Jy8YO05SjrqcCaZu/RrsVgq2OJiBSKCjoRKdOOHl/L5rm9aZ+9GR+HF8n1HiM6Zqx2dxARl6KCTkTKpIzMI6TM7kOb1Hk0N2wsCLmV6E6fUdtX43VFxPU4ZUGXkJBAQkICeXl5VkcRETeTm3uW5KQBND44lWgPB4srtKFV5+nEB9a7/INFRJyUZrmKSJlgOBwsX/EKlTa/QUPPLJI96lC74+eE1uxgdTQRkX/NKVvoRESK06atUzm7bBCRHqdZbQtkY+sPiWnS1+pYIiLFRgWdiLitA4eS2TX/bmLzdrHD8GFZg+eJjHxZEx5ExO2ooBMRt5Nq38Oq2bcTlbEMb8OD+TXuJCb+Yxp4+VkdTUSkRKigExG3kZ2dzuK5fWl29HsibQZLAjoS0fkrOvrXtDqaiEiJUkEnIi7PcDhYsvgpau4cT6xHLot8G9Oo05fEh7S2OpqISKlQQSciLm3d+g+wrR5GtEc6KZ4hZEdNomP9HlbHEhEpVSroRMQl7d47k8OL7iPKOMhmoxwrw0cTec0wq2OJiFhCBZ2IuJTjJzexcU5vorPW4e3wZGHth4jpMAEPD32ciUjZpU9AEXEJZ86cYOmcO2l9aiYtgUVBN9Cu81Su8guyOpqIiOVU0ImIU3Pk5ZC84FHq7/uU9h55JJdrSbPOXxNfubHV0UREnIYKOhFxWitWvoH/hpeJ9TzLYq+ryIlNJK5WF6tjiYg4HRV0IuJ0tm3/ltSlD9PGdpx1toqsazmO6KsHWB1LRMRpOWVBl5CQQEJCAnl5eVZHEZFSdOjIcnYk3UlMzjb2OrxZEvYU7dq9qa26REQuw2YYhmF1iIux2+0EBgaSmppKQECA1XFEpISkpR9kxezbaZu2iDOGjQ3VehIdPwVvnwpWRxMRcQlO2UInImVDTk4mi+fdT9PD02lnM1jqH8U1Xb6mY8XaVkcTEXEpKuhEpNQZDgfLlj1PyLa3ifXIJtmnPvXjphJfPcrqaCIiLkkFnYiUqg2bPiV3xRO087Cz0iOIbW0TiG3Yx+pYIiIuTQWdiJSKvQfmsX9BX2Ic+9hm+LK80StEtH5OEx5ERIqBCjoRKVGnUnewZvbtxJxZiY/DgwWh9xLTYRKeXj5WRxMRcRsq6ESkRJzNOs3SOffQ8sQvRGCQXKkzkZ2/okP5qlZHExFxOyroRKRYORy5LFn0BLV2T6K9Ry7Jvk0J7/Q18cHNrI4mIuK2VNCJSLFZvWYcPmtHEOOZyVLP6uTETKZj3ZutjiUi4vZU0InIv7Zj188cX/wA7TjCBiqwptk42rV4zOpYIiJlhgo6EbliR4+vZfPcPsRkb8LH4UVyvcFExbyDh4c+WkRESpM+dUWkyDIyj5Iyuw9tUufS3LCxMKQ70Z0+p5avtugTEbGCUxZ0CQkJJCQkkJeXZ3UUEfmbvNxskuc/SMMDXxDt4WBJ+QhadPma+MAGVkcTESnTbIZhGFaHuBi73U5gYCCpqakEBOgvfxGrGA4HK1a8RuDm/9HQM4tkj9rU6vA5ta7qaHU0ERHBSVvoRMR5bN76FZnLBtLG4xSrbYFsvGYSMeH9rI4lIiJ/o4JORC7owOHF7Eq6m5jcnewyfFjaYARtI1/VVl0iIk5IBZ2IFJCatpdVs28nKn0pPoaNhTXuICb+Exp4+VkdTURELkIFnYgAkJ2dzuK5/Wh2dAZtbQZLAjoQ0XkaHf1rWh1NREQuQwWdSBlnOBwsWTKMGjvG08Ejh0W+jWgY/yXxVSOsjiYiIoWkgk6kDFu3YRKsfIpoz3RSPILJjvqADg16Wh1LRESKSAWdSBm0e+8sDi26j2jjAJspx8rwN4m85mmrY4mIyBVSQSdShpw4tYX1c24n5uxafByeLKz9IDEd3tdWXSIiLk6f4iJlwJmzJ1k6+06uOfUHrYBFla+nXZcvifULsjqaiIgUgxJdUOr1118nJiaG8uXLU6lSpZI8lYhcgMORy8KkAZz8v6q0P/0Hq8u1IOemjcTf/DvlVMyJiLiNEm2hy87OplevXkRHR/Pxxx+X5KlE5B9WrhpN+fUjifU8wxKvmuS0n0Jc7a5WxxIRkRJQogXdyy+/DMCUKVMKdXxWVhZZWVn51+12e0nEEnFr23Z+R+rih2hjO846/FnXYiJRzR62OpaIiJQgpxpDN2rUqPwiUESK5vCxlWybewcxOVvZ7/BicYOhREW9pa26RETKAKf6pB8+fDipqan5l3379lkdScTppaUfZN6PHan4RwRNs7axMPg/1Oh9iuiYt1XMiYiUEUX+tB85ciQ2m+2Sl+XLl19RGF9fXwICAgpcROTCcnPPMv/POzk7oxZR9gWk+LfD69ZdxF3/LT4+/lbHExGRUlTkLtdBgwbRp0+fSx5Tt27dK80jIpdhOBwsS3mB4K1j6OiZzUKf+tSL+4L46tFWRxMREYsUuaALDg4mODi4JLKIyGVs3JRI9orHaeeRykpbZTa3+ZTYRndaHUtERCxWopMi9u7dy8mTJ9m7dy95eXmsXr0agLCwMPz91SUkUlj7Dy5g7/y7iXHsZZvhy/KGLxMR8bzGyImICAA2wzCMknrye++9l8TExPNunzt3LvHx8Zd9vN1uJzAwkNTUVI2nkzLpdOouVs/pRXTmCk45PNh21d1Ed5yEl5ef1dFERMSJlGhB92+poJOyKivLzuK599Dy2E942wyWB3Yisss0KpSvanU0ERFxQk61Dp1IWWc4HCxOfoLQXRPp4JHLIr9wmnSaRnxwC6ujiYiIE1NBJ+Ik1qwdj9ea4cR4ZrDUsxo50ZPpWO8Wq2OJiIgLUEEnYrGde37l2KL+tOMwGynP6qvH0q7lE1bHEhERF6KCTsQix46vZ9O83sRkbcTH4Uly3YFEtX8XDw/9WIqISNHoN4dIKcs8c5xls/sQcXo2LbCxsMrNRHX+glDfSlZHExERF6WCTqSU5OVmk7zgIcL2f0aMh4Pk8q1p2flr4iuFWR1NRERcnFMWdAkJCSQkJJCXl2d1FJF/zXA4WLHyfwRsep0OnmdJ9q5FTofPiL8q3upoIiLiJrQOnUgJ2rLta9KXPUqE7SRrHAF4RYzl6vD7rY4lIiJuxilb6ERc3cHDS9mZdCcxuTvZ4/BmacPhtG37mrbqEhGREqGCTqQYpabtZdXsPrRLX0wTw8bC6r2Jjv+Eet7lrY4mIiJuTAWdSDHIyckkeW4/rj7yLW1tBksrtieiy9d09L/K6mgiIlIGqKAT+RcMh4OlS5+l2vZ36eCRQ7JvQxrETSW+WqTV0UREpAxRQSdyhdZt+BBj1VNEeaSx3KMKOe0+IDbsv1bHEhGRMkgFnUgR7dk3m4ML+xFtHGCL4ceKJqNo0/pZq2OJiEgZpoJOpJBOnNrC+jm9iT67Bh+HJwtrPUB0bAKeXj5WRxMRkTJOBZ3IZZw9e4olc+7impO/cQ2QXPk62nX+kthyVayOJiIiAqigE7kohyOXxQsHU3fPR7T3yGOxX3Oadp5GfFBTq6OJiIgUoIJO5AJWrX4bv3Uv0N7zDEu8apLd/hM61r7e6lgiIiIXpIJO5G+27/yBU0seJJJjrLf5s7Z5AlHNH7U6loiIyCU5ZUGXkJBAQkICeXl5VkeRMuLIsdVsmduH9jlb8HF4sbj+EKKix2irLhERcQk2wzAMq0NcjN1uJzAwkNTUVAICAqyOI24oPfMwy//sTaR9PlmGjXVVbyO602f4+PhbHU1ERKTQnLKFTqSk5eaeZXHSAzQ++BVRNgdLKrTlmi7TiQuoY3U0ERGRIlNBJ2WK4XCQsnwkVba8SQfPbBb51KVOxy+Ir9He6mgiIiJXTAWdlBmbNn/O2eWP0dbjNKtsldjU5hPaN7rL6lgiIiL/mgo6cXv7Dy5kz/y7ae/Yw3bDl5SGL9Em4kVNeBAREbehgk7c1unUXayeczvRmcvxdngwv+Y9xMR9SJiXn9XRREREipUKOnE7WVl2Fs/tS8vjPxKJweLAeNp0+YqO5atbHU1ERKREqKATt2E4HCxJHspVuxLo4JFLsm8TGsV/RXxIK6ujiYiIlCgVdOIW1q5LwHP1M0R7ZpDiWZWc6I/oUK+71bFERERKhQo6cWk79/zGsUX3047DbKI8q5q+TWSroVbHEhERKVUq6MQlHTu5gU1zehOTtQEfhyfJdR4lKnYcHh56S4uISNmj337iUjLPHGfZ7DuIOP0nLYGFQTcR1WUqob6VrI4mIiJiGRV04hLycrNJXvAwYfsTifFwsLjcNTTv8jXxlRpaHU1ERMRyTlnQJSQkkJCQQF5entVRxAmsWPE/Km58lQ6eZ1nsHUp2bCJxoZ2tjiUiIuI0bIZhGFaHuBi73U5gYCCpqakEBARYHUdK2ZZt00lf9igRthOsdQTg2fodrm7a3+pYIiIiTscpW+ikbDt0JIUdSXcQk7ODPQ5vljZ8hrZt/6etukRERC5CBZ04DXv6flb+2Zt26ck0MWwsrH470fGfUs+7vNXRREREnJoKOrFcTk4myXPv5eoj39DOZrC0Ygytu3xNR/9Qq6OJiIi4BBV0YhnD4WDp0uFU2z6WDh45LPINIyzuS+KrRVodTURExKWooBNLbNj4MXkrhxLlYWeFRxWy275Ph4a3Wx1LRETEJamgk1K1Z/8cDi7sR7RjP1sNP1Y0fp2IiBFWxxIREXFpKuikVJw8vY11s28n+uxqfB0eLKx1P9GxE/H08rE6moiIiMtTQScl6mzWaZbOvotWJ3+lNZBc+Vradv6K2HLBVkcTERFxGyropEQ4HLksXvgYdfZ8SHuPPBb5NaNp52nEB11tdTQRERG3o4JOit2q1e/gt+4F2ntmssSzBtntPyauzo1WxxIREXFbKuik2Gzf9SMnFz9IW46ygQqsaTaeqBaDrI4lIiLi9lTQyb925Nhqts67g5jszXg7vEiu/wTR0W9rqy4REZFS4pQFXUJCAgkJCeTl5VkdRS4hPfMwy//sQxt7Es2wsTDkNqLiE6njG2B1NBERkTLFZhiGYXWIi7Hb7QQGBpKamkpAgIoEZ5Gbe5bFSQ/S6OCXVPJwsKR8JC07f02lwHpWRxMRESmTnLKFTpyT4XCwfPkrVN7yBh08s1jkXYc6Hb8grmas1dFERETKNBV0Uiibtk7l7LJBRHqcZpWtEhtbf0j7Jn2tjiUiIiKooJPL2H9oEXuS7qa9Yzc7DB+Whb1AZJuRmvAgIiLiRFTQyQWl2vewanYvojJS8DE8mF/zLmLiJtPAy8/qaCIiIvIPKuikgOzsdBbPvYfmR38g0mawJCCONtdOo2P56lZHExERkYtQQSeAOeFhyeInuWrnBGI9ckn2a0yj+K+ID7nG6mgiIiJyGSrohLXr3sdjzTNEe6ST4hlCdtRHdKh/q9WxRMSJZGdnk5uba3UMEafj5eWFj4+P1TFU0JVlu/b+wZGF9xHFITYb5VjVdAyRrZ60OpaIOJns7Gw2bNiAw+GwOoqI0/Hw8ODqq6+2vKgrsYJu9+7dvPrqq8yZM4fDhw9Ts2ZN7r77bp577jnLX3RZd/zkJjbM6U1M1jq8HZ4sqvMw0bHj8fBQfS8i58vNzcXhcFC3bl3KlStndRwRp3HmzBl2795Nbm6u5bVNif0G37x5Mw6Hg0mTJhEWFsb69et58MEHycjIYMyYMSV1WrmEzDPHWTbnTlqfmkUrYFHQjUR1+ZJQ30oWJxMRV1CuXDnKly9vdQwRp5OamsrZs2fx9fWlQoUKlmQo1a2/3nrrLSZOnMjOnTsveH9WVhZZWVn51+12O7Vq1dLWX/9SXm42ixc+SoN9Uwj2yCPZrxXNO39NUOVGVkcTEReQmZnJpk2bCA8PV0En8jfnfjZWrlxJRkYGAQEB9O7d25KirlRXh01NTSUoKOii948aNYrAwMD8S61atUoxnZs6NBP+iCD24Mfs9qrBwY5/EtdzlYo5ERGRYlKhQgV8fHyw2+0FGqZKU6kVdDt27GD8+PE8/PDDFz1m+PDhpKam5l/27dtXWvHcz6m1MOd6mHs9nt4BnO74K9F37KNOrS5WJxMREXErvr6++Pr6WpqhyAXdyJEjsdlsl7wsX768wGMOHjzIDTfcQK9evXjggQcu+ty+vr4EBAQUuEgRZR6AJffDb60gYxd0+Ba6LqRS6I1WJxMREZESUuRJEYMGDaJPnz6XPKZu3br5/z548CCdOnUiOjqaDz/8sMgBpZBy7LBxNGx+B7wqQMR70PAh8PC2OpmIiIiUsCIXdMHBwQQHBxfq2AMHDtCpUyciIiL49NNP8dCG7sXPkQPbP4J1IyE3DRoPgabPgE+g1clERESklJTYsiUHDx4kPj6e2rVrM2bMGI4dO5Z/X/Xq2hf0XzMM2P8DrH4G0rZBvb7Q4lWooIkkIiIiZU2JFXQzZ85k+/btbN++ndDQ0AL3leJKKe7p+FJYNQyOLYDq10Ls11C5ldWpRERExCIl1gd67733YhjGBS9yhdJ3wsLeMDMKsk9B/G/QaaaKORGREhQfH88TTzxhdYyLKs18mzZtKpXzSNFpUJsryDoBK4bCz03g2EJo9zHcuBpq3gA2m9XpRESkDHj33XctX5rj2LFjl91t6uDBg6WUxrmooHNmeWdh0xj4MQx2fATNXoRuW6HB/eDhaXU6ERG3kZ2dbXUEy8THx/Pdd99d8piZM2cSEhJC/fr1SynVhYWEhNCxY0cSEhIuesy8efMYMGAAc+fOLfTzpqSk8MQTT5CYmMiAAQPYtWtXccQtVSronJHhgN1fmi1yq5+FundAt+3Q7HlzSRIRERdVt25d3n333QK3tWrVipEjRwJmcTFo0CAGDRpEpUqVqFKlCs8//3yB4TqFOcYwDEaPHk39+vUpV64cLVu25JtvvjnvOYYOHUpwcDBdu3a9ZO7c3NyLni8rK4vHHnuMqlWr4ufnR2xsLCkpKUV63ecyPfbYYzz99NMEBQVRvXr1AvcDZGRk0LdvX/z9/alRowZvv/32JXNfzvfff4+npyfPPvssOTk5Fz3uvffeu+ySZaWlbdu2LFu2jOPHj1/w/jvvvJP333+fffv28cADD/Dbb79d8vmysrLo1asXw4cPp1+/ftx3333cd999JRG9RKmgczZH5sEfbSH5LnNs3E3rIfJ9KFfN6mQiIvkyczJZeWjlZS+ZOZlFfu7ExES8vLxYunQp7733HmPHjmXy5MlFOub555/n008/ZeLEiWzYsIEhQ4Zw9913k5SUdN5zLFq0iEmTJl1xpqeffppvv/2WxMREVq5cSVhYGNdffz0nT568otdeoUIFli5dyujRo3nllVeYNWtW/v3Dhg1j7ty5zJgxg5kzZzJv3jxWrFiRf/+UKVOwFXIoTm5uLitWrGD69OkcPXr0ot+DtWvXEhoaiqen8/QMde/enSlTplz0fi8vL/r27cuHH36I3W7n/vvvZ8aMGRccxz9//nwCAgKoVs38Pdu2bVuWLFnCkSNHSip+yTCcWGpqqgEYqampVkcpeac3GMbcWwxjKobxW6RhHEmyOpGIiGEYhpGRkWEsX77cyMjIyL9txcEVBiO57GXFwRUFnqtOnTrG2LFjC9zWsmVL46WXXjIMwzDi4uKM8PBww+Fw5N//zDPPGOHh4fnXL3dMenq64efnZyQnJxc4T//+/Y077rgj/zlatWpVqNd/qfOlp6cb3t7extSpU/Pvy87ONmrWrGmMHj260K/73HliY2MLHBMZGWk888wzhmEYRlpamuHj42NMmzYt//4TJ04Y5cqVMx5//HHDMAzju+++Mxo3blyo1zV58mRj27ZthmEYxhtvvGGEhIRc8PftO++8Y0yePDn/em5urjFhwgTj7rvvNpYtW2YYhmHceeedRmJiYqHOeym5ubnG+PHjjX79+uU/9759+4y4uLgCxx07dszo1KlToZ/X4XAY33//vXHXXXcZf/75Z4H7Pvzww/OePzg42Jg9e/Zln/fcz8Y333xjTJ482Rg7dqxx4sSJQucqTmqhs9qZw7DsIfi1OaSuh5iv4PolULWj1clERC6qSXATVgxYcdlLk+AmRX7uqKioAq1M0dHRbNu2jby8vEIds3HjRs6ePUvXrl3x9/fPv3z22Wfs2LEj/zFt2rT515m2b99OTk4O7du3z7/P29ubtm3bXtGM0BYtWhS4XqNGDY4ePQqYe6JnZ2cTHR2df39QUBCNGzfOv96jRw82b9582fOkp6dz7NgxwsLCAHj88ccpX748b7755nnH7t+/n6pVq+Zf/+GHH+jduzeZmZns3r0bgG7dumG32wv/Qi/ixx9/pE+fPpw5cyZ/HNusWbPOW/4sODi4wP/l5Rw/fpyVK1dSpUoV6tWrd959fn5+BW7z8/Pj9OnTV/YiLFJi69D9GwkJCSQkJBT44XU7uRmw6W3YNBo8fKDVW9BoIHhaO4NIRKQwynuXp3WN1kV+nIeHx3ndXpcau3UlHA4HAL/88gtXXXVVgfv+PkuzQoXiG5P8z25OwzAK3FbY1+3tXXC7RpvNlv96/vn4f+Ojjz7iwQcfzL/u5+fH66+/zoABA3j00UcLfN/S09MpV65c/vXOnTvjcDhYsGABX3zxBQANGjS44ISJcePGXXKCQVxcHD169Mi/3qVLFwDmzJnDJ598ApiTHC40xrEwXcsHDx5k/Pjx5OTkMHjwYOrUqXPeMYGBged9b9PT0wu9K5azcMqCbuDAgQwcOBC73U5goJttYeXIg52fwroXzeVIGg2GZs+BT2Wrk4mIlLiQkBAOHTqUf91ut5/3C3/JkiXnXW/YsGGBMVyXOqZp06b4+vqyd+9e4uLiiiX3xc4XFhaGj48PCxcu5M477wTMQm358uUF1oYrzOu+nLCwMLy9vVmyZAm1a9cG4NSpU2zdurVIr/Pw4cP4+flRpUqVArffeeedjB07lhdffJGPP/44//bg4GBOnTqVf71SpUp8/vnnxMfH5xd669at49577z3vXI8//nhRXiIBAQFMmzaNjh075hfcSUlJ/O9//+P06dNUqlQp/1gvr4uXMLt37yYhIQEfHx8ee+wxatSocdFjmzRpwkcffZR/PSsri7S0tAsWf87MKQs6t2QYcPA3WP00pG6AOndAy9fBv97lHysi4iY6d+7MlClT6NatG5UrV+aFF144b7D9vn37GDp0KA899BArV65k/Pjx583mvNQxFStW5KmnnmLIkCE4HA5iY2Ox2+0kJyfj7+9Pv379ipz7YuerUKECjzzyCMOGDSMoKIjatWszevRoMjMz6d+/f5Fe9+X4+/vTv39/hg0bRpUqVahWrRrPPfdcgX3SZ8yYwfDhwy/Z7Tpx4kQGDBhwwVmizz77LH369GHIkCE0a9YMgPDwcPbu3VvguCNHjhQoKv39/Yttv/Z9+/bldwWvX78eb29vqlatSmJiIg888ABgFs0VK1a84OPHjBlDZmYmzz777HlF64V07NiRo0ePsn//fkJDQ0lKSiIyMlIFnVzAyZXmVl1H5kDVOLh+GVSJtDqViEipGz58ODt37uSWW24hMDCQV1999byWqr59+3LmzBnatm2Lp6cngwcPZsCAAUU65tVXX6Vq1aqMGjWKnTt3UqlSJVq3bs2IESOuKPelzvfGG2/gcDi45557SEtLo02bNvzxxx9UrvxXz0thXndhvPXWW6Snp9O9e3cqVqzIk08+SWpqav79qampbNmy5aKP37p1K6+//jqvvPLKJc8zYsQIfvzxRwBuuOEGHnzwQZ588sn8+/v06cPQoUP5/PPPyc3NvaIi+WJ69uzJM888w/Tp0wGIiIhgwoQJBVoAU1JS6Ny58wUf/9RTTxXpfF5eXiQmJvL6668TFRVFUlISU6dOveL8VrEZxdkpX8zOdbmmpqYSEBBgdZyiy9gLa56D3V9AQBNo9SZc1U27O4iIS8nMzGTTpk2Eh4dTvnz5Ej1XfHw8rVq1Om/NtqIeI8VrwIABvPLKK1SvXt3qKIC5LE337t1p27atpTnO/Wzs3r2b06dPk5aWRt++fQkKCir1LGqhKwnZp2HDKNgyDnwCIXIiNHgAPPTtFhER1/Piiy8yYcIEXnvtNaujYLfbOXbs2EWLubFjx15yBmynTp3o2bNnScWzjCqM4pSXDdsmwoZXIfcMNH0awoeB94X7+UVERFxBaGgoPXr04Ndff+Wmm26yLIdhGIwdO/aSheWQIUNKMZHzUEFXHAwD9n1rbtOVsQvq3wfNX4HyNa1OJiLiUubNm1csx0jxi4iIsDoCJ06c4JFHHiEkJMTqKE5HBd2/dSwZVj0FxxdDjRuh4wyo1NzqVCIiIm7H1daGK00q6K6UfRuseRb2fWfuudr5T6jexepUIiIiUgapoCuqs8dg/Suw7QMoVwOiEqHe3WDTLmoiIiJiDVUhhZV7xpy5+lMY7PoMWrwKt2yB+n1VzImIuLH4+PgCuz44m9LMdyX700rpUCVyOYYDdibCz41g7YtQrx902w5XPwte5S7/eBERETfw7rvvFtgL92KOHTvGmDFjLnnMwYMHiyuW/H8q6C7l8J/wewQsuReqtIObN0Kb98BPs2tERNxJdna21REsEx8fz3fffXfJY2bOnElISAj169e/7POFhITQsWNHEhISLnrMvHnzGDBgAHPnzi10zpSUFJ544gkSExMZMGDAFe204c6csqBLSEigadOmREZatD3W6XUw90aY0xU8y0HXRdDhGwhoaE0eERE3Ubdu3fN2eGjVqhUjR44EzOJi0KBBDBo0iEqVKlGlShWef/55/r6pUWGOMQyD0aNHU79+fcqVK0fLli355ptvznuOoUOHEhwcTNeuXS+ZOzc396Lny8rK4rHHHqNq1ar4+fkRGxtLSkpKkV73uUyPPfYYTz/9NEFBQVSvXr3A/QAZGRn07dsXf39/atSocd4et0X1/fff4+npybPPPktOTs5Fj3vvvffo06dPoZ+3bdu2LFu27IL7xQLceeedvP/+++zbt48HHniA33777ZLPl5WVRa9evRg+fDj9+vXjvvvu47777it0nrLAKQu6gQMHsnHjxvN+IEpc5gFY0h9+awVp2yH2G7OYC4kp3RwiIk4uMxNWrrz8JTOz6M+dmJiIl5cXS5cu5b333mPs2LFMnjy5SMc8//zzfPrpp0ycOJENGzYwZMgQ7r77bpKSks57jkWLFjFp0qQrzvT000/z7bffkpiYyMqVKwkLC+P666/n5MmTV/TaK1SowNKlSxk9ejSvvPIKs2bNyr9/2LBhzJ07lxkzZjBz5kzmzZvHihUr8u+fMmUKtkJuL5mbm8uKFSuYPn06R48evej3YO3atYSGhuLp6Vmk19K9e3emTJly0fu9vLzo27cvH374IXa7nfvvv58ZM2ZwoR1J58+fT0BAANWqVQPMgnHJkiUcOXKkSJncmuHEUlNTDcBITU0t2RNl2w1j9fOGMa2cYXxTxTA2jzOM3KySPaeIiIvIyMgwli9fbmRkZOTftmKFYZirql/6smJFweeqU6eOMXbs2AK3tWzZ0njppZcMwzCMuLg4Izw83HA4HPn3P/PMM0Z4eHj+9csdk56ebvj5+RnJyckFztO/f3/jjjvuyH+OVq1aFer1X+p86enphre3tzF16tT8+7Kzs42aNWsao0ePLvTrPnee2NjYAsdERkYazzzzjGEYhpGWlmb4+PgY06ZNy7//xIkTRrly5YzHH3/cMAzD+O6774zGjRsX6nVNnjzZ2LZtm2EYhvHGG28YISEhF/x9+8477xiTJ0/Ov56bm2uMHz/e6Nevn7Fs2TLDMAxj3759RlxcXIHHHTt2zOjUqVOhshiGYTgcDuP777837rrrLuPPP/8scN+HH3543vMHBwcbs2fPLvTzl4RzPxvffPONMXnyZGPs2LHGiRMnLMnilC10pcaRa27V9VMYbHoLGj8G3XaYXz19rE4nIuK0mjSBFSsuf2nSpOjPHRUVVaCVKTo6mm3btpGXl1eoYzZu3MjZs2fp2rUr/v7++ZfPPvuswB6fbdq0+deZtm/fTk5ODu3bt8+/z9vbm7Zt217RjNAWLVoUuF6jRg2OHj0KwI4dO8jOziY6Ojr//qCgIBo3bpx/vUePHmzevPmy50lPT+fYsWOEhYUB8Pjjj1O+fHnefPPN847dv38/VatWzb/+448/0qdPH86cOZM/jm3WrFmEhoYWeFxwcPAl91T9p+PHj7Ny5UqqVKlCvXr1zrvPz8+vwG1+fn6cPn260M/v7srmOnSGAQd+hNXPgH0r1L0bWr4GFWpbnUxExCWULw+tWxf9cR4eHud1qV1q7NaVcDgcAPzyyy9cddVVBe77+yzNChUqFNs5/9nNaRhGgdsK+7q9vb3Pe95zr+efj/83PvroIx588MH8635+frz++usMGDCARx99tMD3LT09nXLl/lrVoUsXcxH9OXPm8MknnwDmJIcLjUMsTPfvwYMHGT9+PDk5OQwePJg6deqcd0xgYOB5rz89PV07R/xN2WuhO5ECs+Nh/m1QLhRuWAExn6mYExEpBSEhIRw6dCj/ut1uP2+24pIlS8673rBhwwJjuC51TNOmTfH19WXv3r2EhYUVuNSqVeuKcl/sfGFhYfj4+LBw4cL8+3Jycli+fDnh4eFFet2XExYWhre3d4Esp06dYuvWrUV6nsOHD+Pn50eVKlUK3H7nnXcSHh7Oiy++WOD24OBgTp06lX89ICCAX3/9lY4dO+YXxUlJSVx77bXntZh5eV283Wj37t0MGzaMhIQEHnvsMcaMGXPBYg6gSZMm+S2VYE6SSEtLu+jxZVHZaaFL3wVrRsCeaRDYDOJ/hRo3QCEHj4qIyL/XuXNnpkyZQrdu3ahcuTIvvPDCeYPt9+3bx9ChQ3nooYdYuXIl48ePP28256WOqVixIk899RRDhgzB4XAQGxuL3W4nOTkZf39/+vXrV+TcFztfhQoVeOSRRxg2bBhBQUHUrl2b0aNHk5mZSf/+/Yv0ui/H39+f/v37M2zYMKpUqUK1atV47rnn8PD4q21mxowZDB8+/JLdrhMnTmTAgAEXnIH67LPP0qdPH4YMGUKzZs0ACA8PZ+/eved9P851165fvx5vb2+qVq1KYmIiDzzwAGAWthUrVrxghjFjxpCZmcmzzz57XmF5IR07duTo0aPs37+f0NBQkpKSiIyMVEH3N+5f0GWdhA2vw9YJ4FsF2k2GeveCR9F+kERE5N8bPnw4O3fu5JZbbiEwMJBXX331vJaqvn37cubMGdq2bYunpyeDBw9mwIABRTrm1VdfpWrVqowaNYqdO3dSqVIlWrduzYgRI64o96XO98Ybb+BwOLjnnntIS0ujTZs2/PHHH1SuXLlIr7sw3nrrLdLT0+nevTsVK1bkySefJDU1Nf/+1NRUtmzZctHHb926lddff51XXnnlkucZMWIEP/74IwA33HADDz74IE8++WT+/T179uSZZ55h+vTpAERERDBhwgTuvffe/GNSUlLo3LnzBZ//qaeeuuxr/TsvLy8SExN5/fXXiYqKIikpialTpxbpOdydzSjOTvliZrfbCQwMJDU1lYCAgKI9OC/LLOI2vA6ObAh/BsKHglfxjZkQESkLMjMz2bRpE+Hh4ZQvX75EzxUfH0+rVq3OW7OtqMdI8RowYACvvPIK1atXL/Rjnn/+ebp3707btm1LMJm1zv1s7N69m9OnT5OWlkbfvn0JCgoq9Szu10JnOGDP12b3auY+aPAANB8J5Qr/JhQREZG/vPjii0yYMIHXXnutUMfb7XaOHTt20WJu7Nixl5wB26lTJ3r27HlFWcsq9yrojiTBqqfg5HK4qps5Ti4w/PKPExERkYsKDQ2lR48e/Prrr9x0002XPNYwDMaOHXvJ4m/IkCHFHbHMc4+CLnWTuQTJgZ8gqA10mQfV4qxOJSIiRTRv3rxiOUaKX0RERKGOO3HiBI888gghIdr3vDS5dkF35gisGwk7PoLytSDmS6jTG2xlbzUWERERZ6C14azhlAVdQkICCQkJBVYFLyA3Aza9A5tGg80LWr0JjQaBp++FjxcRERFxY05Z0A0cOJCBAwfmz3LN58iDXVNg7QuQdcIs4q5+DnxLfzaJiIiIiLNwyoLuPIYBB3+DVU9D6nqo3Rta/Q/861udTEREpExYsWIFWVlZVKhQgZYtW1odR/7BNQabJd0K824Cn8pw3VKInaZiTkREpJTMmDGDpk2b0qZNG8aOHWt1HLkA5y7otiaYX88egI7fw7VJEOy+CxSKiLi7+Ph4nnjiCatjXJaz5yzNfOvWraN169bMnDmTe+6557xdOy5l06ZNJZhM/s65C7qQ/7/0yHVLIPRW7bsqIiJSzDIzM8nIyLjo/QcPHiQ0NJTc3FyOHDmCl1fhRmu9++67+PoWbrLisWPHGDNmTKGOlQtz7oKusrkxMB7e1uYQERG3lJ2dbXUES/3yyy+0bt2at95666LHGIaBp6cnPXv2pHv37pw+ffqyzztz5kxCQkKoX79ww6NCQkLo2LEjCQkJhY1eKCkpKTzxxBMkJiYyYMCAK9o/11U4d0EnIiJuKysri8cee4yqVavi5+dHbGwsKSkp+ff/9NNPVKpUCYfDAcDq1aux2WwMGzYs/5iHHnqIO+64AzALj9GjR1O/fn3KlStHy5Yt+eabbwqcMz4+nkGDBjF06FCCg4Pp2rXrRfPl5uYyaNAgKlWqRJUqVXj++ef5+/bnl8tft27d8/abbdWqFSNHjiyQ57HHHuPpp58mKCiI6tWrF7gfICMjg759++Lv70+NGjV4++23L/2NLYKbb76Z3r17X/T+o0ePsnnzZgDOnDnD5s2b6dSpE/v37+f333/Pv6xevbrA49577z369OlTpCxt27Zl2bJlHD9+vMiv40KysrLo1asXw4cPp1+/ftx3333cd999xfLczkgFnYiIWOLpp5/m22+/JTExkZUrVxIWFsb111/PyZMnAejYsSNpaWmsWrUKgKSkJIKDg0lKSsp/jnnz5hEXZw7Pef755/n000+ZOHEiGzZsYMiQIdx9990FjgdITEzEy8uLRYsWMWnSpIvmO3fc0qVLee+99xg7diyTJ08udP7CSkxMpEKFCixdupTRo0fzyiuvMGvWrPz7hw0bxty5c5kxYwYzZ85k3rx5rFixosBzTJkyBdsVDku61ONWrFjB9ddfz6JFi5g9ezbjxo3D29ub0NBQbrjhhvxLq1at8h+zdu1aQkND8fT0LHKW7t27M2XKlAveN27cOF555RUOHz5cqOeaP38+AQEBVKtWDTALxiVLlnDkyJEi53IFrrFsiYiIOJfcTLBvvvxxAU3Aq/x5N2dkZDBx4kSmTJnCjTfeCMBHH33ErFmz+Pjjjxk2bBiBgYG0atWKefPmERERwbx58xgyZAgvv/wyaWlpZGRksHXrVuLj48nIyOCdd95hzpw5REdHA1C/fn0WLlzIpEmT8os+gLCwMEaPHn3Z6LVq1WLs2LHYbDYaN27MunXrGDt2LA8++GCh8hdWixYteOmllwBo2LAhEyZMYPbs2XTt2pX09HQ+/vhjPvvss/zWxMTEREJDQws8R2BgII0bN77keZKTk5k2bRrNmzdnx44d3HLLLcTGxgLm/0diYiIA33//PV988QUVKlTAZrMRHl60PdFnz55NZGRkgdvy8vKYOHEiy5cvZ+DAgURGRrJ//37uvvvuAlu5xcXFkZCQwFNPPXXe8z7++OMcOXKEDz74gIyMDPr373/J17x7926Cgv5ap9bT05OKFSuyYcOG/CLPnaiFTkREis6+GX6PuPzlIkXfjh07yMnJoX379vm3eXt707Zt2wIzI+Pj45k3bx6GYbBgwQJuvfVWmjVrxsKFC5k7dy7VqlWjSZMmbNy4kbNnz9K1a1f8/f3zL5999hk7duwocO42bdoU6iVGRUUVaL2Kjo5m27Zt5OXlFTp/YbRo0aLA9Ro1anD06FHA/D5lZ2fnF6kAQUFB5xUyPXr0yO8avZBDhw7Rs2dPRowYwYMPPoifn1+BVr6lS5fSr18/+vXrR15eHn/88QcAnTp1KtJrAdi/fz9Vq1YtcNuPP/5Inz59OHPmTP44tlmzZp1XmAYHB5/3//V31apV46WXXuKFF17g119/ZfDgwSxevPiCxx4/fhw/P78Ct/n5+RVqDKArUgudiIgUXUATuGFF4Y67gHNj0f7Z3WcYRoHb4uPj+fjjj1mzZg0eHh40bdqUuLg4kpKSOHXqVH7L27lxdr/88gtXXXVVgef850zLChUqXD73ZRQmv4eHR4ExdwA5OTnnPZe3d8GJfzabLf/1/PPxV+rbb7+ldu3aVK9eHeC8cXoRERH5/w4KCsJutwPnf+8KIz09nXLlyhW4rUuXLgDMmTOHTz75BDC7yy80hrEwXccVK1ZkyJAhZGdnM3XqVD755BP69euX3+IIZqvlP79/6enpbrvXrFroRESk6LzKQ1Dry18u0N0KZrenj48PCxcuzL8tJyeH5cuXF+jiOzeO7t133yUuLg6bzUZcXBzz5s0rMH6uadOm+Pr6snfvXsLCwgpcatWqdUUvccmSJeddb9iwIZ6enoXKHxISwqFDh/Lvt9vtRZ5lGRYWhre3d4Esp06dYuvWrUV6HofDccni8ErGu11McHAwp06dKnBbQEAAv/76Kx07dswvqJOSkrj22mvPazEr7LIoYH5PDxw4gL+//3mtgk2aNMlv6QRzkkRaWhp16tQp4ityDWqhExGRUlehQgUeeeQRhg0bRlBQELVr12b06NFkZmbSv3///OPOjaP74osvGDduHGAWeb169SInJ4f4+HjAbLF56qmnGDJkCA6Hg9jYWOx2O8nJyfj7+9OvX78iZ9y3bx9Dhw7loYceYuXKlYwfPz5/hmlh8nfu3JkpU6bQrVs3KleuzAsvvFDkwsnf35/+/fszbNgwqlSpQrVq1Xjuuefw8CjYHjNjxgyGDx9+0W7XHj168Oqrr7J3715q164NwLRp0y47E/Xo0aPMnDkTDw8PVqxYwZtvvnnZgis8PJy9e/eed/u+ffsICwsDYP369Xh7e1O1alUSExN54IEHALMorlix4iWfH2DXrl18+OGHeHh48PDDD1+waO/YsSNHjx5l//79hIaGkpSURGRkpAq60pSQkEBCQgJ5eXlWRxERkRLyxhtv4HA4uOeee0hLS6NNmzb88ccfVK5cucBxnTp1YuXKlfnFW+XKlWnatCkHDx4s0Jr36quvUrVqVUaNGsXOnTupVKkSrVu3ZsSIEVeUr2/fvpw5c4a2bdvi6enJ4MGDC+yScLn8w4cPZ+fOndxyyy0EBgby6quvXtE6aG+99Rbp6el0796dihUr8uSTT5KamlrgmNTUVLZs2XLR56hVqxbffvstzz//PLGxsTgcDm666SZ+//13fv75Z3Jycvj5559JS0tj0aJF7N+/nyZNmrB7925Onz7NoEGDWLJkCX/++Sc33HDDJfPecMMNPPjggzz55JMFbu/ZsyfPPPMM06dPB8xu3gkTJnDvvffmH5OSkkLnzp0v+tyrVq0iMTGR6tWr8/TTT5/3Xvk7Ly8vEhMTef3114mKiiIpKYmpU6deMrsrsxnF1UFfAux2O4GBgaSmphIQEGB1HBGRMikzM5NNmzYRHh5O+fIX7kIV93f77bczevRo6tate9ljBwwYwCuvvJI/Zq+wnn/+ebp3707btudv8zlu3Dj8/Pzo16/feZMdrHLuZ+Nc4ZuWlkbfvn0LzK4tLRpDJyIiIpf0yy+/0KtXr0IVcwAvvvgiEyZMKNI57HY7x44du2AxB+ayJQ899JDTFHPORgWdiIiIXFRKSgrVqlWjV69ebNy4sVCPCQ0NpUePHvz666+FOt4wDMaOHctrr732b6KWaU45hk5ERESst3jxYh566CGqVq1KdnY2EydOLPRj/74UyuWcOHGCRx55hJCQkCuJKaigExERkYuIjo5m7dq1JX4ed10brjSpy1VERETExamgExEREXFxKuhEREREXJwKOhEREREXV6IFXffu3alduzZ+fn7UqFGDe+65h4MHD5bkKUVERETKnBIt6Dp16sT06dPZsmUL3377LTt27OC///1vSZ5SREREpMwp0WVLhgwZkv/vOnXq8Oyzz3LbbbeRk5ODt7d3SZ5aREREpMwotXXoTp48ydSpU4mJibloMZeVlUVWVlb+dbvdXlrxRERERFxWiRd0zzzzDBMmTCAzM5OoqCh+/vnnix47atQoXn755ZKOJCIiV+DMmTNWRxBxKs70M2EzDMMoygNGjhx52aIrJSWFNm3aAHD8+HFOnjzJnj17ePnllwkMDOTnn3/GZrOd97gLtdDVqlWL1NRUAgICihJTRESKSXZ2Nhs2bMDhcFgdRcTpGIbBzp07SUtLIy0tjb59+xIUFFTqOYpc0B0/fpzjx49f8pi6devi5+d33u379++nVq1aJCcnEx0dfdlz2e12AgMDVdCJiFgsOzub3NxcUlNT+fnnn6lQoQK+vr5WxxKxXF5eHrm5uZw5c8bSgq7IXa7BwcFXvOfaudrx761wIiLi/Hx8fPDx8eHs2bNkZGSQk5Ojgk7kb6yubUpsDN2yZctYtmwZsbGxVK5cmZ07d/Liiy/SoEGDQrXOiYiI8/H19SUgIAC73U52drbVcUScSkBAgGV/6JRYQVeuXDm+++47XnrpJTIyMqhRowY33HAD06ZN0191IiIuqkKFCvTu3dvy1ggRZ+Tr60uFChUsOXeRx9CVJo2hExEREbk87eUqIiIi4uJU0ImIiIi4OKfucjUMg7S0NCpWrHjBdetERERExMkLOhERERG5PHW5ioiIiLg4FXQiIiIiLk4FnYiIiIiLU0EnIiIi4uJU0ImIiIi4OBV0IiIiIi5OBZ2IiIiIi/t/KMg80xP2yzEAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAAHUCAYAAACznbW8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABxpklEQVR4nO3deVxU9f7H8dewIwiKgBu4Yiq5KyiIgHotW7TFW9qmmamVWmlZ2WqrZZaVkmlWUlnWrWzfzAVTRHHf9z33jVXZ5vz+OD+5cd3AgDMD7+fjMQ+cmTNzPoPD8Oa72gzDMBARERERp+VidQEiIiIi8s84RaAzDINevXoRFhZGtWrVeO2116wuSURERMRhOEWgs9ls/PDDDzzwwAOkpaURExNjdUkiIiIiDsMpAt1ZS5YswdfXl44dO1pdioiIiIjDcJpAZ7fbmTt3LnFxcbi5uVldjoiIiIjDcJpAt2zZMk6ePEn37t2tLkVERETEoThkU1dGRgbPP/88W7dupVatWoSGhnJ2dZV//etfFlcnIiIi4lhsjrYO3YkTJ+jevTtXXnkln3zyCTabjQ8//JBRo0bh6enJoUOHsNlsVpcpIiIi4jAcrsv1lltuIS0tjalTpxYGt169epGWlkb37t0V5kRERET+h0MFulmzZjFv3jweeOABfHx8Cm9ftWoVgMbPiYiIiJyHQwW69957D4Abb7yxyO1JSUmAxs+JiIiInI/DjKHLz8/Hy8uLOnXqsHfv3iL3xcTEcOjQIbZv325RdSIiIiKOy2Fa6I4fP05BQQFt27Ytcvvp06dJTU0t7G79+uuvSUtLs6JEEREREYfkMIEuODgYHx8fatSoUeT2zz//nNzc3MLu1tmzZ+Pv729FiSIiIiIOyWECnc1m495772XlypWFa87NmTOHr776CoCQkBC2b99OvXr1rCxTRERExOE4zBg6gOzsbO677z5OnDhB7dq1adq0KaNGjeL5558nOTmZoKAgJk2adE4rnoiIiEhl5lCBTkRERERKzmG6XEVERETk8ijQiYiIiDg5BToRERERJ6dAJyIiIuLkFOhEREREnJwCnYiIiIiTU6ATERERcXIKdCIiIiJOToFORERExMkp0ImIiIg4OQU6ERERESenQCciIiLi5BToRERERJycQwc6wzBIT0/HMAyrSxERERFxWA4d6DIyMvD39ycjI8PqUs5rxw6w2WDuXKsrERERkcrMoQOdo6tb1/y6b5+1dYiIiEjlpkD3D3h5QVAQ7N9vdSUiIiJSmSnQ/UOhoWqhExEREWsp0P1DISEKdCIiImKtMg10U6ZMoVWrVvj5+eHn50dUVBS//PJLWZ6y3KmFTkRERKxWpoEuJCSEV199leXLl7N8+XK6devGDTfcwIYNG8rytOWqfn3Yswe0soqIiIhYxWaU8yJvAQEBvP766wwaNOic+3JycsjJySm8np6eTmhoKGlpafj5+ZVnmcX2n//ArbfC8eMQEGB1NSIiIlIZldsYuoKCAmbNmkVWVhZRUVHnPWbcuHH4+/sXXkJDQ8urvMvWsKH5dfduS8sQERGRSqzMW+jWrVtHVFQUZ86cwdfXl88++4xrr732vMc6YwvdsWPm0iVffQV9+lhdjYiIiFRGbmV9gqZNm7J69WpOnTrF119/zYABA0hKSiI8PPycYz09PfH09CzrkkpVjRrg66sWOhEREbFOmQc6Dw8PwsLCAOjQoQOpqam8/fbbTJ06taxPXS5sNmjQQIFORERErFPu69AZhlGkW7UiaNAAdu2yugoRERGprMq0he7JJ5/kmmuuITQ0lIyMDGbNmsWCBQv49ddfy/K05a5hQ5g3z+oqREREpLIq00B3+PBh7rrrLg4ePIi/vz+tWrXi119/pUePHmV52nJ3tsvVMMwuWBEREZHyVKaB7oMPPijLp3cYDRpAVtZ/Z7yKiIiIlCft5VoKtBadiIiIWEmBrhQ0aGB+1cQIERERsYICXSmoVg38/NRCJyIiItZQoCsFNpvZ7apAJyIiIlZQoCslWotORERErKJAV0rUQiciIiJWcchAl5CQQHh4OBEREVaXUmx/X4tOREREpDzZDMNxI0h6ejr+/v6kpaXh5+dndTkX9d13cOONcPAg1KpldTUiIiJSmThkC50zOrsWncbRiYiISHlToCsljRubX7dvt7YOERERqXwU6EqJjw/Urg3btlldiYiIiFQ2CnSlqEkTBToREREpfwp0pahJE3W5ioiISPlToCtFZ1voHHfesIiIiFRECnSlKCwM0tLg2DGrKxEREZHKRIGuFDVpYn7VODoREREpTwp0pSgszPyqQCciIiLlSYGuFFWpAnXramKEiIiIlC8FulKmpUtERESkvCnQlbKwMAU6ERERKV8OGegSEhIIDw8nIiLC6lJKTEuXiIiISHmzGYbjRo/09HT8/f1JS0vDz8/P6nKKZfZsuPlmOHwYgoOtrkZEREQqA4dsoXNmWrpEREREypsCXSlr3Nj8qkAnIiIi5UWBrpR5e0NIiAKdiIiIlB8FujKgpUtERESkPCnQlYEmTbS4sIiIiJQfBboyoKVLREREpDwp0JWBJk0gMxMOHrS6EhEREakMFOjKQHi4+XXTJmvrEBERkcpBga4MNGwIHh6wcaPVlYiIiEhloEBXBtzcoGlTtdCJiIhI+VCgKyPh4WqhExERkfLhkIEuISGB8PBwIiIirC7lsjVvrkAnIiIi5cNmGI67uEZ6ejr+/v6kpaXh5+dndTkl8p//wK23wtGjEBhodTUiIiJSkTlkC11F0Ly5+VXj6ERERKSsKdCVkSZNwNVVgU5ERETKngJdGfH0hMaNNY5OREREyp4CXRkKD1cLnYiIiJQ9BboypJmuIiIiUh4U6MpQeDjs3w/p6VZXIiIiIhWZAl0ZOjvTdfNma+sQERGRik2Brgw1awY2G6xfb3UlIiIiUpEp0JUhHx9zpuu6dVZXIiIiIhWZAl0Za9lSgU5ERETKlgJdGWvVCtasAcfdYE1EREScnQJdGWvVCo4dg8OHra5EREREKiqHDHQJCQmEh4cTERFhdSn/WMuW5ld1u4qIiDi3o0dh8WKrqzg/m2E4bmdgeno6/v7+pKWl4efnZ3U5l6WgAPz84IUX4JFHrK5GRERESuroUZgwASZPhtBQcxcom83qqopyyBa6isTVFa68Ui10IiIizuboUXj8cWjQAN59F0aONFvoHC3MAbhZXUBl0KoVrFxpdRUiIiJSHEeOmC1yCQng4mIGuZEjoUYNqyu7MAW6ctCyJXz6KeTng5u+4yIiIg7p70HO1dU5gtxZihfloFUryMmBrVvN/V1FRETEcRw5Aq+/bnarurrCqFFmkAsIsLqy4lOgKwdt2phfV61SoBMREXEUFSHInaVJEeWgenVo2FDj6ERERBzBkSMwerQ52WHqVHMVit274cUXnTPMgVroyk27dgp0IiIiVjp8+L8tcu7u8Oij8PDDzhvi/k4tdOWkbVuzy9VxV/0TERGpmA4fNsNbw4bw/vtm69zu3eYasRUhzEEZB7px48YRERFB1apVCQ4O5sYbb2TLli1leUqH1a4dpKXBrl1WVyIiIlI5HDpkdqf+b5B7/nlzOFRFUqaBLikpiWHDhpGSksKcOXPIz8/nqquuIisrqyxP65DatjW/qttVRESkbJ0Nco0awfTpFTvInVWuW38dPXqU4OBgkpKSiI2NveTxFWHrr7+rUwcGDoSXX7a6EhERkYrn0CFzjNyUKeYYuZEj4aGHKm6I+7tynRSRlpYGQMAFOqxzcnLIyckpvJ6enl4udZUXTYwQEREpfQcPmkHuvffAwwMee6zyBLmzym1ShGEYjBo1ipiYGFq0aHHeY8aNG4e/v3/hJTQ0tLzKKxdt25qBThMjRERE/rn9++HBB80xch99ZAa53bth7NjKFeagHLtchw0bxk8//cSiRYsICQk57zHna6ELDQ2tMF2us2fDzTfDX3+Z3a8iIiJScnv3wquvwgcfgI+PuSDwiBHg7291ZdYply7XESNG8P3337Nw4cILhjkAT09PPD09y6MkS7RrZ35dvhx697a2FhEREWezeze88grMmAF+fuYkh2HDoGpVqyuzXpl2uRqGwfDhw/nmm2+YN28eDRs2LMvTObx69SA4GJYts7oSERER57FjBwwaBE2awLffmpMLd++GJ55QmDurTFvohg0bxmeffcZ3331H1apVOXToEAD+/v54e3uX5akdks0GHTsq0ImIiBTH1q1meJs5E4KCYPx4GDoUqlSxujLHU6YtdFOmTCEtLY34+Hhq165dePniiy/K8rQOLTISUlPBbre6EhEREce0aRPceSc0bw5//AETJ8LOneYyJApz51emLXTluMSd04iMhFOnYPt2uOIKq6sRERFxHOvXw0svwZdfQt26MGkS3HMPeHlZXZnj016u5Swiwvy6dKm1dYiIiDiKNWvg3/+Gli0hJcVcT277dnjgAYW54lKgK2fVq5stcxpHJyIild3KlXDjjdCmDaxaZS5Dsm0bDBkCFXjRizKhQGeByEgFOhERqbyWLYNevaB9e9iwwVyGZPNms3vV3d3q6pyTAp0FOnaE1avhb2soi4iIVHhLlsA115i/B7dtg08/NSdADBigIPdPKdBZIDIScnPNMQMiIiIV3aJF0KMHREebuzx8/rnZMnfHHeBWrrvKV1wKdBZo3drcPDglxepKREREyoZhwIIF0K0bdOkChw/Df/4D69ZBv37g6mp1hRWLQwa6hIQEwsPDiTg7JbSC8fQ0Z7suXmx1JSIiIqXLMMy14+LioGtXOHkSvvnGHGr073+Di0Mmj+Ix7HZOpe2yuozzcshv67Bhw9i4cSOpqalWl1JmOnc2m6C1VJ+IiFQEhgG//QYxMWb36unT8P335kzWm25y7iAHsHHzx6z+rAYHvm+B3Z5vdTnncPJvr/OKiYEDB2DPHqsrERERuXyGAT/9BJ06Qc+eUFAAP//835msNpvVFf4z+w8sYvGsBoSvHEBV4zRZTUdjc8D4pKGIFomONr8uWgQNGlhaioiISInZ7fDdd+bODitXmr/XfvvNbJ1z9hAHcCptF6vn3UpU9nLc7S4srHMX0XHTCHNzzJWOHS9iVhI1akB4uBnoREREnEVBgTlLtVUruPlm8PMzx8wtWgRXXeX8YS4nJ50Fv96I8X1jIrKWs8QvHp8+fxHb/WPcHDTMgVroLNW5syZGiIiIc8jLg5kz4ZVXzDXkevY0t+iKibG6stJh2O0sSR5JyK536eKSz2KvZjSN/5z4oDZWl1YsCnQWiomB9983ZwBVr251NSIiIufKyYGPPoJXXzXHfd9wA3z2GXToYHVlpWfN2sm4rnmCaNcslrkGk9tpGrGNbrC6rBJRoLPQ2b9qkpPhuuusrUVEROTvsrPNRofx4+HgQbj1VnPWaqtWVldWenbu+YUjiwfRiYNswptV4W8Q2WaU1WVdFgU6CzVsCLVrm92uCnQiIuIIMjLg3XfhjTfgxAm4804YMwaaNrW6stJz9MQGNs7rR+ec9XjYXVlc/36iYt7BxcV5Y5HzVl4B2GzmOLo//7S6EhERqexOnoRJk+CttyAzEwYOhMcfh0aNrK6s9GSfPsayubfR7tQftAEWBVxLp+4zCfGsZnFl/5wCncXi4mDUKLNpu0oVq6sREZHK5uhRmDgRJk82Jz4MGQKjR0NIiNWVlZ6C/FyS/7yPsP2JRLvYWeLdlpbdvyC+WhOrSys1CnQW69bN/AFavNhcu0dERKQ8HDwIEyaYM1VtNnjgAbOBoVYtqysrXcuXv0zVTS/RxfUMS9xCyO2SSFxIN6vLKnUKdBZr3hxq1oT58xXoRESk7O3dC6+9Bh98AF5e8Mgj8NBD5vqoFcmWbV+Suex+OthOsNZWlfVtJhEVfq/VZZUZBTqL2Wzm5sXz5lldiYiIVGTbt5tLjyQmgr8/PPMMDB9u/rsiOXg4lR0LbiM6fwd77O6khD1Gx47jsDn7ZrKX4JCBLiEhgYSEBAoKCqwupVx06wb33QdpaRXvB0tERKy1caO5GPDnn0NQkBnqhg4FX1+rKytd6Zn7WTm3Lx0zkmlm2Piz5i1Ed51BQ/fKMUDdZhiGYXURF5Keno6/vz9paWn4+flZXU6Z2b4dmjSBH36A66+3uhoREakIVq+Gl1+Gr7+GunXNGauDBoG3t9WVla68vGyS599N+OGv8LUZLK0aTbvuX+DnW4FmdRRDxW5/dBKNG0NoqLpdRUTkn1uyxGwcaNsWVq6EadNgxw6ze7UihTnDbidlyePsn1WNLkf/w2bPxpzqsYz4GxZXujAHDtrlWtnYbGa36/z5VlciIiLOyDDgjz/MrtUFCyA8HD7+GG67Ddwq4G/69RunU7DyETq5pLPCJYDcyCl0aXKr1WVZSi10DqJrV7N5/NgxqysRERFnYbfD7NkQGQlXXWUuCPzNN7BuHdx1V8ULc3v2z2PJ56G0WD0YbyOX5Ve8RPs7jtO0koc5UAudw+je3fw6dy707WttLSIi4tjy881JDq++ak56iI+H33+Hf/3L7PWpaE6c2sa6ubcSdWY1HnYX/gwZSHSX93B187C6NIehFjoHERICLVrAL79YXYmIiDiqM2fMhYCbNIH+/c1tuRYv/u9aphUtzJ3JOUXSz9fh+uMVtDu9mmT/f+H/78N06fqhwtz/UAudA7nmGnPMg90OFXy5HBERKYHMTDPIvfEGHD4Mt94K334LrVtbXVnZsNvzWbLoQervmUZnlwIWe7UgvNss4gOutLo0h6XY4EB69jR/UNeutboSERFxBCdOwPPPQ7168OSTcN11sHkzzJpVccPcqtVvsmWmH533T2G/azB7Y34m7t/rCFKYuyi10DmQzp3Bxwd+/RXatLG6GhERscrBg/DmmzBlitlrM2SIuUVXaKjVlZWd7bu+58SSwURyhPX4sKbFJDq1Gm51WU5DCws7mBtuMHeMWLDA6kpERKS87doF48fDRx+Bp6e5dtzDD5s7PFRUh4+uZsuC2+icu5m/7G781XAYnaLfrPBbdZU2tdA5mJ494cEHIT0dKkmGFRGp9DZuhHHjzJmrAQHw3HPwwAMVezvIzOxDLP+jHx3Sk2hp2FgUdAOdun5MPU/98rscir8OpmdPczr63LlWVyIiImVt+XK4+Wa48kpISoKJE2H3bhgzpuKGufz8M/w59y6yvq5LVEYSy306YOu9g7ie3+KpMHfZHDLQJSQkEB4eTkREhNWllLuGDaFpU3McnYiIVDyGYYa3q6+GiAhYvx4++MDc13vECKhSQfeSN+x2UpeNZffn1ehy+FO2u4dytOufxN+USjX/hlaX5/Q0hs4BjRoFX3wB+/Zp+RIRkYrCMODnn83tuZKTzVmqTz4JffqAq6vV1ZWtTVtncmbZcNq6nGKVvRqeHd4mvFl/q8uqUBQXHNANN8CBA2ZTvIiIOLf8fJg50wxw119v3vbTT7BqlbmeXEUOc/sPLmbxrIY0X34nfkY2y8Keoc3txxXmyoAmRTigzp0hMNBcNDIy0upqRETkcmRnw4cfwoQJsGcPXHstTJ4MXbpUvB0d/lda+h5Wzb2FTlmpeBgu/FnnDqLiptPYzcvq0iostdA5IDc36NXLDHQiIuJcTp6El16C+vXhoYfMP9JXrzZb5WJjK3aYy83NJOm3myj4riERWamk+MVS5eb9dOn+KW4Kc2VKLXQO6sYbzXWItmwxJ0mIiIhj27/fnKU6bZrZzTpokLkYcMNKMN7fsNtJWfIIdXZOJsYln8WeTbmi62fEB7WzurRKQ4HOQfXoYc50+vZbePxxq6sREZEL2bwZXn8dPvnE3O3noYfM9USDg62urHysXfcuLmseJ8olk1TXIPI6TSO20Y1Wl1XpaJarA+vTx5wcsWSJ1ZWIiMj/WrYMXnsNZs+G2rVh5Ehzi67K8utq197fOLxoIJ04yKYCb860fJG2bR6xuqxKSy10DuzGG6F/f3NPv9q1ra5GREQMA+bMgVdfhfnz4Yor4P334c47za26KoNjJzaxYV5fonPW4W53ZXH9+4iKmYSLiyKFlTQpwoFdd505nf2776yuRESkcisoMNcHbd/eXBA4IwO++srcsmvQoMoR5rJPH2PBT1fh8XM4bc6sY3H1awi89RidY6cozDkABToHFhAAcXFmc76IiJS/M2dg6lRzclq/fuaSUn/8YXa3VoYFgQEK8nNZtOBe0r6qSedTc1jl3Yb86zYTf+3PeHlWs7o8+X+K1A7u3/82t4I5dsz8IBERkbKXlgbvvWfOWj1yxPwsPttCV5msWDEO340vEON6hiVudcmNSSQutLvVZcl5qIXOwfXpY47Z+OYbqysREan4Dh2CJ56AevXg2Wehd29z+agvv6xcYW7r9q9YPjOQ9lueJMfmzrrWU4m6bT/1FeYclma5OoEePczxG/PmWV2JiEjFtG0bvPEGzJgBHh5w//3w8MOVb0LawcPL2Z50O53ztrHH7s7hsIfp2PFVbNpY3OE5ZJdrQkICCQkJFBQUWF2KQ+jbF4YO1WxXEZHSlpIC48eba34GBcFzz5lhrlo1qysrX+mZ+1k5tx+RGYtpbtj4s+a/ie6aSEP3KlaXJsWkFjoncPIk1KoFr7xirjouIiKXz26HH380FwNetMhceuSRR8xlorwq2e5UeXnZJC+4h/BDX+JrM1jqG0Xb7rPwr1rP6tKkhNSG6gSqVzfXpJsxwxxPJyIiJZeTAx98AFdeCTfcYAa72bNh0yZzQeDKFOYMu52lKWPYP6saXY58wRaPRpz8VwrxNyYrzDkph+xylXMNGGCuS7dqFbTT1ngiIsV28qQ5Y/Wdd+DwYTPMffABREdbXZk11m/8gIKVo+joks4KlwByI98lpklfq8uSf0iBzklcdZXZ7TpjhgKdiEhx7N0Lb71l7uSQl2d2qT7yiLmmXGW0968F7P+zP9H2fWwzPFl+xYu0b/ekJjxUEAp0TsLNDe66Cz78ECZMMGdhiYjIudasMcfHzZpl7qv60EPmep41a1pdmTVOnNrG2nn9iD69Ene7C3+G3E10l6m4uukXSUWiWO5EBgyA48fhp5+srkRExLGc3WP1qqugTRtzssMbb5itdC+9VDnD3JmcUyz45XpcfmxK++yVJPt3x6/PQbp0/UhhrgLSLFcnExEBdepof1cRETC7Uv/zH7NFbvVqaNsWRo+GW24xezYqI7s9nyWLH6L+7qnUcikg2fNKmsfPIiiwhdWlSRmqpG9353X33Wb3weHDlfMvThERgMxMmD7d3Jpr7164+mpzj9Vu3cBms7o666xe8xYea5+is2s2S11rkdv5A2LrX2t1WVIO1OXqZPr1AxcX+OwzqysRESl/hw7BU0+ZW3ONHg2xsWbL3K+/QvfulTfMbd/1Pcs+q0mbDSMxsLGmxTt0vP0gjRTmKo0yDXQLFy6kV69e1KlTB5vNxrfffluWp6sUatQw9xacMcPqSkREys+6dXDPPVC/vrn8yMCBsHMnfPIJtG5tdXXWOXJsLQv/05yGyTdQu+AEyfVG0PyOU7RuNcLq0qSclWmgy8rKonXr1kyePLksT1PpDBwIa9fC0qVWVyIiUnYMA377zZzo0KqVOenhpZdg3z5zwkNoqNUVWicr+wgLfuhGlV9b0/LMFv6s0ZvgW48THfMOLi4aTVUZlen/+jXXXMM111xTlqeolHr2hAYNYPJk6NjR6mpERErXmTMwc6Y5Pm7DBmjf3hxm8u9/g7u71dVZqyA/l+SFg2ny16dEudhZ4tOeNt3+Q7x/Q6tLE4s51Bi6nJwc0tPTi1zkXK6uMGwYfPmlOTlCRKQiOHoUXnjB7FYdPBgaN4akJEhNhdtuq9xhzrDbSU19np2f+9Hl0MfscA/lSHwS8Tctp5rCnOBggW7cuHH4+/sXXkIrc3v6Jdxzjxns3n/f6kpERP6ZzZth6FBzosOrr5otcZs3m8szxcZW3okOZ23aOpNVnwUSsW0sWTYvNradQed+uwmtG2t1aeJAym0dOpvNxuzZs7nxxhsveExOTg45OTmF19PT0wkNDdU6dBcweDD8/DPs3l25/3IVEedjGDB/Prz5prlYeq1a5m4OQ4eak78E/jq0hF1JdxBTsIsdBR4cu+JRIiNe1FZdcl4ONXLS09MTT09Pq8twGiNGmOswffutuYimiIijy82FL74wg9zq1eZkhxkzzCWZ9PFvSkvfw6q5t9Ipaxkeho2FtW8jOv5DGrt5WV2aODDFfCfWqpXZHTFpktWViIhc3IkTMG6cOaGrf3+oXdtcCHj1anNbQ4U5yM3NJOm3m8n/riERWctI8euC1037if3XZ7gpzMkllGkLXWZmJtu3by+8vmvXLlavXk1AQAD16tUry1NXGiNGmK1za9ZU7rWYRMQxbd8Ob70FH30EBQVmmHv4YQgPt7oyx2HY7aSkjKbOjneIcckn2fMKmnT9nPigdlaXJk6kTMfQLViwgK5du55z+4ABA5hRjJVxtZfrpeXlmTPBunaFxESrqxERMcfHLVxoBrnvvoPAQHNm/v33Q3Cw1dU5lnUbpsLKR2npmkmqEYR/pylc0biP1WWJEyq3SRGXQ4GueCZOhMcegx07zFliIiJWOHMGPv8c3n7b7DUID4eRI+HOO8FLPYZF7N47h0OL76aTcYDNBd5kt3iedm1HW12WODEFugogM9MMcgMGmOFORKQ8HTgAU6bA1KnmWnLXXw8PPVS591a9kGMnNrFhXl+ic9ZxxO7Krnr3EN3lXe3uIP+YAl0F8cwzZpjbuxcCAqyuRkQqg9RUszXuiy/MFriBA81xvU2aWF2Z4zl95gRL595G25O/A7Cq+tV07P4Z3l76wJbSoVmuFcSIEeaA43fesboSEanI8vLMABcdDZGRkJwMr78O+/ebnz8Kc0XZ7fksWjCYk/8JpvOp31nt3Yq8azcSf92vCnNSqtRCV4E8/LA5MWLXLqhWzepqRKQiOX7c3JkmIcEMb127mt2q119v7loj51q5ajxV1o+lmetpltjqUrvzRzSo18PqsqSCUqCrQA4ehEaNYMwYePZZq6sRkYpgwwazW/XTT8FuhzvuMINcq1ZWV+a4tu74mrSU+4iwHWNdgS+0m0DLK4daXZZUcAp0FcxDD8HHH5vbgfn7W12NiDgju93cVvCtt2DuXHMR4GHDYMgQCAqyujrHdfDwcrYn3U503jb22d052PghOnV6TVt1SblwyHdZQkIC4eHhREREWF2K03n8cTh9WrNdRaTk0tPNcXBNm0KvXpCRATNnmn8gPvWUwtyFZGQeYMF3XfCfE0F4znYWBd5Mnb4niIp+XWFOyo1a6CqgRx81lw/YsUOLeIrIpW3caI6N+/hj8w/CW24xW/s7dbK6MseWn3+G5PkDaX7oC6raDFJ8O9K2+5f4V9WCoFL+FOgqoOPHzbF0AwZo1quInF9+PvzwA0yeDPPmQc2aMHSo2a1at67V1Tk2w25n2bKnCdr2Bg1cckl2a0TDuE+pWyvK6tKkElOgq6BeeQXGjoXNm81wJyIC5sK/06ebCwHv22cuPzJ8OPTpAx4eVlfn+DZuSiR3xUO0cUljpb06VSITaHbFbVaXJaJAV1FlZUFYmLlS+6efWl2NiFht2TKzW3XWLHBxgdtvNyc6tNP+78Wy76+F7PvzLqLte9lW4MmpZk/Sof3TGiMnDkOBrgKbOhXuu89czb1DB6urEZHyduYMfPml2a2amgoNGsADD8A990CNGlZX5xxOpu1gzdy+RJ1ewUm7C9vq3kV07DRc3dScKY5Fga4Cy883//quWhUWLdKeiiKVxd698N575kLAx47B1Veb3arXXKNFgIsrJyedJfPuoPWxn3C3GSz370ZE98/xqaKZZuKYtBtwBebmZq4j1b272c1ym4Z5iFRYhgHz55utcd99B76+5t6qDzwAV1xhdXXOw27PJ2XxSEJ3v0eMSz7JXuE07zqL+MCWVpcmclFqoasEbr7ZHD+zebP5IS8iFUdaGnzyCbz7LmzaBFdeabbG3Xmnft5LavWat3Ff+xRXumaxlJoERk2nccPrrS5LpFgU6CqB3bshPNz8S33CBKurEZHSsHy52a36+eeQmws33GAGubg4Da8oqZ17fubo4kF05BAbC6qQ2+oV2rR+yOqyREpEga6SeO01c6X3FSugdWurqxGRy5GVZQ6fmDLF/FkODTXXjRs0yNyeS0rm6LH1bJrfl+jcjRy0u7GvwX106jwRFxeNRhLno0BXSeTlQdu2ZhdMcrK5bIGIOIf1681Z6x9/bG7Hde215gx2TXK4PFnZR0idexvt0+ZRgI3VNa4jqttMPD31e0acl36tVxLu7mb3zNKl2j1CxBnk5Jj7qHbpAi1bwn/+AyNGwM6d8OOPcP31CnMlVZCfy5/z7ib969pEpc9jRZX2GL22EX/NDwpz4vTUQlfJPPyw+Zf+qlXQrJnV1YjI/9q+HaZNg48+Mpcc6dbNbI274Qbt5HC5DLud5SteotrmV2jimkOySz1Cu3xMaN04q0sTKTUOGegSEhJISEigoKCArVu3KtCVouxss+vV39/senXTUBERy+XlmfuqvvcezJkD1aubS44MGQJNm1pdnXPbvPVzspcNo53LSdbY/XBr/xZXNh9odVkipc4hA91ZaqErG0uXmvs3vvCCOVFCRKyxcyd8+KF5OXgQoqLM1rhbbgFvb6urc24HDi1lZ9LtROfvZLfdg6NNHiEy8iVt1SUVlgJdJfXUU/D66+b6dG3aWF2NSOVx5gx8+y1Mnw5z54KfH9xxBwwdqhnopSEtYy+r5valY2YKmYaNTbX6EhX/Ae7uVawuTaRMKdBVUjk5EBlpri6/dKlaA0TK2vr1Zoj75BM4ccKc7HDvvfDvf0MVZY1/LDc3kyUL7ubKw99QxWawrGoM7bt/QVXfOlaXJlIuFOgqsbVroWNHuOsucxC2iJSuzEz44gszyKWkQFAQ3H23uW6cxsaVDsNuJyXlcWrveJt6Lnksdm9CWNxn1K7ZwerSRMqVhsRXYq1aQUKC+culc2cYMMDqikScn2GYQxmmTzcXAc7Kgp494euvzaVGNFO19KzbMA1j1aNEuWSw3CWQvI7v0SWsj9VliVhCLXTCwIFmK8LSpeZ6VyJScsePw6efmkFu/XqoV8/8Y+nuu81/S+nZs28uBxYNIMr4iy0FXmRe+Rzt2z1hdVkillKgE7KzoVMnc7D28uXmIG0RubSCApg3z5yl+s03ZuvcjTeaY+O6d9fCv6Xt+MktrJ/Xl+gzazhqd2Vn6ECiYhJwdVOzp4gCnQCwdSt06ABdu5q/mPSLSOTCtmyBxERzK66//jIX6b73Xujf3xwnJ6Xr9JkTLJ13B21P/IoNWFn9Kjp2/xxvrwCrSxNxGAp0Uuinn6B3b3jwQZg40epqRBzLqVPm0ITERFiyBKpVg9tuM8eeRkaCzWZ1hRWP3Z5P8p/Dabh3OsEuBSR7tuTKbl8QGNDc6tJEHI4mRUih664z93kdPhwaNza/ilRmBQXwxx8wYwbMnm3u6NCzpxnsevcGLy+rK6y4Vq56He/1zxHjepoUtzrkdv6QuHpXW12WiMNSoJMihg2DHTvgoYegQQNzVp5IZbNpk9kS98kncOAAhIfDiy+aCwDX0bJmZWrbztmcWjKUCNtR1tl8WdvqXTq1uN/qskQcnrpc5RwFBeZip3PmwMKF0K6d1RWJlL2TJ82WtxkzzBnf1avD7bebs1Tbt1eXalk7dHQl2+bfRnTeVvbb3TjQ+EE6dXpdW3WJFJMCnZxXVhZ06wa7dkFSEjTXkBWpgM6cgR9/hJkz4eefzT9mrrnGHBfXqxd4elpdYcWXmXWQ5XP7EpH+JzmGjXXBNxLV9WM8PHytLk3EqThkoEtISCAhIYGCggK2bt2qQGeR48chPt7cpujPP6FRI6srEvnn7Hbzj5RPPzUX+01LM2d433EH9OsHtWpZXWHlkJ9/huQFg2h2cBZ+NjspPpG07f4l/n71rS5NxCk5ZKA7Sy101jt0CGJjITfX3Ei8cWOrKxIpOcMwt7qbORM++8xcaqRRIzPE3XGHtuEqT4bdTmrqc9TYOp7Grrkscm1Ig9hPCKnd2erSRJyaAp1c0v795iKpmZnmjD91v4qz2LMHPv/cDHLr10ONGmYr3B13mItpa1xc+dq4+WNylz9IG5c0Vtqr4x05ieZX3GF1WSIVggKdFMuhQ9CjBxw+bE6WaN3a6opEzu+vv+A//zEnOKSkgLc33HAD3HknXHUVuLtbXWHls//AIvYsvJPO9j1sL/DkZLMxdGj/jCY8iJQiBToptuPH4eqrzWVNfvoJoqOtrkjEdOgQfPWVGeIWLQIPD/O92revuV5c1apWV1g5nUrbxep5txCVvYJTdhe21r2DqNhpuLlpAT+R0qZAJyWSlmb+gly61FzeoV8/qyuSyuroUXNSwxdfmJMcXF3NVuS+fc0WuWrVrK6w8srJSSdl/l20OvoD7jaD5f7xdOj+Ob5VNONEpKxoYWEpEX9/+P13c9/K226D7dvhqac0FknKx/Hj5o4NX3wB8+ebt3XvDu+/DzfdBAHa2tNSht3OkuSRhOx6lxiXfBZ7NaNZ11nEB2qMhkhZU6CTEvP0NDclv+IKeOYZ2LoVpk3TNkhSNo4fh++/hy+/NCfl2O3mcjoJCXDzzRAUZHWFArBm7STc1owh2jWLZa7B5Ea9T2zD3laXJVJpqMtV/pHPP4eBA6FFC3MgesOGVlckFcH+/fDtt/DNN+ZuJXY7xMSY3al9+mitOEeyc88vHF18Dx05xMaCKuS2eok2rUdaXZZIpaNAJ//YypXmVmGnTpn7X/bqZXVF4oy2bjUD3OzZsGwZuLmZ3ak33WSOiVOIcyxHj69n0/x+ROds4JDdlT0NhhLV+W1cXNTxI2IFBTopFSdPmtsl/fADDBkCb7wBvtq5Ry7CbofUVPM98+23sGEDVKkCPXuaXanXXaeJDY4o+/Qxls3tR/tTc7EDq2pcR6dun+LlWc3q0kQqNQU6KTWGYY6lGzXKbE1JTDS7yUTOysgw1zH88Udz6ZsjR6B6dbj+ejPEXXWVGerE8RTk57Lkz/tovD+RGi52lni1pWX3Lwio1sTq0kQEBTopA9u3m611S5bAo4/C2LH6JV2Z7dxpBrgff4QFCyAvD8LDzRB3/fUQFWV2r4rjWr78Zfw2vcQVrmdIdgmlbswM6od0s7osEfkbhwx0CQkJJCQkUFBQwNatWxXonFBBgdnt+swzULMmvP463HqrljepDPLzzTB/NsRt3GjuzhAfb46vvO46cx9VcXxbtn1B5rIHaG87wRq7H67t3qRF+CCryxKR83DIQHeWWuic3/btZivdd99Bly7w9tvQtq3VVUlp27/f7Er97Tfz64kTEBxshrfrrzcX/NVuDc7j4OFUdiy4jej8Heyxu3OkySNERr6srbpEHJgCnZSLOXPg4Ydh0yZzUeKXX9b6Yc4sO9tcTuT3380Qt3Gj2fraoYO55db110NEBOj3v3NJz9zHyj/60jFzCZmGjY21biU6/kPc3TVmQsTRKdBJucnLg/feg2efNbtkR4yAkSMhMNDqyuRS8vNhxQpzd4a5c+HPPyEnB0JCzIkMV19tLjFSo4bVlcrlyMvLJnn+AK48/DU+NoOlVTvTrvss/HxDrC5NRIpJgU7K3bFj8NprMGWKef3+++GRR7TOmCOx22HNGpg3zwxxCxeaM1R9fCA21gxxV10FzZtrXKQzM+x2li0dQ/D2idR3yWOxexhhcZ9Ru2aE1aWJSAkp0Illjh2DiRNh0iTIzTX3hh0+HNq3t7qyyic311wgevFiWLTI3Oz+5ElzO7fOnaFbN+ja1exSdXe3ulopDes3Tse+chStXDJYbtSgauS7NG1yq9VliVR6a9asYcKECezatYsnnniCzp078/zzz5OTk8OhQ4d47rnnaNOmzTmPU6ATy508CVOnmi12e/dCx45msPv3v7U/bFk5ccKcibpokRniUlPhzBnw9ja///HxZoDr2NHcu1cqjj375nJg0d1EGfvZUuBFZviztG8/xuqyROT/3XPPPUybNo1XX32Vd955h9jYWN5++222bt3K1VdfzdChQ5k0adI5j9PqT2K56tXhiSdg9GhzmYvJk+Guu8xQd+ut5r87d9YA+8tVUGBORlm+HJKTzQC3caN5X61a5uLP48aZ3+M2bdQCV1GdOLWNdXNvJerMajzsLiwKHURUzLu4unlYXZqI/L8dO3ZQp04d3NzcOHDgACdOnODJJ5+kbt26LFmyBF9fX3pdYH9NtdCJQ9q2DT75xLzs3m0Gj5tuMncTiItT6LgQu93cE3X58v9eVq0yZ6XabOaCvjExZnjr3BkaNtQYuIruTM4pUubeTtsTv2ADVlbvQWS3z6jirdlIIo4mOTkZb29v2rZtS6tWrQgICGDBggXFeqwCnTg0u93sGvzmG/j6a9izB/z9zS7Bs+O6rryycrbeZWTA+vWwdi2sW2d+Xb3avB0gLMwc83b20rYt6Meo8rDb81myaAT197xPLZcCFnu2JLzb5wQFXGl1aSJyCceOHSM4OJhnn32WsWPHFusx6nIVh+bi8t/WpAkTzNamH34wZ16OHm0O5g8KMoPd2TFfV14JHhWkF8kwzP1Ot26FLVv++3XdOti1yzzG1RWaNoVWreDaa83139q1M7uypXJatfoNvNY9Q2fX06S41iYv5kPi6vW0uiwRKab58+djGAbx8fHFfoxa6MRpZWebrXfz5pmX1FRzvJi7uxnq2rQxW6VatYImTaB2bcdsyTtzxtxpYd8+c1LI7t1mcDt7SU83j7PZoEEDuOIKaNHCfF2tWkGzZpo8IqbtO7/jZMpgIjjK+gIf7G3G06rlA1aXJSIl9MADD/Dhhx9y6tQpvIr5Aa9AJxVGZqbZ7bhq1X8v69ebrXhghp7Gjc1LgwZmwDt7qVULqlUzt6eqWvWfbRZvt8Pp0+bs3WPHzMvRo0X/fejQfwPckSNFHx8cbIa2v1+aNjX3P1Vwk/M5fHQ1Wxf0Izp3C/vtbhxoNJxOUW9oqy4RJ9W8eXNq1qxZ7PFzYEGgMwyDjLODfP5HTk4OOTk5hdczMjIIDw9n3759CnRyWfLyYOdOs3ty1y7z3zt3mmHq8GE4der8j/P0BF9fM9z5+Jgtezbbfy9nr+fmmi2Fp0+bl+xscweF83F3N3fFCAw0u4lDQqBuXQgNNb+eve7tXWbfDqlgMrMPs2rBQNplLCbHgI2B1xHR5T08PfV5KeIoqlatiq0Es88OHTpE7dq1ee6554o9fg4sCHRnW91EREREKrqS9jKuWbOGq6++mnnz5hEeHl7sxzl0C93BgweJjIxk48aN1K1bt1zqi4iIIDU1tcKdq7zPV57nSk9PJzQ0tNxacvX/5nznK+/3CJTNazPsdlasHEfA9ok0cskjxaUeoTHvc2OvERXy/628z6XPEuc8V3me73LeIyVtobtc5T7L1WazlfgHpWrVquX2Iezq6lohz1Xe5yvv1wbg5+dXLufU/5vznq+83iNQ+q9t05ZPOZM6gm4up1hVpRp/dXiHq5rdVSbnupSK/J4EfZY427msOF95fpYUl5Yt+R/Dhg2rkOcq7/OV92srT/p/c97zlafSem37Dyxiz8K76GzfzQ7Dg9Sw5+jQ4dkiEx4q8v+b3iPOeb6K/NoclUPPct2/f39h02ZISIjV5YiD0mxouRRnfI+kpe9m9dxb6ZSdSprdhS11bicq7n3c3DTVuaw44/tEypcjv0ccuoXO8/93BffU7uByEZ6enjz33HN6n8gFOdN7JDc3kyXz76Llke/oYDNY4hdHh3/NokuVWlaXVuE50/tErOHI7xGHbqFz5CQsIlKaDLudJUseoe7OyYS45LPYoxlN4z+nZlAbq0sTESfg0C10IiKVwdp17+Ky+jGiXbNY5hpMXqdpxDa6weqyRMSJKNCJiFhk195fObzoHjpxkE14syp8ApFtHrG6LBFxQgp0IiLl7OiJDWyc14/OOetxt7uyuP79RMW8g4uLPpJF5PLo00NEpJxknz7Gsnm30e7kH7QBFgdcS8fuMwnxrGZxZSLi7BToRETKWEF+LksWPUDjfR8R7WJniXcbWnb/krhqTawuTUQqCJdLHyLieMaOHYvNZityqVVLyzpUdgsXLqRXr17UqVMHm83Gt99+W+R+wzAYO3YsderUwdvbm/j4eDZs2FCmNa1YMY7tn/sTc+ADdrvV4WDcXOL6rCJAYc4Sl3qP3H333ed8tnTq1MmaYsUS48aNIyIigqpVqxIcHMyNN97Ili1bihxjxWfJpSjQidO68sorOXjwYOFl3bp1VpckFsvKyqJ169ZMnjz5vPePHz+eN998k8mTJ5OamkqtWrXo0aPHBfeX/ie2bv+K5TMDab/lSXJs7qxv8z5Rt+2jfki3Uj+XFN+l3iMAPXv2LPLZ8vPPP5djhWK1pKQkhg0bRkpKCnPmzCE/P5+rrrqKrKyswmPK87Ok2AwHNHnyZKN58+bGFVdcYQBGWlqa1SWJg3nuueeM1q1bW12GODDAmD17duF1u91u1KpVy3j11VcLbztz5ozh7+9vvPfee6V23gOHlhkLvwgzCj7F2Pmxu7Ek+THDXlBQas8vped/3yOGYRgDBgwwbrjhBkvqEcd05MgRAzCSkpIMwyi/z5KScsgWumHDhrFx40ZSU1OtLkUc2LZt26hTpw4NGzakX79+7Ny50+qSxIHt2rWLQ4cOcdVVVxXe5unpSVxcHMnJyf/4+dMz97Pgu874z4mkec4O/gy6hZB+p+gU9VqRfVfF8S1YsIDg4GCuuOIKBg8ezJEjR6wuSSyUlpYGQEBAAFD2nyWXS58y4pQ6duzIxx9/zG+//cb777/PoUOHiI6O5vjx41aXJg7q0KFDANSsWbPI7TVr1iy873Lk5WWzcE5fcmbXo2NGMst8o/G4aQ9xV32Ju3uVf1SzlL9rrrmGmTNnMm/ePN544w1SU1Pp1q0bOTk5VpcmFjAMg1GjRhETE0OLFi2Asvss+ac0y1Wc0jXXXFP475YtWxIVFUXjxo1JTExk1KhRFlYmjs5msxW5bhjGObcVh2G3s2zZUwRve4MYlzySPRrTKG4m8bU6llapYoG+ffsW/rtFixZ06NCB+vXr89NPP3HzzTdbWJlYYfjw4axdu5ZFixadc19pfZaUFgU6qRB8fHxo2bIl27Zts7oUcVBnZ0EfOnSI2rVrF95+5MiRc/7SvpT1Gz+gYOUoOrqks8IlgNzId4lp0vfSDxSnU7t2berXr6/PlkpoxIgRfP/99yxcuJCQkJDC20vzs6Q0qctVKoScnBw2bdpU5IdL5O8aNmxIrVq1mDNnTuFtubm5JCUlER0dXazn2PvXApJn1aPF6nvxNnJZfsVLtL/jOE0V5iqs48ePs2/fPn22VCKGYTB8+HC++eYb5s2bR8OGDYvcXxqfJWVBLXTilB599FF69epFvXr1OHLkCC+99BLp6ekMGDDA6tLEQpmZmWzfvr3w+q5du1i9ejUBAQHUq1ePhx9+mFdeeYUmTZrQpEkTXnnlFapUqcLtt99+0ec9cWob6+b2JerMKtztLvwZMpDoLu/h6uZR1i9JStnF3iMBAQGMHTuWPn36ULt2bXbv3s2TTz5JYGAgN910k4VVS3kaNmwYn332Gd999x1Vq1YtHBfn7++Pt7c3Npvtsj9LypRl82uLIS0tTcuWyHn17dvXqF27tuHu7m7UqVPHuPnmm40NGzZYXZZYbP78+QZwzmXAgAGGYZjLDTz33HNGrVq1DE9PTyM2NtZYt27dBZ/v9JmTxvyfrjVOfYKR/gnG/B/+ZWRlHy2nVyNl4WLvkezsbOOqq64ygoKCDHd3d6NevXrGgAEDjL1791pdtpSj870/AOOjjz4qPKaknyXlwWYYhlHuKbKY0tPT8ff3Jy0tDT8/P6vLEZFKwm7PJ2XRQ9TbM5VaLgUke15J866zCKrRwurSRETOS12uIiJ/s3rNRDzWPk20azZLXWuR2/kDYutfa3VZIiIXpUAnIgJs3/U9J5YMJpIjrMeHNS3eoWOrEVaXJSJSLAp0IlKpHTm2ls3z+9I5dzMedjeSGz5IVPRE7e4gIk5FgU5EKqWs7MOkzu1Hh7QFtDRs/Bl0A1FdP6aep8briojzcchAl5CQQEJCAgUFBVaXIiIVTH7+GZKThtD0wEyiXOws8elAm25fEu/f8NIPFhFxUJrlKiKVgmG3s3zFC1Tb/CpNXHNIdqlPvdhPCKnTxerSRET+MYdsoRMRKU2bts7kzLLhRLicYrXNn43tphHdrL/VZYmIlBoFOhGpsP46mMyuhXcSU7CLHYYHyxo/TUTE85rwICIVjgKdiFQ4ael7WDX3VjplLcPdcGFh7duJjv+Axm5eVpcmIlImFOhEpMLIzc1kyfz+tDjyLRE2gxS/WNp3+5xY3zpWlyYiUqYU6ETE6Rl2OylLHqXOzknEuOSz2LMpV3T9jPigdlaXJiJSLhToRMSprVv/HrbVo4lyySTVNYjcTlOJbXST1WWJiJQrBToRcUq79/7OocUD6WQcYLPhzcrm44loO9rqskRELKFAJyJO5diJTWyc15eonHW4211ZVG8o0V0m4+KijzMRqbz0CSgiTuH06eMsnXc77U7+TmtgcUBPOnabSV2vAKtLExGxnAKdiDg0e0EeyX8+QKN9H9HZpYBk79a06PYF8dWbWl2aiIjDUKATEYe1YuWr+G54nhjXMyxxq0teTCJxod2tLktExOEo0ImIw9m2/WvSlt5HB9sx1tmqsq7120RdOcTqskREHJZDBrqEhAQSEhIoKCiwuhQRKUcHDy9nR9LtROdtY6/dnZSwR+nY8TVt1SUicgk2wzAMq4u4kPT0dPz9/UlLS8PPz8/qckSkjGRkHmDF3FuJzFjMacPGhpp9iIqfgbuHj9WliYg4BYdsoRORyiEvL5slC+4h/NCXdLQZLPXtRNvuXxBbtZ7VpYmIOBUFOhEpd4bdzrJlTxO07Q1iXHJJ9mhEo7iZxNfqZHVpIiJOSYFORMrVhk0fkb/iYTq6pLPSJYBtkQnENOlndVkiIk5NgU5EysXevxaw/8/+RNv3sc3wZPkVL9C+3VOa8CAiUgoU6ESkTJ1M28GaubcSfXolHnYX/gy5m+guU3F187C6NBGRCkOBTkTKxJmcUyyddxetj/9EewySq3UjotvndKkSbHVpIiIVjgKdiJQquz2flMUPE7p7Kp1d8kn2DKd51y+ID2xhdWkiIhWWAp2IlJrVa97GY+2TRLtms9S1FnnR04ltcJ3VZYmIVHgKdCLyj+3Y9SPHltxLRw6zAR/WtHibjq0etLosEZFKQ4FORC7bkWNr2Ty/H9G5m/Cwu5HccASdot/ExUUfLSIi5UmfuiJSYlnZR0id248OafNpadhYFNSbqK6fEOqpLfpERKzgkIEuISGBhIQECgoKrC5FRP6mID+X5IWDafLXp0S52Emp0p5W3b8g3r+x1aWJiFRqNsMwDKuLuJD09HT8/f1JS0vDz09/+YtYxbDbWbHiJfw3v0IT1xySXeoR2uUTQuvGWl2aiIjgoC10IuI4Nm/9nOxlw+jgcpLVNn82tp1KdPMBVpclIiJ/o0AnIuf116El7Eq6k+j8newyPFja+EkiI17UVl0iIg5IgU5EikjL2MuqubfSKXMpHoaNRbVvIzr+Qxq7eVldmoiIXIACnYgAkJubyZL5A2hxZDaRNoMUvy607zaLWN86VpcmIiKXoEAnUskZdjspKaOpvWMSXVzyWOx5BU3iPyM+uL3VpYmISDEp0IlUYus2TIWVjxLlmkmqSyC5nd6jS+M+VpclIiIlpEAnUgnt3juHg4sHEmX8xWa8Wdn8NSLaPmZ1WSIicpkU6EQqkeMnt7B+3q1En1mLh92VRfUGE93lXW3VJSLi5PQpLlIJnD5zgqVzb6ftyd9oAyyufjUdu39GjFeA1aWJiEgpKNMFpV5++WWio6OpUqUK1apVK8tTich52O35LEoawon/BNP51G+s9m5F3rUbib/uV7wV5kREKowybaHLzc3llltuISoqig8++KAsTyUi/2PlqvFUWT+WGNfTpLjVIa/zDOLq9bC6LBERKQNlGuief/55AGbMmFGs43NycsjJySm8np6eXhZliVRo23Z+Q9qSoXSwHWMdvqxrNYVOLe6zuiwRESlDDjWGbty4cYUhUERK5tDRlWybfxvReVvZb3djSeNRdOr0urbqEhGpBBzqk37MmDGkpaUVXvbt22d1SSIOLyPzAAu+j6Xqb+0Jz9nGosCbqd33JFHRbyjMiYhUEiX+tB87diw2m+2il+XLl19WMZ6envj5+RW5iMj55eefYeEft3Nmdiid0v8k1bcjbjfsIu7qr/Hw8LW6PBERKUcl7nIdPnw4/fr1u+gxDRo0uNx6ROQSDLudZanPELh1ArGuuSzyaETDuE+JrxVldWkiImKREge6wMBAAgMDy6IWEbmEjZsSyV3xEB1d0lhpq87mDh8Rc8XtVpclIiIWK9NJEXv37uXEiRPs3buXgoICVq9eDUBYWBi+vuoSEimu/Qf+ZO/CO4m272Wb4cnyJs/Tvv3TGiMnIiIA2AzDMMrqye+++24SExPPuX3+/PnEx8df8vHp6en4+/uTlpam8XRSKZ1K28XqebcQlb2Ck3YXttW9k6jYqbi5eVldmoiIOJAyDXT/lAKdVFY5OeksmX8XrY/+gLvNYLl/VyK6z8KnSrDVpYmIiANyqHXoRCo7w25nSfLDhOyaQheXfBZ7NadZ11nEB7ayujQREXFgCnQiDmLN2km4rRlDtGsWS11rkhc1ndiG11tdloiIOAEFOhGL7dzzM0cXD6Ijh9hIFVZfOZGOrR+2uiwREXEiCnQiFjl6bD2bFvQlOmcjHnZXkhsMo1Pnt3Bx0Y+liIiUjH5ziJSz7NPHWDa3H+1PzaUVNhbVuI5O3T4lxLOa1aWJiIiTUqATKScF+bkk/zmUsP0fE+1iJ7lKO1p3+4L4amFWlyYiIk7OIQNdQkICCQkJFBQUWF2KyD9m2O2sWPkKfptepovrGZLdQ8nr8jHxdeOtLk1ERCoIrUMnUoa2bPuCzGUP0N52gjV2P9zaT+TK5vdYXZaIiFQwDtlCJ+LsDhxays6k24nO38keuztLm4whMvIlbdUlIiJlQoFOpBSlZexl1dx+dMxcQjPDxqJafYmK/5CG7lWsLk1ERCowBTqRUpCXl03y/AFcefhrIm0GS6t2pn33L4j1rWt1aSIiUgko0In8A4bdztKlT1Bz+1t0cckj2bMJjeNmEl8zwurSRESkElGgE7lM6zZMw1j1KJ1cMljuUoO8ju8RE/Zvq8sSEZFKSIFOpIT27JvLgUUDiDL+YovhxYpm4+jQ7gmryxIRkUpMgU6kmI6f3ML6eX2JOrMGD7sri0LvJSomAVc3D6tLExGRSk6BTuQSzpw5Scq8O2h74hfaAsnVr6Jjt8+I8a5hdWkiIiKAAp3IBdnt+SxZNIIGe96ns0sBS7xaEt5tFvEB4VaXJiIiUoQCnch5rFr9Bl7rnqGz62lS3OqQ2/lDYutdbXVZIiIi56VAJ/I323d+x8mUwURwlPU2X9a2TKBTywesLktEROSiHDLQJSQkkJCQQEFBgdWlSCVx+OhqtszvR+e8LXjY3VjSaCSdoiZoqy4REXEKNsMwDKuLuJD09HT8/f1JS0vDz8/P6nKkAsrMPsTyP/oSkb6QHMPGuuAbier6MR4evlaXJiIiUmwO2UInUtby88+wJOlemh74nE42Oyk+kbTt/iVxfvWtLk1ERKTEFOikUjHsdlKXj6XGltfo4prLYo8G1I/9lPjana0uTURE5LIp0EmlsWnzJ5xZ/iCRLqdYZavGpg4f0vmKO6wuS0RE5B9ToJMKb/+BRexZeCed7XvYbniS2uQ5OrR/VhMeRESkwlCgkwrrVNouVs+7lajs5bjbXVhY5y6i46YR5uZldWkiIiKlSoFOKpycnHSWzO9P62PfE4HBEv94OnT/nNgqtawuTUREpEwo0EmFYdjtpCSPou6uBLq45JPs2Ywr4j8nPqiN1aWJiIiUKQU6qRDWrkvAdfXjRLlmkeoaTF7U+3Rp2NvqskRERMqFAp04tZ17fuHo4nvoyCE2UYVV4W8Q0WaU1WWJiIiUKwU6cUpHT2xg07y+ROdswMPuSnL9B+gU8zYuLnpLi4hI5aPffuJUsk8fY9nc22h/6g9aA4sCrqVT95mEeFazujQRERHLKNCJUyjIzyX5z/sI259ItIudJd5tadn9C+KrNbG6NBEREcs5ZKBLSEggISGBgoICq0sRB7BixStU3fgiXVzPsMQ9hNyYROJCulldloiIiMOwGYZhWF3EhaSnp+Pv709aWhp+fn5WlyPlbMu2L8lc9gDtbcdZa/fDtd2bXBk+yOqyREREHI5DttBJ5XbwcCo7km4jOm8He+zuLG3yOJGRr2irLhERkQtQoBOHkZ65n5V/9KVjZjLNDBuLat1KVPxHNHSvYnVpIiIiDk2BTiyXl5dN8vy7ufLwV3S0GSytGk277l8Q6xtidWkiIiJOQYFOLGPY7SxdOoaa2yfSxSWPxZ5hhMV9RnzNCKtLExERcSoKdGKJDRs/oGDlKDq5pLPCpQa5ke/SpcmtVpclIiLilBTopFzt2T+PA4sGEGXfz1bDixVNX6Z9+yetLktERMSpKdBJuThxahvr5t5K1JnVeNpdWBR6D1ExU3B187C6NBEREaenQCdl6kzOKZbOvYM2J36mHZBc/V9EdvucGO9Aq0sTERGpMBTopEzY7fksWfQg9fdMo7NLAYu9WhDebRbxAVdaXZqIiEiFo0AnpW7V6jfxWvcMnV2zSXGtTW7nD4irf43VZYmIiFRYCnRSarbv+p4TSwYTyRE24MOaFpPo1Gq41WWJiIhUeAp08o8dPrqarQtuIzp3M+52N5IbPUxU1BvaqktERKScOGSgS0hIICEhgYKCAqtLkYvIzD7E8j/60SE9iRbYWBR0I53iE6nv6Wd1aSIiIpWKzTAMw+oiLiQ9PR1/f3/S0tLw81NIcBT5+WdYkjSYKw58RjUXOylVImjd7Quq+Te0ujQREZFKySFb6MQxGXY7y5e/QPUtr9LFNYfF7vWpH/spcXVirC5NRESkUlOgk2LZtHUmZ5YNJ8LlFKts1djYbhqdm/W3uiwRERFBgU4uYf/BxexJupPO9t3sMDxYFvYMER3GasKDiIiIA1Ggk/NKS9/Dqrm30CkrFQ/DhYV17iA6bjqN3bysLk1ERET+hwKdFJGbm8mS+XfR8sh3RNgMUvzi6PCvWcRWqWV1aSIiInIBCnQCmBMeUpY8Qt2dk4lxySfZqylXxH9OfFBbq0sTERGRS1CgE9auexeXNY8T5ZJJqmsQuZ3ep0ujG6wuS0QcSG5uLvn5+VaXIeJw3Nzc8PDwsLoMBbrKbNfe3zi8aCCdOMhmw5tV4ROIaPOI1WWJiIPJzc1lw4YN2O12q0sRcTguLi5ceeWVloe6Mgt0u3fv5sUXX2TevHkcOnSIOnXqcOedd/LUU09Z/qIru2MnNrFhXl+ic9bhbndlcf37iIqZhIuL8r2InCs/Px+73U6DBg3w9va2uhwRh3H69Gl2795Nfn6+5dmmzH6Db968GbvdztSpUwkLC2P9+vUMHjyYrKwsJkyYUFanlYvIPn2MZfNup93JObQBFgdcQ6funxHiWc3iykTEGXh7e1OlShWryxBxOGlpaZw5cwZPT098fHwsqaFct/56/fXXmTJlCjt37jzv/Tk5OeTk5BReT09PJzQ0VFt//UMF+bksWfQAjffNINClgGSvNrTs9gUB1a+wujQRcQLZ2dls2rSJ5s2bK9CJ/M3Zn42VK1eSlZWFn58fffv2tSTUlevqsGlpaQQEBFzw/nHjxuHv7194CQ0NLcfqKqiDv8Nv7Yk58AG73WpzIPYP4vqsUpgTEREpJT4+Pnh4eJCenl6kYao8lVug27FjB5MmTeK+++674DFjxowhLS2t8LJv377yKq/iObkW5l0N86/G1d2PU7E/E3XbPuqHdre6MhERkQrF09MTT09PS2socaAbO3YsNpvtopfly5cXecyBAwfo2bMnt9xyC/fee+8Fn9vT0xM/P78iFymh7L8g5R74pQ1k7YIuX0OPRVQLucbqykRERKSMlHhSxPDhw+nXr99Fj2nQoEHhvw8cOEDXrl2Jiopi2rRpJS5QiikvHTaOh81vgpsPtH8HmgwFF3erKxMREZEyVuJAFxgYSGBgYLGO/euvv+jatSvt27fno48+wkUbupc+ex5sfx/WjYX8DGg6EsIfBw9/qysTERGRclJmy5YcOHCA+Ph46tWrx4QJEzh69GjhfbVqaV/Qf8wwYP93sPpxyNgGDftDqxfBRxNJREREKpsyC3S///4727dvZ/v27YSEhBS5rxxXSqmYji2FVaPh6J9Q618Q8wVUb2N1VSIiImKRMusDvfvuuzEM47wXuUyZO2FRX/i9E+SehPhfoOvvCnMiImUoPj6ehx9+2OoyLqg869u0aVO5nEdKToPanEHOcVgxCn5sBkcXQccP4JrVUKcn2GxWVyciIpXAW2+9ZfnSHEePHr3kblMHDhwop2ociwKdIys4A5smwPdhsON9aPEs9NoKje8BF1erqxMRqTByc3OtLsEy8fHxfPPNNxc95vfffycoKIhGjRqVU1XnFxQURGxsLAkJCRc8ZsGCBQwZMoT58+cX+3lTU1N5+OGHSUxMZMiQIezatas0yi1XCnSOyLDD7s/MFrnVT0CD26DXdmjxtLkkiYiIk2rQoAFvvfVWkdvatGnD2LFjATNcDB8+nOHDh1OtWjVq1KjB008/XWS4TnGOMQyD8ePH06hRI7y9vWndujVfffXVOc8xatQoAgMD6dGjx0Xrzs/Pv+D5cnJyePDBBwkODsbLy4uYmBhSU1NL9LrP1vTggw/y2GOPERAQQK1atYrcD5CVlUX//v3x9fWldu3avPHGGxet+1K+/fZbXF1deeKJJ8jLy7vgce+8884llywrL5GRkSxbtoxjx46d9/7bb7+dd999l3379nHvvffyyy+/XPT5cnJyuOWWWxgzZgwDBgxg4MCBDBw4sCxKL1MKdI7m8AL4LRKS7zDHxl27HiLeBe+aVlcmIlIoOy+blQdXXvKSnZdd4udOTEzEzc2NpUuX8s477zBx4kSmT59eomOefvppPvroI6ZMmcKGDRsYOXIkd955J0lJSec8x+LFi5k6depl1/TYY4/x9ddfk5iYyMqVKwkLC+Pqq6/mxIkTl/XafXx8WLp0KePHj+eFF15gzpw5hfePHj2a+fPnM3v2bH7//XcWLFjAihUrCu+fMWMGtmIOxcnPz2fFihV8+eWXHDly5ILfg7Vr1xISEoKrq+P0DPXu3ZsZM2Zc8H43Nzf69+/PtGnTSE9P55577mH27NnnHce/cOFC/Pz8qFnT/D0bGRlJSkoKhw8fLqvyy4bhwNLS0gzASEtLs7qUsndqg2HMv94wZmIYv0QYxuEkqysSETEMwzCysrKM5cuXG1lZWYW3rTiwwmAsl7ysOLCiyHPVr1/fmDhxYpHbWrdubTz33HOGYRhGXFyc0bx5c8Nutxfe//jjjxvNmzcvvH6pYzIzMw0vLy8jOTm5yHkGDRpk3HbbbYXP0aZNm2K9/oudLzMz03B3dzdmzpxZeF9ubq5Rp04dY/z48cV+3WfPExMTU+SYiIgI4/HHHzcMwzAyMjIMDw8PY9asWYX3Hz9+3PD29jYeeughwzAM45tvvjGaNm1arNc1ffp0Y9u2bYZhGMarr75qBAUFnff37ZtvvmlMnz698Hp+fr4xefJk48477zSWLVtmGIZh3H777UZiYmKxznsx+fn5xqRJk4wBAwYUPve+ffuMuLi4IscdPXrU6Nq1a7Gf1263G99++61xxx13GH/88UeR+6ZNm3bO8wcGBhpz58695POe/dn46quvjOnTpxsTJ040jh8/Xuy6SpNa6Kx2+hAsGwo/t4S09RD9OVydAsGxVlcmInJBzQKbsWLIiktemgU2K/Fzd+rUqUgrU1RUFNu2baOgoKBYx2zcuJEzZ87Qo0cPfH19Cy8ff/wxO3bsKHxMhw4d/nFN27dvJy8vj86dOxfe5+7uTmRk5GXNCG3VqlWR67Vr1+bIkSOAuSd6bm4uUVFRhfcHBATQtGnTwus33XQTmzdvvuR5MjMzOXr0KGFhYQA89NBDVKlShddee+2cY/fv309wcHDh9e+++46+ffuSnZ3N7t27AejVqxfp6enFf6EX8P3339OvXz9Onz5dOI5tzpw55yx/FhgYWOT/8lKOHTvGypUrqVGjBg0bNjznPi8vryK3eXl5cerUqct7ERYps3Xo/omEhAQSEhKK/PBWOPlZsOkN2DQeXDygzetwxTBwtXYGkYhIcVRxr0K72u1K/DgXF5dzur0uNnbrctjtdgB++ukn6tatW+S+v8/S9PEpvTHJ/9vNaRhGkduK+7rd3Ytu12iz2Qpfz/8+/p94//33GTx4cOF1Ly8vXn75ZYYMGcIDDzxQ5PuWmZmJt7d34fVu3bpht9v5888/+fTTTwFo3LjxeSdMvP322xedYBAXF8dNN91UeL179+4AzJs3jw8//BAwJzmcb4xjcbqWDxw4wKRJk8jLy2PEiBHUr1//nGP8/f3P+d5mZmYWe1csR+GQgW7YsGEMGzaM9PR0/P0r2BZW9gLY+RGse9ZcjuSKEdDiKfCobnVlIiJlLigoiIMHDxZeT09PP+cXfkpKyjnXmzRpUmQM18WOCQ8Px9PTk7179xIXF1cqdV/ofGFhYXh4eLBo0SJuv/12wAxqy5cvL7I2XHFe96WEhYXh7u5OSkoK9erVA+DkyZNs3bq1RK/z0KFDeHl5UaNGjSK333777UycOJFnn32WDz74oPD2wMBATp48WXi9WrVqfPLJJ8THxxcGvXXr1nH33Xefc66HHnqoJC8RPz8/Zs2aRWxsbGHgTkpK4pVXXuHUqVNUq1at8Fg3twtHmN27d5OQkICHhwcPPvggtWvXvuCxzZo14/333y+8npOTQ0ZGxnnDnyNzyEBXIRkGHPgFVj8GaRug/m3Q+mXwbXjpx4qIVBDdunVjxowZ9OrVi+rVq/PMM8+cM9h+3759jBo1iqFDh7Jy5UomTZp0zmzOix1TtWpVHn30UUaOHIndbicmJob09HSSk5Px9fVlwIABJa77Qufz8fHh/vvvZ/To0QQEBFCvXj3Gjx9PdnY2gwYNKtHrvhRfX18GDRrE6NGjqVGjBjVr1uSpp54qsk/67NmzGTNmzEW7XadMmcKQIUPOO0v0iSeeoF+/fowcOZIWLVoA0Lx5c/bu3VvkuMOHDxcJlb6+vqW2X/u+ffsKu4LXr1+Pu7s7wcHBJCYmcu+99wJmaK5atep5Hz9hwgSys7N54oknzgmt5xMbG8uRI0fYv38/ISEhJCUlERERoUAn53FipblV1+F5EBwHVy+DGhFWVyUiUu7GjBnDzp07uf766/H39+fFF188p6Wqf//+nD59msjISFxdXRkxYgRDhgwp0TEvvvgiwcHBjBs3jp07d1KtWjXatWvHk08+eVl1X+x8r776Kna7nbvuuouMjAw6dOjAb7/9RvXq/+15Kc7rLo7XX3+dzMxMevfuTdWqVXnkkUdIS0srvD8tLY0tW7Zc8PFbt27l5Zdf5oUXXrjoeZ588km+//57AHr27MngwYN55JFHCu/v168fo0aN4pNPPiE/P/+yQvKF9OnTh8cff5wvv/wSgPbt2zN58uQiLYCpqal069btvI9/9NFHS3Q+Nzc3EhMTefnll+nUqRNJSUnMnDnzsuu3is0ozU75Una2yzUtLQ0/Pz+ryym5rL2w5inY/Sn4NYM2r0HdXtrdQUScSnZ2Nps2baJ58+ZUqVKlTM8VHx9PmzZtzlmzraTHSOkaMmQIL7zwArVq1bK6FMBclqZ3795ERkZaWsfZn43du3dz6tQpMjIy6N+/PwEBAeVei1roykLuKdgwDra8DR7+EDEFGt8LLvp2i4iI83n22WeZPHkyL730ktWlkJ6eztGjRy8Y5iZOnHjRGbBdu3alT58+ZVWeZZQwSlNBLmybAhtehPzTEP4YNB8N7ufv5xcREXEGISEh3HTTTfz8889ce+21ltVhGAYTJ068aLAcOXJkOVbkOBToSoNhwL6vzW26snZBo4HQ8gWoUsfqykREnMqCBQtK5Rgpfe3bt7e6BI4fP879999PUFCQ1aU4HAW6f+poMqx6FI4tgdrXQOxsqNbS6qpEREQqHGdbG648KdBdrvRtsOYJ2PeNuedqtz+gVnerqxIREZFKSIGupM4chfUvwLb3wLs2dEqEhneCTbuoiYiIiDWUQoor/7Q5c/WHMNj1MbR6Ea7fAo36K8yJiFRg8fHxRXZ9cDTlWd/l7E8r5UNJ5FIMO+xMhB+vgLXPQsMB0Gs7XPkEuHlf+vEiIiIVwFtvvVVkL9wLOXr0KBMmTLjoMQcOHCitsuT/KdBdzKE/4Nf2kHI31OgI122EDu+Al2bXiIhUJLm5uVaXYJn4+Hi++eabix7z+++/ExQURKNGjS75fEFBQcTGxpKQkHDBYxYsWMCQIUOYP39+setMTU3l4YcfJjExkSFDhlzWThsVmUMGuoSEBMLDw4mIsGh7rFPrYP41MK8HuHpDj8XQ5Svwa2JNPSIiFUSDBg3O2eGhTZs2jB07FjDDxfDhwxk+fDjVqlWjRo0aPP300/x9U6PiHGMYBuPHj6dRo0Z4e3vTunVrvvrqq3OeY9SoUQQGBtKjR4+L1p2fn3/B8+Xk5PDggw8SHByMl5cXMTExpKamluh1n63pwQcf5LHHHiMgIIBatWoVuR8gKyuL/v374+vrS+3atc/Z47akvv32W1xdXXniiSfIy8u74HHvvPMO/fr1K/bzRkZGsmzZsvPuFwtw++238+6777Jv3z7uvfdefvnll4s+X05ODrfccgtjxoxhwIABDBw4kIEDBxa7nsrAIQPdsGHD2Lhx4zk/EGUu+y9IGQS/tIGM7RDzlRnmgqLLtw4REQeXnQ0rV176kp1d8udOTEzEzc2NpUuX8s477zBx4kSmT59eomOefvppPvroI6ZMmcKGDRsYOXIkd955J0lJSec8x+LFi5k6depl1/TYY4/x9ddfk5iYyMqVKwkLC+Pqq6/mxIkTl/XafXx8WLp0KePHj+eFF15gzpw5hfePHj2a+fPnM3v2bH7//XcWLFjAihUrCu+fMWMGtmJuL5mfn8+KFSv48ssvOXLkyAW/B2vXriUkJARXV9cSvZbevXszY8aMC97v5uZG//79mTZtGunp6dxzzz3Mnj2b8+1IunDhQvz8/KhZsyZgBsaUlBQOHz5copoqNMOBpaWlGYCRlpZWtifKTTeM1U8bxixvw/iqhmFsftsw8nPK9pwiIk4iKyvLWL58uZGVlVV424oVhmGuqn7xy4oVRZ+rfv36xsSJE4vc1rp1a+O5554zDMMw4uLijObNmxt2u73w/scff9xo3rx54fVLHZOZmWl4eXkZycnJRc4zaNAg47bbbit8jjZt2hTr9V/sfJmZmYa7u7sxc+bMwvtyc3ONOnXqGOPHjy/26z57npiYmCLHREREGI8//rhhGIaRkZFheHh4GLNmzSq8//jx44a3t7fx0EMPGYZhGN98843RtGnTYr2u6dOnG9u2bTMMwzBeffVVIygo6Ly/b998801j+vTphdfz8/ONSZMmGQMGDDCWLVtmGIZh7Nu3z4iLiyvyuKNHjxpdu3YtVi2GYRh2u9349ttvjTvuuMP4448/itw3bdq0c54/MDDQmDt3brGfvyyc/dn46quvjOnTpxsTJ040jh8/bkktDtlCV27s+eZWXT+EwabXoemD0GuH+dXVw+rqREQcVrNmsGLFpS/NmpX8uTt16lSklSkqKopt27ZRUFBQrGM2btzImTNn6NGjB76+voWXjz/+uMgenx06dPjHNW3fvp28vDw6d+5ceJ+7uzuRkZGXNSO0VatWRa7Xrl2bI0eOALBjxw5yc3OJiooqvD8gIICmTZsWXr/pppvYvHnzJc+TmZnJ0aNHCQsLA+Chhx6iSpUqvPbaa+ccu3//foKDgwuvf//99/Tr14/Tp08XjmObM2cOISEhRR4XGBh40T1V/9exY8dYuXIlNWrUoGHDhufc5+XlVeQ2Ly8vTp06Veznr+gq5zp0hgF/fQ+rH4f0rdDgTmj9EvjUs7oyERGnUKUKtGtX8se5uLic06V2sbFbl8NutwPw008/Ubdu3SL3/X2Wpo+PT6md83+7OQ3DKHJbcV+3u7v7Oc979vX87+P/iffff5/BgwcXXvfy8uLll19myJAhPPDAA0W+b5mZmXh7/3dVh+7dzUX0582bx4cffgiYkxzONw6xON2/Bw4cYNKkSeTl5TFixAjq169/zjH+/v7nvP7MzEztHPE3la+F7ngqzI2HhTeCdwj0XAHRHyvMiYiUg6CgIA4ePFh4PT09/ZzZiikpKedcb9KkSZExXBc7Jjw8HE9PT/bu3UtYWFiRS2ho6GXVfaHzhYWF4eHhwaJFiwrvy8vLY/ny5TRv3rxEr/tSwsLCcHd3L1LLyZMn2bp1a4me59ChQ3h5eVGjRo0it99+++00b96cZ599tsjtgYGBnDx5svC6n58fP//8M7GxsYWhOCkpiX/961/ntJi5uV243Wj37t2MHj2ahIQEHnzwQSZMmHDeMAfQrFmzwpZKMCdJZGRkXPD4yqjytNBl7oI1T8KeWeDfAuJ/hto9oZiDR0VE5J/r1q0bM2bMoFevXlSvXp1nnnnmnMH2+/btY9SoUQwdOpSVK1cyadKkc2ZzXuyYqlWr8uijjzJy5EjsdjsxMTGkp6eTnJyMr68vAwYMKHHdFzqfj48P999/P6NHjyYgIIB69eoxfvx4srOzGTRoUIle96X4+voyaNAgRo8eTY0aNahZsyZPPfUULi7/bZuZPXs2Y8aMuWi365QpUxgyZMh5Z6A+8cQT9OvXj5EjR9KiRQsAmjdvzt69e8/5fpztrl2/fj3u7u4EBweTmJjIvffeC5jBtmrVquetYcKECWRnZ/PEE0+cEyzPJzY2liNHjrB//35CQkJISkoiIiJCge5vKn6gyzkBG16GrZPBswZ0nA4N7waXkv0giYjIPzdmzBh27tzJ9ddfj7+/Py+++OI5LVX9+/fn9OnTREZG4urqyogRIxgyZEiJjnnxxRcJDg5m3Lhx7Ny5k2rVqtGuXTuefPLJy6r7Yud79dVXsdvt3HXXXWRkZNChQwd+++03qlevXqLXXRyvv/46mZmZ9O7dm6pVq/LII4+QlpZWeH9aWhpbtmy54OO3bt3Kyy+/zAsvvHDR8zz55JN8//33APTs2ZPBgwfzyCOPFN7fp08fHn/8cb788ksA2rdvz+TJk7n77rsLj0lNTaVbt27nff5HH330kq/179zc3EhMTOTll1+mU6dOJCUlMXPmzBI9R0VnM0qzU76Upaen4+/vT1paGn5+fiV7cEGOGeI2vAz2XGj+ODQfBW6lN2ZCRKQyyM7OZtOmTTRv3pwqVaqU6bni4+Np06bNOWu2lfQYKV1DhgzhhRdeoFatWsV+zNNPP03v3r2JjIwsw8qsdfZnY/fu3Zw6dYqMjAz69+9PQEBAuddS8VroDDvs+cLsXs3eB43vhZZjwbv4b0IRERH5r2effZbJkyfz0ksvFev49PR0jh49esEwN3HixIvOgO3atSt9+vS5rForq4oV6A4nwapH4cRyqNvLHCfn3/zSjxMREZELCgkJ4aabbuLnn3/m2muvveixhmEwceLEi4a/kSNHlnaJlV7FCHRpm8wlSP76AQI6QPcFUDPO6qpERKSEFixYUCrHSOlr3759sY47fvw4999/P0FB2ve8PDl3oDt9GNaNhR3vQ5VQiP4M6vcFW+VbjUVERMQRaG04azhkoEtISCAhIaHIquBF5GfBpjdh03iwuUGb1+CK4eDqef7jRURERCowhwx0w4YNY9iwYYWzXAvZC2DXDFj7DOQcN0PclU+BZ/nPJhERERFxFA4Z6M5hGHDgF1j1GKSth3p9oc0r4NvI6spEREQqhRUrVpCTk4OPjw+tW7e2uhz5H84x2CzpBlhwLXhUh6uWQswshTkREZFyMnv2bMLDw+nQoQMTJ060uhw5D8cOdFsTzK9n/oLYb+FfSRBYcRcoFBGp6OLj43n44YetLuOSHL3O8qxv3bp1tGvXjt9//5277rrrnF07LmbTpk1lWJn8nWMHuqD/X3rkqhQIuUH7roqIiJSy7OxssrKyLnj/gQMHCAkJIT8/n8OHD+PmVrzRWm+99RaensWbrHj06FEmTJhQrGPl/Bw70FU3NwbGxd3aOkREpELKzc21ugRL/fTTT7Rr147XX3/9gscYhoGrqyt9+vShd+/enDp16pLP+/vvvxMUFESjRsUbHhUUFERsbCwJCQnFLb1YUlNTefjhh0lMTGTIkCGXtX+us3DsQCciIhVWTk4ODz74IMHBwXh5eRETE0Nqamrh/T/88APVqlXDbrcDsHr1amw2G6NHjy48ZujQodx2222AGTzGjx9Po0aN8Pb2pnXr1nz11VdFzhkfH8/w4cMZNWoUgYGB9OjR44L15efnM3z4cKpVq0aNGjV4+umn+fv255eqv0GDBufsN9umTRvGjh1bpJ4HH3yQxx57jICAAGrVqlXkfoCsrCz69++Pr68vtWvX5o033rj4N7YErrvuOvr27XvB+48cOcLmzZsBOH36NJs3b6Zr167s37+fX3/9tfCyevXqIo9755136NevX4lqiYyMZNmyZRw7dqzEr+N8cnJyuOWWWxgzZgwDBgxg4MCBDBw4sFSe2xEp0ImIiCUee+wxvv76axITE1m5ciVhYWFcffXVnDhxAoDY2FgyMjJYtWoVAElJSQQGBpKUlFT4HAsWLCAuzhye8/TTT/PRRx8xZcoUNmzYwMiRI7nzzjuLHA+QmJiIm5sbixcvZurUqRes7+xxS5cu5Z133mHixIlMnz692PUXV2JiIj4+PixdupTx48fzwgsvMGfOnML7R48ezfz585k9eza///47CxYsYMWKFUWeY8aMGdguc1jSxR63YsUKrr76ahYvXszcuXN5++23cXd3JyQkhJ49exZe2rRpU/iYtWvXEhISgqura4lr6d27NzNmzDjvfW+//TYvvPAChw4dKtZzLVy4ED8/P2rWrAmYgTElJYXDhw+XuC5n4BzLloiIiGPJz4b0zZc+zq8ZuFU55+asrCymTJnCjBkzuOaaawB4//33mTNnDh988AGjR4/G39+fNm3asGDBAtq3b8+CBQsYOXIkzz//PBkZGWRlZbF161bi4+PJysrizTffZN68eURFRQHQqFEjFi1axNSpUwtDH0BYWBjjx4+/ZOmhoaFMnDgRm81G06ZNWbduHRMnTmTw4MHFqr+4WrVqxXPPPQdAkyZNmDx5MnPnzqVHjx5kZmbywQcf8PHHHxe2JiYmJhISElLkOfz9/WnatOlFz5OcnMysWbNo2bIlO3bs4PrrrycmJgYw/z8SExMB+Pbbb/n000/x8fHBZrPRvHnJ9kSfO3cuERERRW4rKChgypQpLF++nGHDhhEREcH+/fu58847i2zlFhcXR0JCAo8++ug5z/vQQw9x+PBh3nvvPbKyshg0aNBFX/Pu3bsJCPjvOrWurq5UrVqVDRs2FIa8ikQtdCIiUnLpm+HX9pe+XCD07dixg7y8PDp37lx4m7u7O5GRkUVmRsbHx7NgwQIMw+DPP//khhtuoEWLFixatIj58+dTs2ZNmjVrxsaNGzlz5gw9evTA19e38PLxxx+zY8eOIufu0KFDsV5ip06dirReRUVFsW3bNgoKCopdf3G0atWqyPXatWtz5MgRwPw+5ebmFoZUgICAgHOCzE033VTYNXo+Bw8epE+fPjz55JMMHjwYLy+vIq18S5cuZcCAAQwYMICCggJ+++03ALp27Vqi1wKwf/9+goODi9z2/fff069fP06fPl04jm3OnDnnBNPAwMBz/r/+rmbNmjz33HM888wz/Pzzz4wYMYIlS5ac99hjx47h5eVV5DYvL69ijQF0RmqhExGRkvNrBj1XFO+48zg7Fu1/u/sMwyhyW3x8PB988AFr1qzBxcWF8PBw4uLiSEpK4uTJk4Utb2fH2f3000/UrVu3yHP+70xLHx+fS9d9CcWp38XFpciYO4C8vLxznsvdvejEP5vNVvh6/vfxl+vrr7+mXr161KpVC+CccXrt27cv/HdAQADp6enAud+74sjMzMTb27vIbd27dwdg3rx5fPjhh4DZXX6+MYzF6TquWrUqI0eOJDc3l5kzZ/Lhhx8yYMCAwhZHMFst//f7l5mZWWH3mlULnYiIlJxbFQhod+nLebpbwez29PDwYNGiRYW35eXlsXz58iJdfGfH0b311lvExcVhs9mIi4tjwYIFRcbPhYeH4+npyd69ewkLCytyCQ0NvayXmJKScs71Jk2a4OrqWqz6g4KCOHjwYOH96enpJZ5lGRYWhru7e5FaTp48ydatW0v0PHa7/aLh8HLGu11IYGAgJ0+eLHKbn58fP//8M7GxsYWBOikpiX/961/ntJgVd1kUML+nf/31F76+vue0CjZr1qywpRPMSRIZGRnUr1+/hK/IOaiFTkREyp2Pjw/3338/o0ePJiAggHr16jF+/Hiys7MZNGhQ4XFnx9F9+umnvP3224AZ8m655Rby8vKIj48HzBabRx99lJEjR2K324mJiSE9PZ3k5GR8fX0ZMGBAiWvct28fo0aNYujQoaxcuZJJkyYVzjAtTv3dunVjxowZ9OrVi+rVq/PMM8+UODj5+voyaNAgRo8eTY0aNahZsyZPPfUULi5F22Nmz57NmDFjLtjtetNNN/Hiiy+yd+9e6tWrB8CsWbMuORP1yJEj/P7777i4uLBixQpee+21Swau5s2bs3fv3nNu37dvH2FhYQCsX78ed3d3goODSUxM5N577wXMUFy1atWLPj/Arl27mDZtGi4uLtx3333nDe2xsbEcOXKE/fv3ExISQlJSEhEREQp05SkhIYGEhAQKCgqsLkVERMrIq6++it1u56677iIjI4MOHTrw22+/Ub169SLHde3alZUrVxaGt+rVqxMeHs6BAweKtOa9+OKLBAcHM27cOHbu3Em1atVo164dTz755GXV179/f06fPk1kZCSurq6MGDGiyC4Jl6p/zJgx7Ny5k+uvvx5/f39efPHFy1oH7fXXXyczM5PevXtTtWpVHnnkEdLS0oock5aWxpYtWy74HKGhoXz99dc8/fTTxMTEYLfbufbaa/n111/58ccfycvL48cffyQjI4PFixezf/9+mjVrxu7duzl16hTDhw8nJSWFP/74g549e1603p49ezJ48GAeeeSRIrf36dOHxx9/nC+//BIwu3knT57M3XffXXhMamoq3bp1u+Bzr1q1isTERGrVqsVjjz12znvl79zc3EhMTOTll1+mU6dOJCUlMXPmzIvW7sxsRml10JeB9PR0/P39SUtLw8/Pz+pyREQqpezsbDZt2kTz5s2pUuX8XahS8d16662MHz+eBg0aXPLYIUOG8MILLxSO2Suup59+mt69exMZee42n2+//TZeXl4MGDDgnMkOVjn7s3E2+GZkZNC/f/8is2vLi8bQiYiIyEX99NNP3HLLLcUKcwDPPvsskydPLtE50tPTOXr06HnDHJjLlgwdOtRhwpyjUaATERGRC0pNTaVmzZrccsstbNy4sViPCQkJ4aabbuLnn38u1vGGYTBx4kReeumlf1JqpeaQY+hERETEekuWLGHo0KEEBweTm5vLlClTiv3Yvy+FcinHjx/n/vvvJygo6HLKFBToRERE5AKioqJYu3ZtmZ+noq4NV57U5SoiIiLi5BToRERERJycAp2IiIiIk1OgExEREXFyZRroevfuTb169fDy8qJ27drcddddHDhwoCxPKSIiIlLplGmg69q1K19++SVbtmzh66+/ZseOHfz73/8uy1OKiIiIVDplumzJyJEjC/9dv359nnjiCW688Uby8vJwd3cvy1OLiIiIVBrltg7diRMnmDlzJtHR0RcMczk5OeTk5BReT09PL6/yRERERJxWmQe6xx9/nMmTJ5OdnU2nTp348ccfL3jsuHHjeP7558u6JBERuQynT5+2ugQRh+JIPxM2wzCMkjxg7NixlwxdqampdOjQAYBjx45x4sQJ9uzZw/PPP4+/vz8//vgjNpvtnMedr4UuNDSUtLQ0/Pz8SlKmiIiUktzcXDZs2IDdbre6FBGHYxgGO3fuJCMjg4yMDPr3709AQEC511HiQHfs2DGOHTt20WMaNGiAl5fXObfv37+f0NBQkpOTiYqKuuS50tPT8ff3V6ATEbFYbm4u+fn5pKWl8eOPP+Lj44Onp6fVZYlYrqCggPz8fE6fPm1poCtxl2tgYOBl77l2Njv+vRVOREQcn4eHBx4eHpw5c4asrCzy8vIU6ET+xupsU2Zj6JYtW8ayZcuIiYmhevXq7Ny5k2effZbGjRsXq3VOREQcj6enJ35+fqSnp5Obm2t1OSIOxc/Pz7I/dMos0Hl7e/PNN9/w3HPPkZWVRe3atenZsyezZs3SX3UiIk7Kx8eHvn37Wt4aIeKIPD098fHxseTcJR5DV540hk5ERETk0rSXq4iIiIiTU6ATERERcXIO3eVqGAYZGRlUrVr1vOvWiYiIiIiDBzoRERERuTR1uYqIiIg4OQU6ERERESenQCciIiLi5BToRERERJycAp2IiIiIk1OgExEREXFyCnQiIiIiTu7/AJWaTAP6A2QWAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "Graphics object consisting of 3 graphics primitives"
       ]
@@ -933,7 +952,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAADbCAYAAADkvAzdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTZklEQVR4nO3dd3iUZdr38e+kh1TSAykIQUjoAVIEqbpiAWV5XMFCEcXFCAiKCFZELFjQFR4sqGRXXF9XxHXVZxVFggqEFHoPxfQCJJMGaXO9f9xmYEibQJKZhPNzHHNMZuae+74GSPLjvJpOKaUQQgghhBDtlo2lGyCEEEIIIa5Muwh0SinGjx9PWFgYnp6evPrqq5ZukhBCCCGE1WgXgU6n0/Gf//yHhx9+GL1ez/Dhwy3dJCGEEEIIq9EuAl2t7du34+rqSnR0tKWbIoQQQghhNdpNoDMYDPz000+MHDkSOzs7SzdHCCGEEMJqtJtAt3PnTgoLCxk7dqylmyKEEEIIYVWsstRVUlLC0qVLOXr0KAEBAQQHB1O7usoNN9xg4dYJIYQQQlgXnbWtQ3f27FnGjh1Lnz59+Mc//oFOp+Ojjz5iwYIFODo6kpubi06ns3QzhRBCCCGshtV1ud55553o9Xree+89Y3AbP348er2esWPHSpgTQgghhLiEVQW6zz77jM2bN/Pwww/j4uJifH7Xrl0AMn5OCCGEEKIeVhXo3n33XQDuuOMOk+cTEhIAGT8nhBBCCFEfqxlDV11djZOTE126dCE9Pd3kteHDh5Obm0taWpqFWieEEEIIYb2spkJ35swZampqGDRokMnz586dIykpydjdumHDBvR6vSWaKIQQQghhlawm0Pn5+eHi4oK3t7fJ8//85z+prKw0drdu3LgRDw8PSzRRCCGEEMIqWU2g0+l0PPDAA6SmphrXnNu0aRNffPEFAEFBQaSlpRESEmLJZgohhBBCWB2rGUMHUF5ezl//+lfOnj1LYGAgvXr1YsGCBSxdupRt27bh6+vLO++8U6eKJ4QQQghxNbOqQCeEEEIIIZrParpchRBCCCHE5ZFAJ4QQQgjRzkmgE0IIIYRo5yTQCSGEEEK0cxLohBBCCCHaOQl0QgghhBDtnAQ6IYQQQoh2TgKdEEIIIUQ7J4FOCCGEEKKdk0AnhBBCCNHOSaATQgghhGjnJNAJIYQQQrRzEuiEEEIIIdo5qw50SimKi4tRSlm6KUIIIYQQVqvNAt3LL7+MTqfj0UcfNfs9JSUleHh4UFJS0uhxycmg08GuXVfYSAHAjswd6Jbq2Je3z9JNEUIIIYQZ2iTQJSUl8f7779O/f/9WOb+Pj3Z/5kyrnP6qE+AaAEBeWZ6FWyKEEEIIc7R6oCstLeWee+7hgw8+oHPnzq1yjdpAd/p0q5z+quPv4g9AbmmuhVsihBBCCHO0eqCLi4vj1ltv5YYbbmjy2IqKCoqLi01u5nBxAUdHCXQtxdneGQ9HDwl0QgghRDth15on/+yzz0hNTSUpKcms419++WWWLl3a7OvodODtLYGuJQW4BkigE0IIIdqJVqvQZWRkMG/ePD755BOcnJzMes/ixYvR6/XGW0ZGhtnX8/GRQNeSJNAJIYQQ7UerVehSUlLIz89n8ODBxudqamrYunUrq1atoqKiAltbW5P3ODo64ujoeFnX8/GRSREtKcA1gJzSHEs3QwghhBBmaLVAN3bsWPbtM132YsaMGfTu3ZtFixbVCXNXSip0LaurW1d25co6MEIIIUR70GqBzs3Njb59+5o85+Ligre3d53nW4KPDxw92uKnvWqFeISQrk9HKYVOp7N0c4QQQgjRCKvcKWL16tVEREQwdOhQs98jkyJaVrBHMOerz3PmnPRjCyGEENauVWe5XmrLli1mHRcXF0dcXBzFxcV4eHiY9R7pcm1Zwe7BAKTr0/Hp5GPh1gghhBCiMVZZobscPj5w/jyUl1u6JR1DiEcIABl682caCyGEEMIyOlSgA6nStRRfF18cbB3IKJZAJ4QQQlg7CXSiXjY6G4Lcg0jXp1u6KUIIIYRoQocLdAUFlm1HRxLsHiwVOiGEEKIdsMpAdzmzXP38tPtc2dygxYR4hMgYOiGEEKIdsMpAFxcXx8GDB83eAxbAyQk6d5ZA15KC3YOly1UIIYRoB6wy0F2ugADIkd2qWkywRzDZJdnUGGos3RQhhBBCNKJDBbrAQKnQtaRQj1BqVA2ZxZmWbooQQgghGtGhAp1U6FpWD68eABwvPG7hlgghhBCiMVYZ6C5nUgRoFToJdC2nm2c3bHQ2HD8rgU4IIYSwZlYZ6C5nUgRoFTrpcm05DrYOhHiEkHY2zdJNEUIIIUQjrDLQXa7AQCgpgbIyS7ek4+jRuYd0uQohhBBWrkMFuoAA7V6qdC1HAp0QQghxQWVNpaWbUC87SzegJQUGavc5OdCjh2Xb0lH08OrBP/f/E6UUOp3O0s0RQggh2kxlTSV78/ayIyORH1NOkpioo5OuM8fXLbF00+roUIFOKnQtL8wrjJLKEgrKC/Bz8bN0c4QQQohWoZTiVNEpErMSSTi8h4Rt5zi6x4uajMGQdReUa3uMRgzNs3BL62eVgW716tWsXr2amprmLWjbuTM4OkJ2dis17CoU5hUGwLEzxyTQCSGE6DCKzhexM2sn204l8dOOfHanOFJ6IgIyY+DMZAA6uZ2nX+R5xt7lyvDrICoKvL39Ldzy+rVqoFuzZg1r1qzh1KlTAPTp04dnn32Wm2++udH3xcXFERcXR3FxMR4eHmZfT6eD4GDIkO1HW0xPr57Y6Gw4dPoQw0KGWbo5QgghRLNV1VRpXaeZify89xjbtxvIPhQMWdGQMx+qOmFjW0NY7xKu/7Mjo4ZDdDT07OmEjc4Big/D6e2Qth2O20HUu5b+SHW0aqALCgrilVdeISxMq/LEx8dz++23s2vXLvr06dMq1wwOhnTZfrTFONs7071zdw4WHLR0U4QQQogm1Xad7szayS9pu9iyrZQjezypTh8MWXdASRcAvANLGTrUwA1znYiJgchIW5ydPaGyCM78ogW4hO1wOhGqigAdePaFgD9Z7sM1olUD3fjx400eL1++nDVr1rBjx45WC3QhIXDkSKuc+qoV4RshgU4IIYRVKjpfRFJWEtvTd7I5OZvUJAdKjodr1bf8/wFli4NzJZGDzjFmfCeGXadV3wIDXUEZLlTf9m7X7vWHAAUOncE7BnovAN9Y8I4Ce3dLf9wGtdkYupqaGv71r39RVlZGbGxsvcdUVFRQUVFhfFxcXNzs6wQHw48/XnYzRT0ifCJYv2+9pZshhBDiKldVU8W+/H0kZiay5cAhftteTdahrtq4t+w5UOEOOgOhPUsZNs6e0cNtiY6GiAgHbG0d/qi+7dSC2+F6qm++wyF8oRbk3K8FXftZ3a3VA92+ffuIjY3l/PnzuLq6snHjRiIiIuo99uWXX2bp0qVXdL2QEG1SRFUV2Ntf0anEHyJ8I8gozqC4ohh3R+v934kQQoiOQynF7/rfScxM5LeTKWzZrufQbg+q0yMhaxwUzQbAw/scQ6KqGfOACzExMGSIDe7u7n9U3w5q4S25fVffzKFTSqnWvEBlZSXp6ekUFRWxYcMG1q5dS0JCQr2hrr4KXXBwMHq9XvvLMcP338O4cXDqFISGttSnuLqlZKcw5IMhJD6QSFTXKEs3RwghRAekP68nKTuJHRmJbE5JJyXJjuLartO8AVDjgJ1DNeH9yhl9vTPDYu2JjtYKOTodptW30/VU33xitVs7rL6Zo9UrdA4ODsZJEUOGDCEpKYm3336b9957r86xjo6OODo6XtH1goO1+/R0CXQtpbdPbwAOFhyUQCeEEOKKVdVUsT9/P4lZiWw9vJ9ft1eScbALZEahy5qNOucFQNdupVw30paRwxyIiYH+/e2wt7+k+raz41ffzNHm69AppUyqcC2tNtDJ0iUtx8XBhWs8r+FA/gFLN0UIIUQ7o5QiXZ9OYlYi204lsSXxLAd3u1H1eyRkjYYzfwXAxb2CyCFVjLmnEzEx2ppvXl6u2klqq2+HG6i+teOxby2lVQPdkiVLuPnmmwkODqakpITPPvuMLVu28N///rfVrunmBp6esnRJSxsQMIDdebst3QwhhBBWrvBcIUnZSSRm7iRh7wmSd9qhP94LMqPR5S5DVTlhY1tD7z7nGPkXJ4bFQkwMhIU5otM5mlbfjkn1zVytGujy8vK47777yMnJwcPDg/79+/Pf//6XG2+8sTUvS2ioNoZOtJzIgEjeSnxL9nQVQghhVFFdwZ68PezM2smvaXv4bUcFmQe7QGYMuuwHUCXanpx+XcuJjbFh5DAnoqNh0CBbnJ0vqb7tl+rblWjVQPfhhx9e1vsud+uvWj16wPHjl/VW0YBBgYM4e+4s6fp0Qj1lcKIQQlxtDMrAsTPH2Jm1kx3pSSSk5HN4twc1GUPQZY1E5c8GZYuTSyUDI6sZNdGZ2Fit6zQgoJN2ktp137K3X5i8INW3FtHqs1yvRO3WX82Z5QrwxBPwxRdw4kQrNu4qk12STdc3u/LlX75kYvhESzdHCCFEK8stzWVn1k5tx4UDx0hJsqXsZD+t6zQnGlXhgs7GQI9rzzNimCPXxWprvoWHg63tHye5ymeetqU2nxTRFnr00MbQyVp0LSfQNRB/F3925e6SQCeEEB1MaWUpqTmpJGYmsv3UbrYlnifvSChkRWOT9VcMRUEAePlVEButY/hDDsY131xdL6m+nZLqmyV02EBXUwO//w5/rJgirpBOpyMyMJLUnFRLN0UIIcQVqDZUcyD/gNZ1mpnIr7vyOLbPC5URhU3WWFTefFSNHfaONQwYVM2I+7XwFhMDQUGOGIdR11bfTsrYN2vQIQNdbYg7flwCXUuKDIzkg9QPZGKEEEK0E7W7LdR2nf565BC7ku2p/H0gZMVgm/0Xaso9AOgWdp7rxzoQG2tDdDT062eLvf0ffae11bcTUn2zVlYZ6K50UkRwsNbVKhMjWtZ1wdex/JflHC88TpiXJGUhhLA2hecKjeFtR3oq25PLKEzrCZkx2OXEUV1wDQDunlXExui47j47oqO1iQudOztdOFFlEZxuZOybVN+sToecFAFw7bUwfjy88UYrNe4qVHiuEK8VXqy7fR3TBk6zdHOEEOKqdr76PHty9xi7Trfty+LUAT/IjMY2ZxgqexCGKgfs7A307V/D8Fh7YmIgOlobmmTsaKmtvp1upPrmEyvVNytnlRW6lhAWBseOWboVHUtn58709evLr+m/SqATQog2ZFAGjp45aqy+bTu+j72pjtSkD0GXHYtd9t1UFXsDEBRSxfDr7IiO1hETAwMH2uDkdFEFrbIIcqX61tF02EDXuzd8842lW9HxDAsextbft1q6GUII0aHlluaSmJmoVd8yktm5q5TSkxGQGY1D7jwqc3uAssHFtYaoKB3XTbIxdp36+1+0vENt9S1Lxr51dB020IWHw9tvw/nz4OTU9PHCPMOCh/FeynucPXcWL2cvSzdHCCHavdLKUlKyU0jMSiQxcyfbD2SQczgYsqKxz70NQ9Yz1FQ4YWOjCO9jYNh4bb23mBjo3dsWm4sLaJVFkCPVt6tRhw10ERFgMGjdrv36Wbo1HcfwkOEAbMvYxm3X3mbh1gghRPtSbahmf/7+C12nafs5vNcNlTkE2+zrsM2eSaVe6zrtElTNdTG2RP1VR3Q0DB6sw8XF9sLJzBn7JtW3q4ZVBrorneUKWoUO4NAhCXQtqZtnN7q6deXnkz9LoBNCiEYopTheeJydWTtJykoiMT2V1D2VVPw+AF1WDI55izmfe81FXac2xNyhM3adBgZe8itaqm+iER12liuAvz/Mng3PP9/ybbua3f/v+0nKTmLf7H2WbooQQliN7JJskrKS/qi+JbHzQB7FJ3pBVjSOuSOpzupHTaUjtraKvv0MxMbYGsNb796Ydp3KzFPRTFZZoWsp4eFahU60rD/1+BMf7/6YrOIsurp3tXRzhBCizRWeKyQ5O5mk7CSSspPYkXaY3CNB2qSFvBGQuZDKYk8AQkJriI2xJSpKWzJk0CAdnTrZmp6wqT1PpfommtChA11EBPzyi6Vb0fHc0P0GdOjYdGIT0wdOt3RzhBCiVZVXlbMrZ5cxvO38fTdph5y1SQs5w7DPvZfynBAA3N0NREfriP6z1nU6dCj4+18S3pQB9DL2TbSsDh3o+vWDDz6AigpwdLR0azoOn04+DO4ymO+Pfy+BTgjRoVTVVHGg4IBJ1+n+I+UYMgdjm30dznlPci6jN1TZY2+vGDAAov+sM1bfeva0Me06Bam+iTZhlYGuJSZFAAwcCNXVcPAgDBrUMm0Tmpt63MS7ye9SY6jB1sa26TcIIYSVMSgDaWfTSMr6o/KWtZPUE6eo+L0/uqwYXE/fR1X6mxiK3QDo1kMRFa0jeq4W3gYO1NVdFkuqb8JCOvSkiNJScHeHDz+EGTNaoYFXse0Z27nuo+tImJ7AiNARlm6OEEI0Kas4S5tx+kfXaVL6XvSnukFWFK75N0BWFKW5gQB4eSmiorRu09quUx+fek5aqYcziQ1X33xitZtU30Qra9UK3csvv8yXX37J4cOHcXZ25rrrruPVV1+lV69erXlZI1dXbU/XXbsk0LW06KBourp1ZcPBDRLohBBW5+y5s9qkhawkdmbvZGdmErnpLpAZTaf80TjkTqc0vTtU2eHgoOgzSEf0XzB2nfboobuw12mtOjNPd4D+IFJ9E9agVQNdQkICcXFxDB06lOrqap566in+9Kc/cfDgQVxcXFrz0kYDB8Lu3W1yqauKjc6GSeGT2HBoAyvHrcRG/tcphLCQ8qpyUnNSTbpOj2fqISsKx9wRuBQ8TfmpPlDSCYCgaxVRsTqiH9XCW//+uvrHWTdVffMdBuGPS/VNWIU27XItKCjAz8+PhIQERoxouqpzpV2uAK+8Ai+9BEVF1B2oKq7IL7//woh1I9h2/zZig2Mt3RwhxFWgqqaK/fn7jcEtKTuJ/VnHMeT0wy5nOB6n/0RV+iCKc7X+UR8fpc06/WO9t6FDwau+XQvNqb7Jum/CirXppAi9Xg+AV73fTVBRUUFFRYXxcXFx8RVfMzISSkq0LcDaqKf3qnFd8HUEuAaw4dAGCXRCiBZnUAaOnjlq0nW6K3sPFXkh6LJj8TpzE7qsp+FUCNTYYOek6BWpI3rKha7Tbt3q6ToFqb6JDqfNKnRKKW6//XYKCwv5pYHF4Z5//nmWLl1a5/krqdDp9dC5M3z8MUybdlmnEI2Y890cvjz8Jb8/+jt2NlY5aVoI0Q7UbpOVnJ1svKXmpFJy1hmyouh85mYccq9Hf6In50u1qaXh4ReCW3S0tlSVvX19J5fqm+j42izQxcXF8e233/Lrr78SFBRU7zH1VeiCg4OvKNAB9OkD118P77572acQDdiVs4vI9yP5z5T/yN6uQgizKKVI16cbg1tSdhIpOSkUFVdCziA6nxmHS8FoSk/2pSjXA9C2cqwNbrVdpx4eDVxAZp6Kq1CblFTmzJnD119/zdatWxsMcwCOjo44tsIKwLGxsH17i59WAIMCBxEZGMna1LUS6IQQdSilyC7JvlB5y9HuT5cUQn5fPM/+CY/TT+CYPgCbk34YDDrOO0PfIRB1z4UQFxxM/V2nMvNUCKCVA51Sijlz5rBx40a2bNnCNddc05qXa1BsrNblWlICbm4WaUKH9sCgB5jzf3PIKckh0C3Q0s0RQlhQXmlenfCWW5ILhd1xP30j3oUP4ZzxHg5pXak8b0uJLYT2hagxWuUtKkrbttGuod9OMvZNiHq1apfrww8/zKeffsq///1vk7XnPDw8cHZ2bvL9LTHLFbSdIvr0gR9/hLFjL/s0ogFF54vo8kYXnhnxDIuvX2zp5ggh2siZ8jOk5KSYjHvLKM6AUj9cT4/Br+g2yBpK/tFulOodAOjRQ+surQ1vgwZBp04NXEDGvglhtlYNdLp66+Pw8ccfM3369Abfd/HWX0ePHr3iQGcwgLc3PPYYPP30ZZ9GNGLGv2fw04mfOD73OPa29Y1KFkK0Z0Xni0jNSTUJbyeLTkKFC51OjyCw+HbssmM5e7wHBdnaOqO+vheCW1QUDBnSwG4LtWTsmxCXrUNv/XWxW2+FykrYtKmFGidM7M/fT781/fj7HX/nvgH3Wbo5QogrUFpZWie8HTt7DGrscDoTRVDpn3HMvZ7iE9eSdcIDg0GHiwsMHmwa4EJCGhj3BlJ9E6KFXTWBbuVKWLwYCgvBjN5ecRlu+/Q2ftf/zt6/7m2wOiuEsC5llWXsydtDSnaKcczboYJDKKVw0PchpPR/cMkfRdmpCDKO+lBx3gY7O+jf37TrNDwcbG0buZBU34RoVVdNoNu3T/sBtGkT3HBDCzVQmKjdOeKbKd9w67W3Wro5QohLlFSUsDt3Nyk5KaTmpJKSk8Lh04cxKAP25SGElv4P7mdu4Pzv/ck87E9xkTYzoWfPC0uFREVpWyo2+h9jqb4J0eaumkCnFAQGwvTp2nZgouUppbj+4+s5V32OpAeTZH9XISxIf17PrtxdpGSnkJqbSkp2CkfPHEWhcKjyofv5O/E8cyOV6QPJOtSVvBxt0kLtem+14W3IkAa2yrqYVN+EsLirJtAB3HsvHD4Myckt0DhRr1/Tf+X6j6/nk4mfcE//eyzdHCGuCoXnCknNSTVW3VJyUkg7mwaAE+70rJ6E15lxVGcOIudwMCfTHFFKh6urFtwu7joNCmpk3BtI9U0IK2WVga6lZ7nWWrcO7r8fCgq0Wa+idUz6fBLJ2ckcjjuMs70MWBSiJdUuFWIMb9kp2mxToJOtK71txuN99mZU1lDyjoRw5IAzlZU67O1hwADTrtNevZoY9wZSfROinbDKQFerpSt0mZnaauOffgpTprRAA0W9jp05RsT/RvDi6BdZNHyRpZsjRLuVX5avdZleVHlL16cD4ObgRh+nP+FbdAtkRVFw7BoO7u5EcbFWXuvVyzS8DRgATk5NXFCqb0K0W1dVoANtPEj37vD55y1yOtGAef83j492f8TBhw8S7BFs6eYIYfVySnJMgltqTiqZxZkAeDp50s99BAH6W7HJjebMsR4c3O1CdrYW3gIDTfc4HTIEPD3NuKhU34ToMK66QPfSS9qtoECWL2lN+vN6Iv43gsjASL6e/LUsYyLEHwzKwInCE+zK2cWuXO22O3c3uaW5AHg5ezGg8zACS2/BLieGs8d7cHivK2lp2veQu/uFqlvtfdeuZlxYqm9CdGhXXaA7dEjbJ/Drr2H8+BY5pWjAvw//mzv+3x18OOFD7h90v6WbI0Sbq6yp5GDBQZPwtid3DyWVJQB0cetCf++hBJaNwyY7Gv3JMA7tceXQIR0Gg/afzkGDLlTdhg7VlhCxMadQJtU3Ia4qVhnoWmtSRK3wcIiNhY8+arFTigbM/PdMPjvwGamzUunl06vpNwjRTpVUlLAnb49JeDuQf4AqQxU6dPT07skA38EEnrsBm5wozqb1YP9uZ/btg6oqsLfX1sqsDW5DhzaxSf3FpPomxFXPKgNdrdao0AEsWQLvvQc5OeDg0GKnFfUoqyxj8PuDcbZ3ZvvM7TjZNTUqWwjrl1uay+7c3SbhrXaZEAdbB/r69WWgXyRdqkaiy4ridFo39uxyYNcuOHdOq7BFRJiGt379zJi0UEuqb0KIS1yVgW7/fu2H58aNcMcdLXZa0YDdubuJ/TCW23vdzqeTPpUFh0W7YVAGThae1ELbReGtdrybu6M7AwMGMtB/EMFqOCprCHlHg0lNsSUlBYqLtfOEhV0IbkOGaN2orq5mNkKqb0IIM1yVgQ60TaRDQrRQJ1rfFwe/4M5/3clT1z/Fi2NetHRzhKijpKKE/fn72ZO3hz25e9ibv5e9eXsprSwFINA1kEGBgxgUMIhQ2xhU1mAyDgWQnKwjORlOn9bOExxsOuZt8GDo3LkZDZHqmxDiMly1ge5vf4PHH4fsbPDxadFTiwas+G0Fi35cxNrxa5kZOdPSzRFXKaUUp4pOmQS3Pbl7OF54HABbnS29fXozIGAA/f36091pCIasSNL2dyY5GZKSICtLO5ev74XKW22I8/dvTmOk+iaEaBlXbaArKIAuXeD112HevBY9tWiAUoqHv32Y91LeY+2EtTLzVbS60spSreqWu4c9eXvYm6dV3WpnmXo7ezMgYAAD/AfQ378/YS6DOJcRzt5dDiQlaeHtxAntXB4eF6putffBwU1sk3Upqb4JIVqJVQa61p7lWuuuu2DXLm1/V7OWARBXzKAMxH0bx7sp7/Lebe8xa/AsSzdJdABKKX7X/24S3Pbk7eH42eMoFLY6W3r59GKA/4Xwdq37QPKOB5CaqiMpSdvj+dAhUAo6dYLISNNJCz16NPPnhFTfhBBtqFUD3datW3nttddISUkhJyeHjRs3ckczZiG0ZoUOYPt2uO46+OYbuPXWFj+9aIBSirn/N5dVSatYMnwJy8Ysk4kSwmxnys9woOAA+/P3sz9/P/vy97E3by/FFdoMBC9nL2NwGxCghbduLhEcOeBESgrG28GDUFODcY/Ti7tNw8PNXC7kYlJ9E0JYUHN/ZDVLWVkZAwYMYMaMGUyaNKk1L3VZYmK0H+BvvSWBri3pdDr+dvPfCPEIYdGPi9hfsJ9/TPwH7o5SoRAXlFSUcLDgoDG47S/Q7mtnmNrb2NPLpxd9/fpya89b6e/fnwH+A+hs14W9e7WJCgn/D968JLz176+tQzlnjjZhoW/fy1i+yFh923EhwF1afeu9QKpvQog202ZdrjqdzuoqdACffgr33AP79mk/2EXb+u7Yd0zZMIWubl355M+fEBkYaekmiTZ2vvo8h08fvhDc/rj9rv8dABudDWFeYfTx7UNfv77GW0+vnlRX2rNnj1ZxS06uW3nr318LbYMHa5W3ywpvINU3IYTVs6pAV1FRQUVFhfFxcXExwcHBrRroKiu1NaKGDYN//rNVLiGacPj0YaZsmML+/P0sGb6Ep0Y8hYOtrPjc0VTWVHLszLELVbc/Km5pZ9MwKAMAoR6h9PXraxLeevv0xtnemXPnMIa32gB3cXjr108LbbUBrm9fcHS8jIaaU32TsW9CCCtjVYHu+eefZ+nSpXWeb81AB/D++/DXv8LevVKls5TKmkpe+uUllv+ynAjfCFbfsprhIcMt3SxxGYrOF3H49GEOFRzi8OnDHD6jfX2i8AQ1qgaAANeAOsEtwjfC2O1+aXhLSYEDB0zDW23V7YrCG0j1TQjRIVhVoLNEhQ60Kl2vXtovhi++aLXLCDOk5qTy0DcPkZydzKTwSTwz4hkGBAywdLPEJQzKQGZxZr3BLa8sDwAdOkI9Qwn3Cae3T296+/Qm3CeccN9wfDpdWPzx3DntP1O1XaYNhbfaW79+VxDepPomhOigrCrQXaotxtDV+vhjuP9+SEyEqKhWvZRogkEZ+Meef/DC1hc4UXiCCb0m8MyIZxjSZYilm3bVKa4oJu1sGsfOHOPomaMcPnNYC2+nD1NeVQ6Ao60jvXx6GQNbbXi71vtaOtl3MjlfbXi7uNv04vDWt69pt+kVhTeQ6psQ4qohge4PNTXaLxBHR205E1mXzvKqDdV8uu9Tlv+ynKNnjjI8ZDj3D7yfO/vciauDuRthiqZcHNrSzqZx7Owxjp3Vvs4vyzce5+XspVXYLq64+YYT6hGKrY1t3fMWw+7d2lqPqanafe2YNzu7ut2mVxzepPomhLiKtWqgKy0tJS0tDYBBgwbx5ptvMnr0aLy8vAgJCWny/W0Z6AB++QVGjNCqddOnt/rlhJlqDDV8eehLPkj9gB9P/Egn+078pc9fmNx3MqO6jZIJFE2oMdSQXZLNyaKTnCo6xamiU5woPFFvaPN29ibMK4ye3j0J6/zHvVcYYV5heDl7NXiNggLT4JaaCn986+PoqM02jYzUNqWPjNTCm5PTFX4wqb61qcrKSqqrqy3dDCGsjp2dHQ6XNX2+ZbVqoNuyZQujR4+u8/y0adNYt25dk+9v60AH2hIm338P+/dDQECbXFI0Q7o+nfjd8azbs44ThSfwdPJk7DVjtVv3sfT06omuWXsxtX+1ga02rBlveu0+XZ9OteHCL2J/F3+6eXajp3dPenppga32vrNz47vIKwWZmabBbdcu7TkANzcttNUGt0GDoHdvrTv1ikj1zaIqKys5cOAABoPB0k0RwurY2NjQp08fi4e6q3rrr/oUFGjVg6go+Pe/m7lPo2gzSin25O3hq8Nf8eOJH0nMSqTaUE2QexCxQbEM7TKUwV0G08+vH74uvpZu7mUrqywjqySLrOIsskqyyC7JNn5d+3xOaY5JYPNz8aObZzft5tHtwtee3Qj1DK0zrq0hBgMcP143vJ0+rb3u46OFtosrb927t9BwBam+WZXy8nIOHTpEt27dcHZ2tnRzhLAa586d49SpU4SHh9Opk3k/W1uLVQa6Wpao0AH85z8wYQJ8+KE2UUJYv5KKErb+vpWfT/3MzqydpOSkGAft+7n40dunN6EeoYR6hBLiEUKop/Z1sEew2QHnSlXWVKI/r0dfoUd/Xk/R+SIKygsoKCsgvyyfgnLT+7zSPPQVepNzeDh60NW9K13dul64d+tKqGeoFtg8QnFxcGl226qqtH1MLw5uu3dDibaHPcHBpsFt0CDo2rWF/sMj1TerVxvorOGXlhDWpPZ7o0uXLjg6OuLo6IiLS/N/BrcECXQNmDkTPv9cm4XXq1ebXlq0gGpDNWln04y7Dhw5c4R0fTrp+nSyS7KNC9kCONg64OHogYeTB+6O7iZfd7LrhK2NLTY6G2x12r2NzgZbG1sMykBlTSUV1RVU1Gi32sdlVWXoz+sprig2BriKmop62+po64ifix++Lr7afSft3s/Fjy5uXUzC2+WEtUuVlWlDCnbtuhDg9u2D2hWDevasG958fBo/Z7NI9a3dkUAnRP1qvzdSU1MpKyvD3d2du+66yyKhTgJdA0pKLixfkpgIbXx50YqqaqrIKsni96LfySjOoOh8kbFydnEA01foOVd1DoMyUKNqMCiD9rVB+1qn0+Fo64iDrQOOdo4mX3ey76QFwz/C4cX37o7ueDh54OnkiW8nX1wdXFtl3J9SkJ2tLdC7e7d2v2cPHD2qvWZrC336mAa3AQNa+N+6VN86BAl0QtSv9nvjyJEjFBUVUVlZydSpU/HyangSWWuxa/MrthNubvDVVzB0KNx7L3z5pbbUgmj/7G3tjWPKOoraLtPa0FYb4GrHu3l4aGHtT3+CJ57Qvu7TpwVmml6qqeqb7zAIf1yqb0KIDqW2u7WystJibbDKiHLxpAhL6tUL/t//g/Hjta3BPvhAJkkIyzt79kJwqw1vBw9qO54AXHMNDBwIjzyi3Q8YAKGhrfBv15zqW+8FUn0TQog2YJWBLi4ujri4OGOXqyXdfDN89BFMmwbe3vDKKxLqRNswGODECdOK2+7dkJGhve7kdGFnhZkztfDWv38rDg+Q6psQQlgtqwx01mbqVK0qMn++VgV5800JdaJlFRVpExNqb3v3arfSUu31gACt0nb33dr9wIHa5IVWGwYg1TchhGhXJNCZ6dFHwcEB4uK0LY3efbcFFksVV52KCm2s27592kzT2gBXuzCvnZ22EG///nD77Re6TP39W7lhUn0TQoh2TQJdMzz8sDZZ4v77ta6wf/2rhZdzEB2GwQCnTplW3fbt02aY1g4NDQ3VFrG+7z6t67RfP23cZqsvNi7VNyGE6HAk0DXTffdpv4gnTdJmwH76KcTGWrpVwlKUgvx8bVLCxcHtwIEL3aWdO2thbcwYmDdP+7pv3zZcCkeqb0JckVGjRjFw4EDeeustSzelXm3Zvtrla4T1scpAZy2zXBsyYgQkJcGUKXD99fD009pNljXpuJSCrCwtuNXeDh3S7s+e1Y5xdISICC2w/c//XAhuXbq04ZhLqb4JIVrJW2+9xYQJEyzahoKCAuLj43n88ccbPCY7O5suXbq0Yausg1VGEGua5dqQbt3gl1/gpZfghRe0NeveeUcLeKL9Mhjg99/rhraDBy9sg+XkpI1zi4iAceO0+/BwCAuzQKiX6psQLaKystLim6tbyqhRo5g7dy5//vOfGzzmhx9+wNfXl+7du7dhy+ry9fVlxIgRrF69mri4uHqP2bJlC1u2bGHKlCmMHj3arPMmJSWxfv16Bg0axG+//cbixYu55pprWrLpZtuzZw+vv/46J0+e5Mknn2TYsGEsXbqUiooKcnNzee655xg4cGDdNyorptfrFaD0er2lm9KopCSloqKUAqWmTFEqPd3SLRJNqaxU6vBhpb76SqmXXlLq3nuVioxUytlZ+3sEpVxclBo6VKlp05R69VWl/vMfpY4fV6q62kKNNtQoVXRAqbQPldrxgFLf9FFqvU6p9Sj1r85Kbb5Zqb0vKJWzSalK6/6eEe1LWVmZSk5OVmVlZVd8rtDQULVy5UqT5wYMGKCee+45pZRSI0eOVHFxcSouLk55eHgoLy8v9dRTTymDwWA83pxjDAaDevXVV9U111yjnJycVP/+/dW//vWvOueYP3++8vb2ViNGjGiwzU1d7/z582rOnDnK19dXOTo6qmHDhqmdO3c263PXXmfOnDlq4cKFqnPnzsrf39/kdaWUKi0tVffdd59ycXFRAQEB6vXXX1cjR45U8+bNa7D9jdm4caMaM2aM6tmzp6qsrGzwuFtvvVVVW+yHX11Tp05VBQUFDb5eVVWl4uPj1cyZM9V3333X6LnOnz+vQkNDVW5urlJKqW3btqmRI0ea1Y7a740vvvhCrV27Vq1cuVKdOXPG7M9RnxkzZqiqqiq1bNky5evrqyZNmqQyMzPV5s2blb29vXrkkUfqfZ9VVujamyFDYPt2iI+HJ5/UKjXTpmkr8oeFWbp1Vy+lICcHjhzRJiPU3o4c0Sa11Pboe3hoVbZBg+Cee7SvIyIgKAhsLFnQkuqbsGLlVeUcPn24yeN6+/Smk33ztguLj49n5syZJCYmkpyczKxZswgNDeXBBx80+5inn36aL7/8kjVr1tCzZ0+2bt3Kvffei6+vLyNHjjSeY/bs2fz222+oJnbBbOx6TzzxBBs2bCA+Pp7Q0FBWrFjBTTfdRFpaWrO3gIqPj2fBggUkJiayfft2pk+fzrBhw7jxxhsBWLhwIT///DMbN24kICCAJUuWkJKSYqzYrFu3jhkzZjT5eQCqq6tJSUnh888/p0ePHrz33ns88sgjdY7bu3cvQUFB2NraNuuztKYJEyawbt26Brte7ezsmDp1Kvfeey//+te/uP/++xk/fjx33HFHna0Wt27diru7O/5/LCcQFRXFjh07yMvLMz7XVo4fP06XLl2ws7MjOzubs2fPsmTJErp27cr27dtxdXVl/Pjx9b/5imJkK2svFbqL6fVKvfKKUv7+StnYKDV5slK//qrURf9xFC1Mr9eqpJ98otSzz2p/5oMGaRW22mqbra1SYWFK3XKLUo8+qtSaNUr9+KNSWVlW8ncj1Tdhxeqr0KVkpyiep8lbSnaKybnMqdCFh4ebVNsWLVqkwsPDjY+bOqa0tFQ5OTmpbdu2mVxn5syZasqUKcZzDBw40KzP39j1SktLlb29vVq/fr3xtcrKStWlSxe1YsUKsz937XWGDx9ucszQoUPVokWLlFJKlZSUKAcHB/XZZ58ZXz9z5oxydnY2Vui+/PJL1atXL7M+19q1a9WxY8eUUkq98sorytfXt97ft2+++aZau3at8XF1dbVatWqVuvfee42VyLvvvlvFx8ebdd3GVFdXq3feeUdNmzbNeO6MjIw6FbOCggI1evRos89rMBjUV199pe655x71448/mrz2/vvv1zm/j4+P+umnn5o8b0tX6H777TeVmpqqlFKqX79+ZlcKlbLSCp21T4pojLs7LFoEc+fCxx/DG2/A8OHamKv774e//EWbJSvMV1OjTUg4ccL0dvy4dl+7XyloC/Bee61WNb37bu3ra6+F7t3bYDmQ5pDqm2jnevv0JmVWilnHNVdMTIxJFSU2NpY33niDmpoaY5WosWMOHjzI+fPnjVWtWpWVlQwaNMj4eMiQIVfcprS0NKqqqhg2bJjxNXt7e6Kiojh06JD5H/oP/fv3N3kcGBhIfn4+oFVvKisrib1oaQUvLy969eplfDxx4kQmTpzY5HVKS0spKCgg7I9upHnz5rFmzRpeffVVli9fbnJsZmYmo0aNMj7+97//zV133cXmzZs5deoUQ4cOZfz48Zy++IfxZfr666+ZPHkyv/zyCydPnmTo0KFs2rSJoKAgk+N8fHw4fvy42ec9ffo0qampeHt71xkbd/r0aZwu2djaycmJoqKiy/4cl+u6664ztmn//v08++yzZr/XKgNde5gU0RRnZ23dur/+FX7+GT78EJ55RuuGHTwY7rhD2yh98GCwoiq2RRgM2tIfGRna7eRJ0+B26tSFfUp1OujaFXr00DaXHz9eC2u9emk7J7TZUiDNoQxQfOSi8CYzT0X718m+E5GBkc1+n42NTZ3uwKqqqpZqFgAGgwGAb7/9lq5du5q85ujoaPzaxcWlxa55aTeeUsrkOXM/t/0lK9brdDrj57n0/Vfigw8+MOnCdnJyYvny5cyaNYuHH37Y5M+ttLQUZ2dn4+MxY8ZgMBj45Zdf+OSTTwDo0aNHvRMm3n77bU6ePNlgO0aOHGkSQMeOHQvA5s2b+eijjwBtksOl4Rzq/pnXJzs7m3feeYeqqirmzJlDaD0VFQ8Pjzp/tqWlpfhYcKHZn3/+GaWUSZBuilUGuo7ExgbGjtVuJSXw3XfwxRewYoUW8Dw9YfRoiInR1rWLjNTGdHUUSkFh4YWwduktPV2rvtUGNoBOnbTA1r073Hqrdl/7ODRUm2Vq1aT6JkSDfH19ycnJMT4uLi6u8wt/x44ddR737NnTZAxXY8dERETg6OhIenq6cbzclWroemFhYTg4OPDrr79y9913A1pQS05O5tFHHzUeb87nbkpYWBj29vbs2LGDkJAQAAoLCzl69GizPmdubi5OTk54e3ubPH/33XezcuVKnn32WT788EPj8z4+PhQWFhofe3p68o9//INRo0YZg96+ffuYPn16nWvNmzevOR8Rd3d3PvvsM0aMGGEM3AkJCbz00ksUFRXh6elpPNaukWUFTp06xerVq3FwcGDu3LkEBgY2eGzv3r354IMPjI8rKiooKSmpN/y1lZ9//hlHR0diYmLMfo8Eujbk5gZ33aXdqqq0tew2bdIqeC+8AGVl2nG9emlrmPXsaXrz87OOPWSV0sLp2bNad2durnbLy6v7dXb2hc8FWjWya1cIDtZu0dEXvq69+fhYx+c0i1TfhGiWMWPGsG7dOsaPH0/nzp155pln6gy2z8jIYMGCBTz00EOkpqbyzjvv8MYbb5h9jJubG48//jjz58/HYDAwfPhwiouL2bZtG66urkybNq3Z7W7oei4uLsyePZuFCxfi5eVFSEgIK1asoLy8nJkzZzbrczfF1dWVmTNnsnDhQry9vfH39+epp57C5qLZWxs3bmTx4sUcPtzwhJU1a9Ywa9asertIn3zySSZPnsz8+fPp27cvAOHh4aSnp5scl5eXZxIqXV1dTdpxJTIyMoxdwfv378fe3h4/Pz/i4+N54IEHAC00u7m51fv+119/nfLycp588sk6obU+I0aMID8/n8zMTIKCgkhISGDo0KEWD3QxMTF1uoIbI4HOQuzt4brrtNtzz2njxI4cgeRkLegdPAiffKJVsWo5O2t7el588/PTgmKnTuDiYnpzdq6dEnDhBhe+Nhjg3DktcJWX139fVKRV2M6eNb1dOrxRp9OCWECA1q7QUC2sBQRoIS0kRLsPCGjnXcxSfRPiiixevJgTJ05w22234eHhwbJly+pUqqZOncq5c+eIiorC1taWOXPmMGvWrGYds2zZMvz8/Hj55Zc5ceIEnp6eREZGsmTJkstqd2PXe+WVVzAYDNx3332UlJQwZMgQvv/+ezp37tysz22O1157jdLSUiZMmICbmxuPPfYYer3e+Lper+fIkSMNvv/o0aMsX76cF154odHrLFmyhK+//hqAcePG8eCDD/LYY48ZX588eTILFizgH//4B9XV1ZcVkhsyadIkFi1axOeffw7A4MGDWbVqlUkFMCkpiTFjxtT7/sYWHa6PnZ0d8fHxLF++nJiYGBISEli/fv1lt/9K5ebmcvjwYe66665mvU+nWrJT3gxKKUpqV2i9REVFBRUVFcbHJSUlREREkJGRgbtVDo5qfefOaWPKjh/Xwl1+/oVbQYFWISsr024Xd1teDhsbLQh26qTdnJ217t/OnRu+eXlpAc7HpwPulKEMUHwMzuyEszu1e/0f/+t18ASvIVrVzScKvAZL9U10WOfPnycjI4Pw8HA6dWreEiTNZc42Vta+FVdHNGvWLF544QUCAgIs3RRAW5ZmwoQJREVFWbQd5eXlHDp0iGPHjlFYWEhJSQl33XWXSZh3c3Mza7xfrT179nDTTTexefNmIiIizH5fm/8KLikpafZEh+Dg4FZqjbiYwaB1pTaQt4WJIuDHP25CdGy9evWyaMVCWN6zzz7LqlWrePHFFy3dFIqLiykoKGgwzK1cubLRGbCjR49m0qRJLdqmjz/+mIyMDBwdHXn22WdNilN6vb5ZRakBAwaQm5vb7Da0eaBzc3MzKQ9f7NIKXU5ODlFRURw8eLDOTKXWMnToUJKSkjrctdr6em15reLiYoKDg5tXyb2C6pv8vbW/613Wv5Er1JH+3mordOLqFRQUxMSJE/nuu++45ZZbLNYOpRQrV65sNFjOnz+/DVukmTFjRqMVurbQ5oFOp9M1+weqm5tbm/0QtrW17ZDXauvrtfVnA212VIPXbGrsW+gI8Flk1tg3+Xtrv9dr9N9IC+tIf2+NzSZsaVu2bGmRY0TLGzx4sKWbwJkzZ5g9eza+vr6WbooJe3t7HBwccHBwaNPMcrGONurpijW02W97v1ZbX6+tP5uJVp55Kn9v7fd6bakj/70JYSmWXBvO2rX5pIjmyMzMNHaTXLpKtBC1is9k8D+jQ/j6o8U4laTWrb75xGo3mXl61apdpLy5Y1mEpnbgd1tMihCiPan93jh16hRFRUWUlJQwderUZu/h2xKsskJXu/VXdXU1YLqyt7jK1VN9c9Mf5IcnQZ18F3xk3TdRl6OjI88995z8LBFCdFhWXaGT/1WLJse+SfVNiFZ3tVforH2ZlLZsX+2/A6GRCp0Q9ZFdF4QQwmq99dZbTJgwocnjCgoKiI+Pb3SB3+zsbLp06dKSzbvqSaATliO7LgghrERlZSUODg6WboZFjBo1irlz5/LnP/+5wWN++OEHfH196d69e5Pn8/X1ZcSIEaxevbrBCTtbtmxhy5YtTJkyhdGjR5vVzqSkJNavX8+gQYP47bffWLx4Mddcc41Z770ayG9I0TaUAfSH4PhHkPggfNsXvugMP98ER94GbLTq25hNcGcR3LIXot6D7tPBo7eEOSE6iG7dutXpGhw4cCDPP/88oIWLRx55hEceeQRPT0+8vb15+umnuXh0kDnHKKVYsWIF3bt3x9nZmQEDBvDFF1/UOceCBQvw8fHhxhtvbLTd1dXVDV6voqKCuXPn4ufnh5OTE8OHD6+zLmBTn7u2TXPnzuWJJ57Ay8uLgIAAk9cBysrKmDp1Kq6urgQGBtbZ47a5vvrqK2xtbXnyySepqqpq8Li//e1vTJ482ezzRkVFsXPnznr3iwW4++67+d///V8yMjJ44IEH+L//+79Gz1dRUcGdd97J4sWLmTZtGjNmzGDGjBlmt+dqIL8lReuo1EPOD7BvKfw8Dr7whm8jIPEBrSrnOwxiPoJbD8Gk0zD6O+j3DATcIF2pQrQD5eWQmtr0rby8+eeOj4/Hzs6OxMRE/va3v7Fy5UrWrl3brGOefvppPv74Y9asWcOBAweYP38+9957LwkJCXXO8dtvv/Hee+9ddpueeOIJNmzYQHx8PKmpqYSFhXHTTTdx9uzZy/rsLi4uJCYmsmLFCl544QU2bdpkfH3hwoX8/PPPbNy4kR9++IEtW7aQkpJifH3dunVmbzNVXV1NSkoKn3/+Ofn5+Q3+Gezdu5egoCBsm7kR94QJE1i3bl2Dr9vZ2TF16lTef/99iouLuf/++9m4cSP1De3funUr7u7u+Pv7A1pg3LFjB3l5ec1qU4emrNCqVatUeHi4uvbaaxWg9Hq9pZskGmOoUarooFJpHyq14wGlvumj1HqdUutR6l+dldp8s1J7X1AqZ5NSlS3zd/ncc88pwOTm7+/fIucW7VdCQoK67bbbVGBgoALUxo0bTV43GAzqueeeU4GBgcrJyUmNHDlS7d+/3zKNbUfKyspUcnKyKisrMz6XkqIUNH1LSTE9V2hoqFq5cqXJcwMGDFDPPfecUkqpkSNHqvDwcGUwGIyvL1q0SIWHhxsfN3VMaWmpcnJyUtu2bTO5zsyZM9WUKVOM5xg4cKBZn7+x65WWlip7e3u1fv1642uVlZWqS5cuasWKFWZ/7trrDB8+3OSYoUOHqkWLFimllCopKVEODg7qs88+M75+5swZ5ezsrObNm6eUUurLL79UvXr1MutzrV27Vh07dkwppdQrr7yifH196/19++abb6q1a9caH1dXV6t33nlHTZs2Te3cuVMppVRGRoYaOXKkyfsKCgrU6NGjzWqLUtr351dffaXuuece9eOPP5q89v7779c5v4+Pj/rpp5/MPn9rqP3emD59unr11VfVypUr1ZkzZyzSFqus0MXFxXHw4ME23YJINIOVVN/69OlDTk6O8bZv374WO7don8rKyhgwYACrVq2q9/UVK1bw5ptvsmrVKpKSkggICODGG2+kRDYwbrbevSElpelb797NP3dMTIxJlSk2NpZjx45RU1Nj1jEHDx7k/Pnz3Hjjjbi6uhpvf//73032+BwyZMgVtyktLY2qqiqGDRtmfM3e3p6oqCgOHTrU7M/ev39/k8eBgYHk5+cDcPz4cSorK4mNjTW+7uXlRa9evYyPJ06cyOHDh5u8TmlpKQUFBYSFhQEwb948OnXqxKuvvlrn2MzMTPz8/IyPv/76ayZPnsy5c+c4efIkAJs2baqzXqyPj0+je6pe6vTp06SmpuLt7V1nbNzp06dxcnIyec7JyYmioiKzz9+anJ2d+eKLLxrttm5tMilCNM6KZ57a2dkREBDQZtcT1u/mm2/m5ptvrvc1pRRvvfUWTz31lHHwd3x8PP7+/nz66ac89NBDbdnUdq9TJ4iMbP77bGxs6nSptfQvQYPBAMC3335bZx/wi9cidHFxabFrXtrNqZQyec7cz21vb1/nvLWf59L3X4kPPviABx980PjYycmJ5cuXM2vWLB5++GGTP7fS0lKcnZ2Nj8eOHQvA5s2b+eijjwBtkkN94xDN6f7Nzs7mnXfeoaqqijlz5hAaGlrnGA8Pjzqfv7S01Gp2jhg9ejQ7duzgxIkTFmuDVVbohAVZSfXNHMeOHaNLly5cc801TJ482aLfSML6nTx5ktzcXP70pz8Zn3N0dGTkyJFs27bNgi27uvj6+pKTk2N8XFxcbKzy1NqxY0edxz179jQZw9XYMRERETg6OpKenk5YWJjJLTg4+LLa3dD1wsLCcHBw4NdffzW+VlVVRXJyssl6beZ87qaEhYVhb29v0pbCwkKOHj3arPPk5ubi5OSEt7e3yfN333034eHhPPvssybP+/j4UFhYaHzs7u7Od999x4gRI4yhOCEhgRtuuKFOxayxfYBPnTrFwoULWb16NXPnzuX111+vN8wB9O7d21ipBG2SRElJSYPHtzUbGxuCgoJM2tjWpEJ3NbPi6ltToqOj+fvf/861115LXl4eL774Itdddx0HDhyo80NKCNB+iQHGQdW1/P39+f333y3RpKvSmDFjWLduHePHj6dz584888wzdQbbZ2RksGDBAh566CFSU1N555136szmbOwYNzc3Hn/8cebPn4/BYGD48OEUFxezbds2XF1dmTZtWrPb3dD1XFxcmD17NgsXLsTLy4uQkBBWrFhBeXk5M2fObNbnboqrqyszZ85k4cKFeHt74+/vz1NPPYWNzYXazMaNG1m8eHGj3a5r1qxh1qxZ9c5AffLJJ5k8eTLz58+nb9++AISHh5Oenl7nz6O2u3b//v3Y29vj5+dHfHw8DzzwAKAFWzc3t3rb8Prrr1NeXs6TTz5p1s/sESNGkJ+fT2ZmJkFBQSQkJDB06FCrCXSgdbuWlpZa7PpWGehqt/66eLyEaAEdaN23i7vV+vXrR2xsLD169CA+Pp4FCxZYsGXC2jXVNSZa1+LFizlx4gS33XYbHh4eLFu2rE6laurUqZw7d46oqChsbW2ZM2cOs2bNatYxy5Ytw8/Pj5dffpkTJ07g6elJZGQkS5Ysuax2N3a9V155BYPBwH333UdJSQlDhgzh+++/p3Pnzs363OZ47bXXKC0tZcKECbi5ufHYY4+h1+uNr+v1eo4cOdLg+48ePcry5ct54YUXGr3OkiVL+PrrrwEYN24cDz74II899pjx9UmTJrFo0SI+//xzAAYPHsyqVauYPn268ZikpCTGjBlT7/kbW3S4PnZ2dsTHx7N8+XJiYmJISEhg/fr1zTpHRydbf3VU5lTffGKtsvp2uW688UbCwsJYs2aNpZsirIBOp2Pjxo3ccccdAJw4cYIePXqQmprKoEGDjMfdfvvteHp6Eh8fb6GWWr+23PrLnG2srH0rro5o1qxZvPDCC80at/z0008zYcIEoqKiWrFllnXx1l/x8fHY29vzwQcfyNZf4gp0oOrb5aioqODQoUNcf/31lm6KsFLXXHMNAQEBbNq0yRjoKisrSUhIqHdmnxDigmeffZZVq1bx4osvmnV8cXExBQUFDYa5lStXNjoDdvTo0UyaNOmy2moJBoOBzMxMoqOjLdYGCXTtUTse+9ZSHn/8ccaPH09ISAj5+fm8+OKLFBcXX9bYGNFxlJaWkpaWZnx88uRJdu/ebRzb9Oijj/LSSy/Rs2dPevbsyUsvvUSnTp24++67LdhqIaxfUFAQEydO5LvvvuOWW25p9FilFCtXrmw0/M2fP7+lm2hRP//8M3Z2dmZtjdZaJNC1B1d59a0+mZmZTJkyhdOnT+Pr60tMTAw7duywqgGyou0lJyeb7AtZO55y2rRprFu3jieeeIJz587x8MMPU1hYSHR0ND/88EODA7dF29uyZUuLHCNa3uDBg8067syZM8yePRtfX99WbpH1KC8vZ9KkSXWWnWlLMobO2lyFY9+EENatLcfQCdGeXDyGrqioiJKSEqZOnSpj6GpdVbNcpfomhBBCiCvUqoFu+fLlfPvtt+zevRsHBwezt+iIi4sjLi7OWKHrMGTsmxBCCCFaQasGusrKSu68805iY2P58MMPW/NS1slYfdvxR4DbIdU3IYQQ7VJKSgoVFRW4uLgwYMAASzdHXKJVA93SpUsBWLduXWtexjpI9U0IIUQHtXHjRsaNG4etrS2zZs26On6vtzNWNYauoqKCiooK4+Pi4mILtqYJUn0TQohmay+LAlt7O9uyffv27SMyMpIffviBTz/9lHnz5pn93trJNKL1WVWge/nll41VPasi1TchhBAdVHl5OUopXFxc6n09OzubiIgIkpOTycvLw87OvOjw1ltvMWHCBLOOLSgoID4+vtlbgokLml02ev7559HpdI3ekpOTL6sxixcvRq/XG28ZGRmXdZ4rVqmHnB9g3wvw883whTd8GwGJD2hVOd9hEPMR3HoIJp2G0d9Bv2cg4AYJc0II0Y5UVlZaugkW9e233xIZGclrr73W4DFKKWxtbZk0aRITJkwwa4LjDz/8gK+vr9kL7fr6+jJixAhWr15tbtPNkpSUxKOPPkp8fDyzZs26rP1z24tmB7pHHnmEQ4cONXrr27fvZTXG0dERd3d3k1urUwbQH4LjH0Hig/BtX/iiM/x8Exx5C9Bp1bcxm+DOIrhlL0S9B92ng0dv6UoVQojLVFFRwdy5c/Hz88PJyYnhw4eTlJRkfP0///kPnp6eGAwGAHbv3o1Op2PhwoXGYx566CGmTJkCaMFjxYoVdO/eHWdnZwYMGMAXX3xhcs1Ro0bxyCOPsGDBAnx8fLjxxhsbbF91dTWPPPIInp6eeHt78/TTT3Px0q1Ntb9bt251ukQHDhzI888/b9KeuXPn8sQTT+Dl5UVAQIDJ6wBlZWVMnToVV1dXAgMDeeONNxr/g22GW2+9lbvuuqvB1/Pz8zl8+DAA586d4/Dhw4wePZrMzEz++9//Gm+7d+82ed/f/vY3Jk+e3Ky2REVFsXPnTk6fPt3sz1GfiooK7rzzThYvXsy0adOYMWMGM2bMaJFzW6Nmd7n6+Pjg4+PTGm1pGzL2TQghrMITTzzBhg0biI+PJzQ0lBUrVnDTTTeRlpaGl5cXI0aMoKSkhF27djF48GASEhLw8fEhISHBeI4tW7YYt5F6+umn+fLLL1mzZg09e/Zk69at3Hvvvfj6+jJy5Ejje+Lj45k9eza//fYbja2tHx8fz8yZM0lMTCQ5OZlZs2YRGhrKgw8+aFb7zRUfH8+CBQtITExk+/btTJ8+nWHDhhnD5sKFC/n555/ZuHEjAQEBLFmyhJSUFAYOHGg8x7p165gxY0ajn6chOp2uwddSUlK46aab+O233ygsLOTtt9/G3t6eoKAggoKC6n3P3r17CQoKwtbWttltmTBhAuvWrau36/Xtt99Gr9cza9YsAgICmjzX1q1bcXd3x9/fH9AC444dO8jLyzM+15G06hi69PR0zp49S3p6OjU1NcYEHxYWhqura2teWiNj34QQonVUl0Px4aaPc+8NdnV3lygrK2PNmjWsW7eOm2++GYAPPviATZs28eGHH7Jw4UI8PDwYOHAgW7ZsYfDgwcbwtnTpUkpKSigrK+Po0aOMGjWKsrIy3nzzTTZv3kxsbCwA3bt359dff+W9994zCXRhYWGsWLGiyaYHBwezcuVKdDodvXr1Yt++faxcuZIHH3zQrPabq3///jz33HMA9OzZk1WrVvHTTz9x4403Ulpayocffsjf//53Y8CLj4+vE6Y8PDzo1atXo9fZtm0bn332Gf369eP48ePcdtttDB8+HND+PuLj4wH46quv+OSTT3BxcUGn0zV7UsNPP/3E0KFDTZ6rqalhzZo1JCcnExcXx9ChQ8nMzOTee+812cpt5MiRrF69ut5AN2/ePPLy8nj33XcpKytj5syZjX7mU6dOmQRrW1tb3NzcOHDggAS65nr22WeN/0AABg0aBGib2I4aNarlLyjVNyGEaBvFh+G/ZuztOS4FvCLrPH38+HGqqqoYNmyY8Tl7e3uioqI4dOiQ8blRo0axZcsWFixYwC+//MKLL77Ihg0b+PXXXykqKsLf35/evXuTlJTE+fPn63ShVlZWGn/31BoyZIhZHzEmJsakehUbG8sbb7xBTU2N2e03R//+/U0eBwYGkp+fD2h/TpWVlcaQCuDl5VUnyEycOJGJEyc2eI2cnBwmTZrErl27jN26KSkpxkCXmJhoHEe3YcMGvv/+e/785z+b7I1srszMzDq/47/++msmT57ML7/8wsmTJxk6dCibNm2qE0x9fHw4fvx4g+f29/fnueeeo6SkhLVr17Jq1Sruvvtukz+fWqdPn8bJycnkOScnJ7M3OWhvWjXQrVu37rLWqjFr6y+pvgkhhOW499bCmjnH1aO2a/DS7j6llMlzo0aN4sMPP2TPnj3Y2NgQERHByJEjSUhIoLCw0Fh5qx1n9+2339K1a1eTczo6Opo8bmg2Z3OY034bG5s6XaBVVVV1znXphu46nc74eVpqu/UNGzYQEhJi7Kq8dJze4MEXwrmXl5dx2bBL/+zMUVpairOzs8lzY8eOBWDz5s189NFHgNZdXt8Yxsa6gGu5ubkxf/58KisrWb9+PR999BHTpk0zBlTQqpaX/vmVlpa272FjjbDKElVcXBwHDx40GVwqM0+FEMKK2HXSKm9N3erpbgWt29PBwYFff/3V+FxVVRXJyckmXXy14+jeeustRo4ciU6nY+TIkWzZsoUtW7YYA11ERASOjo6kp6cTFhZmcgsODr6sj7hjx446j3v27Imtra1Z7ff19SUnJ8f4enFxcbNnWYaFhWFvb2/SlsLCQo4ePdqs8xgMhkbD4eWMd2uIj48PhYWFJs+5u7vz3XffMWLECGOgTkhI4IYbbqhTMTN3WRTQ/kyzsrJwdXXFz8/P5LXevXsbK52gTZIoKSkhNDS0mZ+ofbCqdejqyP/jG+X7aKg6glTfhBCiY3BxcWH27NksXLgQLy8vQkJCWLFiBeXl5cycOdN4XO04uk8++YS3334b0ELenXfeSVVVlbFrz83Njccff5z58+djMBgYPnw4xcXFbNu2DVdXV6ZNm9bsNmZkZLBgwQIeeughUlNTeeedd4wzTM1p/5gxY1i3bh3jx4+nc+fOPPPMM80OTq6ursycOZOFCxfi7e2Nv78/Tz31FDY2pvWYjRs3snjxYuOM1EtNnDiRZcuWkZ6eTkhICACfffZZkzNR8/Pz+eGHH7CxsSElJYVXX321ycAVHh5Oenp6neczMjIICwsDYP/+/djb2+Pn50d8fDwPPPAAoIViNze3Rs8PcPLkSd5//31sbGz461//Wm9oHzFiBPn5+WRmZhIUFERCQgJDhw6VQGcRJUe0e+8Y6LZIxr4JIUQH8sorr2AwGLjvvvsoKSlhyJAhfP/993Tu3NnkuNGjR5OammoMb507dyYiIoLs7GyTat6yZcvw8/Pj5Zdf5sSJE3h6ehIZGcmSJUsuq31Tp07l3LlzREVFYWtry5w5c5g1a5bZ7V+8eDEnTpzgtttuw8PDg2XLll3WOmivvfYapaWlTJgwATc3Nx577DH0er3JMXq9niNHjjR4juDgYDZs2MDTTz/N8OHDMRgM3HLLLfz3v//lm2++oaqqim+++YaSkhJ+++03MjMz6d27N6dOnaKoqIhHHnmEHTt28OOPPzJu3LhG2ztu3DgefPBBHnvsMZPnJ02axKJFi/j8888BrZt31apVTJ8+3XhMUlISY8aMafDcu3btIj4+noCAAJ544ok6/1YuZmdnR3x8PMuXLycmJoaEhATWr1/faNvbM51qqQ76VlBcXIyHhwd6vb5t1qQTQghRR3l5uXELp06d6u9CFR3fX/7yF1asWEG3bt2aPHbWrFm88MILZi0vcrGnn36aCRMmEBUVVee1t99+GycnJ6ZNm1ZnsoOl1H5v1AbfkpISpk6d2qxla1qKVZa6Vq9eTURERJ1pz0IIIYRoe99++y133nmnWWEOtFUuVq1a1axrFBcXU1BQUG+YA23Zkoceeshqwpy1scpAV++kCCGEEEK0uaSkJPz9/bnzzjs5ePCgWe8JCgpi4sSJfPfdd2Ydr5Ri5cqVvPjii1fS1KuadY+hE0IIIYTFbN++nYceegg/Pz8qKytZs2aN2e+9eCmUppw5c4bZs2fj6+t7Oc0USKATQgghRANiY2PZu3dvq1+no64N15assstVCCGEEEKYTwKdEEIIIUQ7Z5WBTma5CiGEEEKYzyoDncxyFUIIIYQwn1UGOiGEEEIIYT4JdEIIIYQQ7ZwEOiGEEEKIds4qA51MihBCCCGEMJ9VLiwcFxdHXFwcxcXFeHh4WLo5QgghgHPnzlm6CUJYFWv6nmi1QHfq1CmWLVvG5s2byc3NpUuXLtx777089dRTODg4tNZlhRBCtDA7OztsbGw4deqUpZsihNVRSlFTU2PpZrReoDt8+DAGg4H33nuPsLAw9u/fz4MPPkhZWRmvv/56a11WCCFEC3NwcKBPnz5UV1ej1+v55ptvcHFxwdHR0dJNE8LiampqqK6utnQzWi/QjRs3jnHjxhkfd+/enSNHjrBmzRoJdEII0c44ODjg4ODA+fPnKSsro6qqSgKdEBepqKiw6PXbdAydXq/Hy8urwdcrKipM/kCKi4vbollCCCHM5OjoiLu7O8XFxVRWVlq6OUJYFXd3d4v9R0enlFJtcaHjx48TGRnJG2+8wQMPPFDvMc8//zxLly6t87xer8fd3b21myiEEMIMZWVlFq9GCGGNHB0dcXFxsci1mx3oGgpdF0tKSmLIkCHGx9nZ2YwcOZKRI0eydu3aBt9XX4UuODhYAp0QQgghRCOaHehOnz7N6dOnGz2mW7duODk5AVqYGz16NNHR0axbtw4bG/OXvqtdtkQCnRBCCCFEw5o9hs7HxwcfHx+zjs3KymL06NEMHjyYjz/+uFlhTgghhBBCmKfVxtDVdrOGhITw97//HVtbW+NrAQEBZp1DKUVJSQlubm7odLrWaKYQQgghRLvXarNcf/jhB9LS0khLSyMoKMjkNXMzpE6nk65WIYQQQogmtNksVyGEEEII0TpkUJsQQgghRDsngU4IIYQQop2TQCeEEEII0c5JoBNCCCGEaOck0AkhhBBCtHMS6IQQQggh2jkJdEIIIYQQ7ZwEOiGEEEKIdk4CnRBCCCFEOyeBTgghhBCinZNAJ4QQQgjRzv1/oBaNRRQu5rsAAAAASUVORK5CYII=\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnQAAADbCAYAAADkvAzdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTxElEQVR4nO3deVyU9fr4/9ewKyD7piAuuOGugJgmanlatcxPn8zM5Zh2DK20rKxOZeapbLFSj6eykso+/SqzU6e+ZScTy43NBXPBNXYQBIZNtnn//rhldGRxUGAGvJ6Px/0YZu577vu6QZjL673plFIKIYQQQgjRZtlYOgAhhBBCCHF12kRCp5Ri4sSJhISE4O7uzquvvmrpkIQQQgghrEabSOh0Oh3fffcdDz30EEVFRYwePdrSIQkhhBBCWI02kdDV2rVrFy4uLowYMcLSoQghhBBCWI02k9AZDAZ++eUXoqKisLOzs3Q4QgghhBBWo80kdHFxcRQUFHDDDTdYOhQhhBBCCKtilaWu4uJili1bRkpKCv7+/gQFBVE7u8qNN95o4eiEEEIIIayLztrmoTt79iw33HAD/fv355NPPkGn0/Hhhx+yePFiHB0dyc7ORqfTWTpMIYQQQgirYXVNrnfffTdFRUW8++67xsRt4sSJFBUVccMNN0gyJ4QQQghxCatK6D7//HO2bt3KQw89hLOzs/H1vXv3Akj/OSGEEEKIelhVQvevf/0LgDvvvNPk9djYWED6zwkhhBBC1Mdq+tBVV1fj5ORE586dSU1NNdk3evRosrOzOX78uIWiE0IIIYSwXlZTocvPz6empoahQ4eavF5eXk58fLyxuXXTpk0UFRVZIkQhhBBCCKtkNQmdr68vzs7OeHl5mbz+f//3f1RWVhqbWzdv3oybm5slQhRCCCGEsEpWk9DpdDoeeOABkpKSjHPO/fzzz3z11VcABAYGcvz4cbp27WrJMIUQQgghrI7V9KEDKCsr429/+xtnz54lICCAPn36sHjxYpYtW8bOnTvx8fFh9erVdap4QgghhBDXMqtK6IQQQgghRNNZTZOrEEIIIYS4MpLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cZLQCSGEEEK0cVad0Cml0Ov1KKUsHYoQQgghhNVqtYTu5ZdfRqfT8eijj5r9nuLiYtzc3CguLm70uLg40Olg//6rDFIAsDNtJ7plOg7mHrR0KEIIIYQwQ6skdPHx8bz33nsMGjSoRc7v4aE9FhS0yOmvOQEuAQBkFWdZOBIhhBBCmKPFE7qSkhLuu+8+3n//fTxqM69m5u2tPebnt8jprzkBrucTuhJJ6IQQQoi2oMUTuujoaG677TZuvPHGyx5bUVGBXq832czh5ga2tpCXd7XRCgAnOyc8nDykQieEEEK0EXYtefLPP/+cpKQk4uPjzTr+5ZdfZtmyZU2+jo0NeHlJQtecAlwDyCzOtHQYQgghhDBDi1Xo0tLSeOSRR/j0009xcnIy6z1Lly6lqKjIuKWlpZl9PW9vOHPmSqMVl+rs2lmaXIUQQog2osUqdImJieTm5jJ8+HDjazU1NWzfvp01a9ZQUVGBra2tyXscHR1xdHS8out5e0uFrjkFuARwqvCUpcMQQgghhBlaLKG74YYbSE5ONnlt9uzZ9O3blyeffLJOMne1fHwkoWtOAS4B7EjbYekwhBBCCGGGFkvoXF1dGTBggMlrzs7OeHl51Xm9OXh7w+nTzX7aa1Zn185kFWehlEKn01k6HCGEEEI0wipXili7di2hoaGEh4eb/R7pQ9e8AlwDKK8uR19h3khjIYQQQlhOi45yvdS2bdvMOi46Opro6Gj0ej1ubm5mvUf60DWvzq6dAUjXp+PmZN7PQAghhBCWYZUVuivh7Q1lZdomrl6wWzAAqUWpFo5ECCGEEJfTbhI6Hx/tUVaLaB4BrgHY6mz5s+hPS4cihBBCiMtoNwld7fJf0uzaPOxs7AjsFMifhZLQCSGEENau3SV0ubmWjaM9CXYPlgqdEEII0QZYZUJ3JaNc/fy0x+zsFgrqGhTsJgmdEEII0RZYZUIXHR3NoUOHzF4DFsDJCTw8JKFrTsFuwdLkKoQQQrQBVpnQXSl/f8iS5UebTbB7MJnFmVTWVFo6FCGEEEI0ol0ldAEBktA1p2C3YBSKdH26pUMRQgghRCPaXUInTa7NJ9hdm4tOml2FEEII62aVCd2VDIoAqdA1t65uXQE4XXjasoEIIYQQolFWmdBdyaAIkD50zc3JzomgTkEcO3vM0qEIIYQQohFWmdBdqYAAKCnRNtE8env1loROCCGEsHLtLqED6UfXnHp79SYlP8XSYQghhBBWoaqmytIh1MvO0gE0p9qELisLQkIsG0t70cuzFxv2bcCgDNjo2lX+L4QQQjSqqqaKAzkH2J2+h/8mnGb3HkVHPDkRs9TSodXRrhI6f3/tUfrRNZ/eXr0pry4nQ59BkFuQpcMRQgghWoRSij+L/mRP+h5ij+4ndkc5Kfs9qE4bDhn/C2XaGqOh4TkWjrR+VpnQrV27lrVr11JTU9Ok97m5aStGSJNr8+nt1RuAY2ePSUInhBCi3dBX6InPiGfH6T38sieHvQkOFJ8MhfRIyLsHgI6u5wgbXs4NU10ZfR1ERICnp5+FI69fiyZ069atY926dZw+fRqA/v3789xzz3HLLbc0+r7o6Giio6PR6/W4ubmZfT2dDrp0gXSZB7fZdHPvhq3OlpT8FMZ3H2/pcIQQQogmq6qpIjk3mbiMOLYeOMrOXTVkHAqCjAjIfASqnNHZ1NCzbzHX3+nAuOthxAjo1csJG50D6I9A3i44tgt0dhDxL0vfUh0tmtAFBgbyyiuvEHK+Q1tMTAx33HEHe/fupX///i1yza5dITW1RU59TbK3taeHRw8ZGCGEEKJNuLjp9PcTScTuLubwPjeqU4dB+m2g/xsAHn6lhEfUcGN0B0aOhGHDbOnY0R0qCyH/dy2Bi90FeXugqhDQgfsA8P+LBe+uYS2a0E2cONHk+YoVK1i3bh27d+9u0YQuRXKPZiVTlwghhLBWhecKicuIY3daHL8mppMYb0fxyX5a02nOFDDY4eBUxZDBZYyf25FR12nVty5dnEEZLlTfkndpj0WHAQUOHuAVCX0Xg89I8IoA+06Wvt0GtVofupqaGr788ktKS0sZOXJkvcdUVFRQUVFhfK7X65t8na5d4b//veIwRT16e/Xmu5TvLB2GEEKIa1xlTSUHcg6wJ30P24/8wY5d1WQc7gLpI9BlRqPKPQAI6lnMqBvsGDvajhEjYMAAe+zs3M5X3+K0xC2lnuqbz2jot0RL5Dr1hjY0u0OLJ3TJycmMHDmSc+fO4eLiwubNmwkNDa332Jdffplly5Zd1fW6doXMTKisBAeHqzqVOG+A7wDe2v0WpZWlODs4WzocIYQQ1wClFCcLTrInYw87TyUQu6eII/s7UZ06HDL+AmejAXD1OMfwsGrGzXBm5EgIDwd3d9fz1bdDWvKW2Larb+bQKaVUS16gsrKS1NRUCgsL2bRpE+vXryc2NrbepK6+Cl1QUBBFRUV06mTeN/rnn+Evf4GTJ6F792a7jWtaQmYC4e+Hs+eBPUR0ibB0OEIIIdqh/LJ84jPj2Z22h237/iQx3o6Sk6GQMQKyhkONA7b2NfQdUEbUqA6Mvk6rvnXvrg2KNKm+5dVTffMeqW1tsPpmjhav0Dk4OBgHRYSFhREfH8/bb7/Nu+++W+dYR0dHHB0dr+p6XbX15ElNlYSuuYT6hKJDR3JOsiR0QgghrlpFdQX7svexJ2MPv6cks2N3FZmHAyFjBLqMh1ClPgAEdC3luuvsiBrtwIgRMHiwLY6Ol1Tf4tp/9c0crT4PnVLKpArX3ILOT5UmI12bT0f7jvTy6sWBnAOWDkUIIUQbo5Ti2NljxGXEsevPeLbF5XNkvxuGtDDImABnHgago2slw8KqGfu/2qjTiAjw9j7fzae2+pbSQPWtDfd9ay4tmtA9/fTT3HLLLQQFBVFcXMznn3/Otm3b+PHHH1vsmh07grc3/Plni13imjTIbxDJucmWDkMIIYSVO1N6Rht1mr6H7cknSYy3o/RUf0iPRJc1BVXVARvbGvqGnmPMFCdGjayd880BGxuH89W3w1ridkKqb+Zq0YQuJyeH+++/n6ysLNzc3Bg0aBA//vgjEyZMaMnLylx0LWCg70De2fMOSil0Op2lwxFCCGEFyqvK2Zu9l7iMOH4/vo8duyvIPtoV0iOxyXgIQ7G2Jqdv53JGRtpy/XUOREZqc7516HBJ9e0Pqb5djRZN6D744IMret+VLv1VKzhYKnTNbZDfIPLL88kqyaKza2dLhyOEEKKVGZSBo3lHtabT1Di2J57h6H53DGlh6DJuQOUuBGWLU8cqhg6vZswdTsam04CADtpJaud9y9x1YfCCVN+aRYuPcr0atUt/NWWUK8Bjj8G338IxmQu32aQWpRL8VjDfTv2WiX0mXv4NQggh2rSckhz2ZOxhT/oefjt0jMR4O8pODdCqb9kRGM65oLMx0LNPBWOuc2RkpA2RkdCvH9janj/JNT7ytDW1+qCI1tCrF5w6BVVVYG9v6Wjah6BOQfg6+xKXEScJnRBCtDNlVWUkZiYSlxHHzlNJ7NhzjpyjwVryljkfQ2EgAJ6+FYwcYcPoB+2JjIThw21wdb2k+nZaqm+W0C4TupAQqKnRml3Pz5girpJOpyOiSwTxmfGWDkUIIcRVqDHUcCTvCHsy9rA7NY7f9mVzdL87Kj0cXcZ4yHkEVWOHg1M1g4dWc/3Njow8P3AhMNARYzfq2urbaen7Zg3aZULXq5f2eOyYJHTNKbxzOG/veVsGRgghRBuSWZzJnvQ9xGXE8duRwyQl2FF+euD56turGMrdAOgeco7RNzpw3Uib88tl2WFvfz5NqK2+nZTqm7WyyoTuagdFBAZqy34dP97MgV3jIrpEcLb8LCcLTtLTs6elwxFCCHEJfYXe2HS6688kdsWXkZvSDdIjsc2cR02+NuO+m2clkSNsGDXTjsjI2uWynC6cqLIQ8hrp+ybVN6vTLgdFAISGwo03wjvvtFBw16C8sjx8XvPhs7s+496B91o6HCGEuKbVLlQflxHHnvQ4dhzI5ESyN6SPwCbzOlTWYFS1A3b2NQwcXM311zkyYgRERl60XBZcqL7lNVJ98x4p1TcrZ5UVuuYQEiIVuubm3dGbXp692JG2QxI6IYRoRQZl4Fi+ttpCXEYcO48f4kCSI9Wpw9FlRGKbNZXqYk8AgrpVMnq0HZHnR51qy2XZXjhZZSFkS/WtvWm3CV2vXtrUJaJ5jQkew/Y/t1s6DCGEaNcy9BnEZ8ZrKy6kJhC3t5zSkwMgfQQO2Y9SmaN1e3F1q2ZEhI6R99gyYoQ255uPj8OFE9VW39Kl71t7164TOpm6pPlFBUfxwd4PyC/Lx6ujl6XDEUKINq/oXBEJmQla02lGHLv/SCfnaDdIH4F99h0YMp6nptIRWzsDAwYauO4uO2PTaa9edthcXECrLIQsqb5di9ptQte3rzZ1yfHj2iSHonmMCR4DwG+pv3Fn3zstG4wQQrQx56rPsT97/4Xq24k/OHawE6SPwC5rFDaZc6ks9AagS1A110XaMSKa88tl2dChw0UJmDl936T6ds2wyoTuake5AvTvrz0ePCgJXXMKdg8m2C2Y7X9ul4ROCCEaYVAGjuQdIT4j/vzAhQT2J1dRnToMm8yROGb/nXNZPcFgQ0fnGkZE2DBiko4RI7Q53wICLvmIluqbaES7HeUK4OcH8+fDCy80f2zXshmbZ3Aw9yBJDyZZOhQhhLAKSinS9enEZcQRnxnPnvQ44g9nUXo6FNIj6ZgbRWX6IKrPOWFjowgNVURG2hiTt9DQi5bLAhl5KprMKit0zWXAAK1CJ5rXhB4T+OTAJ2SXZOPv4m/pcIQQotUVlBcQnxmvVd8y49h94hC5KV0hIwKnnHGQ8QTnCrRRp126GIiMtCFirpa8DR+uw8XlksnZKwshV6pv4sq1+4Tup58sHUX7c1PITejQ8dPxn5g5ZKalwxFCiBZVXlXOvux9xn5ve1KTOH7YCTJGYJ89Goes6ZRmBYGywbWTgYhwGyImaiNOIyKgc+dLki9lgCLp+yaaV7tO6Pr3h7Vr4dw5cHK6/PHCPL7OvoR3CeeH4z9IQieEaFdqDDUczjt8od9bRhwHjhRTkzYM28zr6JD7BOVpfaHSATs7xcBBEHG+31tEBPTta2M66hQurHkq1TfRgqwyoWuOQRGgVehqauDoURg8uJmCEwDcGnIrq3avotpQjZ2NVf4zEkKIRimlSC1KNfZ7i8uII/74Ccr+1Pq9uZy5l6q0ldToXQEI6q6IHKEjIlprOh06VEeHDpeeVKpvwjLa9aCIoiJwd4eYGJgxo/nju5bFZ8QTsT6C7bO2c33w9ZYORwghLiunJMfY7y0hK4G4P/eTd7ILZETQMXc8NpkjKMnqDIC7h2JExIXKmzZhbz0nrSyC/D0NV9+8R2qbVN9EC2vR0srLL7/M119/zZEjR+jQoQPXXXcdr776Kn369GnJyxq5uWlLgCUmSkLX3IZ3Ho6vsy//PvpvSeiEEFanoLyAhMwEEjITtOpbegIZp7V+b045UThmT6M4tSdU2+HgoBg4VEfE/2BM4EJCdBfWOq1VZ+Tpbig6hFTfhDVo0QrdzTffzNSpUwkPD6e6uppnnnmG5ORkDh06hLOz82Xff7UVOoCpUyE9HX7//YreLhoR/X0036V8x+lHT2Mj/+sUQlhIaWUpSVlJxGfGGxO446lFkBGBQ/YYnM+Mo+x0fypKOgLQu7dixAgdERFaAjdoEDg61nNiqb6JNqRVm1zPnDmDr68vsbGxjBkz5rLHN0dC99pr2jx0ev0lc/yIq7b9z+1EbYji99m/M6rrKEuHI4S4BlRUV7A/Z78xcYvPiOdQ5mlU5hDsskfhlvcXqlKHoM/Rlib08dGSt9rKW3g4eHjUc2Jzqm8y75uwYq3am72oqAgAT0/PevdXVFRQUVFhfK7X66/6mmFhUFamDYwIDb3q04mLjO46ms6unfn//vj/JKETQjS7akM1h84c0vq8nU/g9mcdpDq3JzaZ1+F59jZU+jJ0fwaiamyw76DoN1xHxH0Xmk6Dg+tpOoXLV998RkG/x6X6JtqMVqvQKaW44447KCgo4Lfffqv3mBdeeIFly5bVef1qKnQyMKJlLf5pMZ8lf0bG4gxsbaQEKoS4MgZl4PjZ48RnxGuVt8x49mbtpfysB2SMwOvsrdhnXUfhyRDOlTmg0ylCQy80m0ZEaDMb2NvXc3KpvolrQKsldNHR0Xz//ff8/vvvBAYG1ntMfRW6oKCgq0roAHr1gltugXfeueJTiAbEZcQxYv0Ifpr+E3/p+RdLhyOEaANqpwu5uM9bYmYiRfoayByO59lb6ZgbRfHJUIrOaFOGdO58IXHTVluABj8WpO+buAa1SpPrwoUL+fbbb9m+fXuDyRyAo6MjjvX2TL06110HO3c2+2kFEN45nFCfUN5Pel8SOiFEvS6dLiQ+I54zxWchdwDu+TfRKW8pTn8OQn/aB6V0VLrAoDAY8dcLCVyXLg2cXEaeCgG0cEKnlGLhwoVs3ryZbdu20b1795a8XINGj4ZPP4XiYnB1tUgI7ZZOp+PB4Q/y2JbHyCnJwc/Fz9IhCSEsqKC8gMSsRJOm0/SidCjqikvujXgX/hWntH/icCyQynO2FNtCt4EQMeFCBa5fv0YGsUnfNyHq1aJNrg899BCfffYZ//73v03mnnNzc6NDnem162qOUa4Ahw9rAyK2bIEJE674NKIBBeUFdH6zMy9EvcCTo5+0dDhCiFZSUF5AUlYSiVmJJGYlkpCZwMmCk1DqRYfcKPz0t2OTGUnese7oz2rrLwYHmzadDh0KDc5iJX3fhDBbiyZ0unqHFsFHH33ErFmzGnzfxUt/paSkXHVCp5Q2w3d0NNQz5kI0g1nfzGLrqa2cePgE9rb19UoWQrRlhecKteQtM5GErAQSMxM5UXACKjvidGYUAfpJ2GddR8GJXpzJ0JpCPD21aUJqpwuJiAC/xor40vdNiCvWrpf+utgdd0BJCfzySzMFJ0wk5yQz6F+D+GTyJ0wfNN3S4QghrkLRuSJj5S0hM4HErESOnz0ONXY4nQ0nsPhOHHOuR3+yLxkn3DEYtDVNhw27sExWeDj06EH9U4aAVN+EaGbXTEJXO8FwQQE4ODRPfMLUbZ/dRlpRGvv/tr/B6qwQwrroK/QkZSUZE7fEzESOnT0GCpz0A+laMoWOuVGUng4l9ag3FedssLXVpgi5OHnr3x/sGuuVLdU3IVrUNZPQJSRof3S2bYOoqOaJT5iqXTniP/f+h9t632bpcIQQl9BX6NmbtfdC8paVSEp+CgAdynsQXPY/uOaOpzx1IKmHfdEXahlaz56mzaZDh0LHjo1cSKpvQrS6ayahMxi0vhtz58I//tFMAQoTSimu/+h6yqrKSJiXIOu7CmFBtcnbxQMWapM3p2o/epTfjVv+BCpTB5N+pDM5mVrfVz8/0+QtLAy8vC5zMam+CWFx10xCBzBtGqSkaNU60TJ2pu1k1Iej+PjOj7l/8P2WDkeIa0JxRTF7s/eaDFhIyU9BoXCkE70q/wfPszdTnT6UrKOBnDqmjTh1ddUSttrkLSICAgMb6fcGUn0TwkpZZULX3KNca8XEwOzZkJOjjXoVLWPKF1OIz4gnZWEKTnZOlg5HiHaloLyAvdl7ScpKIikrib3Zezmad1RL3mw60odJeJ+9FTLDyDkaTMqhDlRV6bC3hyFDTJO3Pn3A5nLFMqm+CdEmWGVCV6u5K3RZWdryMRs3atU60TKO5R8j9J+hvDTuJZmXToirkF2SbZK4JWUlcbrwNAAd7DoS6nATPgW3ocuM4Myx7hxNdqa4WFuMvm9f0ylDBg+Gyy7EI9U3IdqsayqhA60zb79+8NlnzXI60YBH/t8jfLD3Aw4+dJBu7t0sHY4QVk0pxZ9Ff2qJW9ZekrK1JC67JBsAdyd3BrqOxbfwFnSZkeQd68Hh/c7k5Ghto0FBppW3Rtc5vZhU34RoN665hG75cm0Kk9xccJLWwBajr9Az4J8D6Ovdl5+m/yTTmAhxnkEZOJZ/zFh5S8rWkriCcwUA+Dn7MdhzJP7Ft2KTNcKYvJ04of0OeXiYVt7CwyEgwIwLS/VNiHbtmkvoapcB+/ZbmDixWU4pGvDj8R+5ZeMtfDDpA/469K+WDkeIVldVU8WhM4dMmkz3Ze+jtKoUgGC3YIb4RBBQ9hdss0ZQcLInf+zryMGDUFOj/aezdrLe2iSuZ8/LDFqoJdU3Ia4pVpnQtdSgiFr9+2sju2Jimu2UogGzvpnF14e/JnFeIr28elk6HCFaTHlVOQdyDpgMWEjOTaayphIdOnp79WaIbxidz92AbfYIzp7oQfJeJ/bvh8pKjJP1hoVdaDrt3x/szVlJT6pvQlzzrDKhq9USFTqA55+Ht9/Wml1l1YiWpa/QE/ZeGM4Ozuyas0tGvYp2Iackh/05+9mXvc/4eDTvKDWqBjsbO/r79GeI3zACq8ZhmzWC/BPd2JfkwN69UFaGcdBC7ZQhYWHaCNQOHcwMQKpvQohLXJMJXXIyDBoE330Ht9/ebKcVDdifvZ8R60dwd/+7+fjOj6U/nWgzagw1pOSn1EneagcruDi4MNhvMIN8BxOoRmGTOYIzx4PZm2hHYiLo9dp5evY0Td6GDdPmgDOLVN+EEGa4JhM6pbQh/H37whdfNNtpRSM+P/g59266l+ejnueFsS9YOhwh6iiuKOZAzgGT5C05J5ny6nIAgjoFMcR/CIP9BtPVJpKa9GGkH/EnIUFHQgLk52vnCQoyTd6GDwdPzyYEItU3IcQVaGwp5XZLp4NZs2DpUjh7tol/bMUVmTpgKqcKTvH01qcJdgtm9tDZlg5JXKOUUqTr000qbvuy93Gi4AQA9jb2hPqEMth/MFP7T6WbfTiVaYNIOdiJhM/hg3htTksAX18tcVu4UEvewsK0pbPMD8aM6lvfxVJ9E0Jc1jVZoQNttYigIHj1VVi0qFlPLRqglOKh7x/i3cR3+WTyJ9w36D5LhyTaufKqcg6dOURybjIHcg4Yk7faKUI8nDwY4j/EWHnr0WEYpX/2Zf9ee+LjtWUC//xTO5eHh2nlLSzMjGWyLiXVNyFEC7HKhK6lR7nWuu8+2L1bW9/V1rbZTy/qYVAGHvj2AWL2x7DmljXMD59v6ZBEO2BQBk4WnORAzgGSc5JJztW242ePY1AGAHp69DQmbkP8h9DbdSg5x7uQmKg1mcbHw7Fj2vlcXLSm0osTuB49mpi8Sd83IUQratGEbvv27bz22mskJiaSlZXF5s2bufPOO81+f0tW6EBL5kaOlMERra3GUMPinxbzTtw7PD7ycV6d8Co2UokQZsotzb2QtJ1//OPMH5RVlQHg3dGbgb4Dtc1Pe+zZqT8nDruQkIAxeTt8GAwGba63oUNNkzez1ji9lFTfhBAW1KJ96EpLSxk8eDCzZ89mypQpLXmpKzJihPYHfPVqSehak62NLW/f8jY9PHqw6KdFnCo8xYY7N+Di4GLp0IQVKasq05pLL6q4Jeckk1OaA4CTnROhPqEM9B3IPf3vYZDfIAb6DcTdzo+DB3UkJkLcZvhngjayvbpam9Nt0CAYPVrrahEWpk00btZcbxczVt92X0jgpO+bEMKCWq3JVafTWV2FDuCTT2DGDDh4UJvEU7Sufx/5N9O+nkYX1y58NuUzwjqHWTok0coqqitIyU/h0JlD/HHmD2Oft9rmUh06enr2rFN1C/EMoarSlgMHICkJEhO17eBBqKrSulGEhmpNp7VLZA0ceIVL/kn1TQhh5awqoauoqKCiosL4XK/XExQU1KIJXWUl9Oql/Y9948YWuYS4jJT8FKZtmsb+nP28OPZFHr/ucextm1oyEdauvKqcI3lHOHTmkLblaY8X93MLcAmgn08/k+Stv09/nB2cOXcO9u+/kLglJsIff2iVt9pVFoYP17Zhw7SpicyeqPdi5lTfpO+bEMLKWFVC98ILL7Bs2bI6r7dkQgfwz39q0w4cOqT1nRGtr7Kmkhe2vcArv79Cf9/+rL5lNWO7jbV0WOIKlFSWmCZu57eTBSdRaH9uAjsFEuoTSqh3qPboE0o/n354dtDmECovrz95q6kBOzvT5G34cK0Z9YoqbyDVNyFEu2BVCZ0lKnQA585pidzw4fD11y12GWGGpKwkFvywgF3pu/if0P9h2dhlhPqEWjoscQmDMpChz+Bo/lFS8lM4mneUo/nadrrwtPG4YLdgY8JmTNy8++Hm5GY8pqysbvJ26JCWvNnb103errjZFKT6JoRot6wqobtUa/Shq/XZZ9o0Jtu2QVRUi15KXIZBGfj0wKf8/de/k1aUxj0D7uHxkY8zvPNwS4d2zdFX6Dmadz5pO5+wHc07yrGzx4yjSu1t7Onp2ZM+Xn3o49XHpOJ26UCXsjLYt880eTt8+ELyNnBg3eTN0fEqbkCqb0KIa4QkdOcZDBAZqT3GxV3BlAWi2VXWVPLh3g955fdX+LPoT64Luo4F4Qu4s++ddLC/ks5Roj6F5wo5cfYEJwpOcOLsCU4WnOTY2WMczT9qXLMUtP5tvb16a4mbt5a89fbqTXeP7tjZ1B0wX1JSt/JWO1WIg0Pd5G3AgKtM3qT6JoS4hrVoQldSUsLx48cBGDp0KG+++Sbjxo3D09OTrl27Xvb9rZnQAfz+O1x/PXz0kbY0mLAO1YZqvjv6HavjVvPr6V9xdXBlcr/JTBswjfHdx8sAisuobR69OGE7UXAhgatdNQHA3cmdnh49CfEMMSZsfby1x06ODf8O5ufD3r3aaNO9e7UtJUVbN9nBQevjdmny5uBwlTcm1bdWVVlZSXV1taXDEMLq2NnZ4XDVf9CuXosmdNu2bWPcuHF1Xp85cyYbNmy47PtbO6EDmD4dfvhBm/qgc+dWuaRogmP5x/i/g//HxuSNpOSn4Orgyg09buCmnjfxl55/obt7d3RNms6/7ausqSRDn0FqUapxS9OnkVqUysmCk5wqPEVlTSUAOnQEdgqkh0cPenr0pKdnT+NjD48exkEJDVEKMjJME7ekJEhL0/Y7O8OQIdpEvcOGaY+hoc2QvEn1zaIqKyv5448/MBgMlg5FCKtjY2ND//79LZ7UXdNLf9UnP1+rHoSFwbffNnGpH9FqlFLsy97HD8d+4McTP7IrbRc1qgafjj6EdQ4jvHM4YZ3DCOscRoBrgKXDvSJKKfQVerJLsskqySKrOIuskiwyizONCVtqUSpZxVnG0aMAXh286OrWla5uXenm3o2eHlqy1tOzJ93cu+FkZ96IAoMBjh+vW3nLyzt/Ha8LSVvt1qtXM3VXkOqbVSkrK+Pw4cN069aNDlc0F4wQ7VN5eTmnT5+mX79+dOzY0aKxWGVCV8sSFTrQErk77oANG2DmzFa7rLgKReeK2P7nduIz40nITCA+M568Mi3z8HP2o693X3p79SbYLZjAToF06dRFe3Ttgquja6vEqJSiqKKIs+VnyS/LJ7883+Tr/LJ8skqyTBK48upyk3N0tO9IgEsAwe7BdHXrSlCnIGPyVvvc2cG5ybFVVWkjSy9O3Pbt0/rBAQQFXUjaapO4Ji9M3+A3Rqpv1q42obOGDy0hrEnt70bnzp1xdHTE0dERZ+em/w1uDpLQNWDmTNi0CfbskRUk2iKlFGn6NOIz4tmfs5+U/BRS8lNI16dzpuyMybEd7Tvi5uiGu5M7bk7nHx3d6GDfAXsbexxsHYwbaH36Lt1qVA3VhmqqaqooqyqjpLKE4spi7bGi2Pi8dgLdiznaOuLV0QuvDl74u/gT4BqAv7P2GOASYHwtwCUAFweXq25SLi2FAwdMK28HD2qTbOt0WpXt4sRt6FDw9r6qS5qS6lubIwmdEPWr/d1ISkqitLSUTp06cc8991gkqWvRtVzbsn/+U/ugu/NObdSrh4elIxJNodPpjFWrKaGm6wifqz5HZnEm6fp00vXp5JTkUFRRRNG5IgorCik6V0RuaS4VNRVU1lRSWVNJVU0VFTUV6NBhZ2PX6NbRviP+Lv6EOITg6uCKi4MLro7ao2cHT7w6eBkTOM8OnnS079gi/f6UguxsbaTpvn3a4/79cPSo1pxaO0Hv0KHaIKChQ7XVFVybs2Apa54KIa4Bzs7OVFVVodfrqaiokITOmjg7w+bN2vqP990H332nLS8k2j4nOyd6ePSgh0cPS4fSbKqq4MiRC0lbbQJ35nwx0tVVG2k6bhwsXqxV3/r3v8ppQupzueqbzyjo97hU34QQ7Uptc2tlZaXFYrDKhO7iQRGW1LMn/N//wa23wvz58O67MkhCWN7ZsxcSt9rtjz+0JlOAbt20Stv8+dqI08GDtdeafW5Fqb4JIYTVsMqELjo6mujoaGMfOku66Sb44AOYPRvc3eHVVyWpE63DYIATJ0ybS/fvvzBFiKOjNjnvsGHav8/Bg7UqnLt7CwUk1TchhLBaVpnQWZtZs0Cvh0ce0Zq23nhDVpIQzauwUBuYkJx8IXFLTtYGMAD4+2vVtmnTtMRt8GDo3VvrB9cipPomhBBtiiR0Znr4Ye3Dc8ECyMqCmJgW6H8k2r2KCm35q9rkLTlZ+7q26mZnB337agnblCkXkjdf3xYOTKpvQgjRpklC1wQPPaRVSqZNg1tugS+/1CZXFeJSBgOcOmWatCUna8th1XYN7dpVazK97z5ttOnAgdCnTyv8R0Gqb0II0e5IQtdEd90FP/8MkydrfZe+/BIiIiwdlbAUpSA317TilpysDVIoK9OO8fDQkrXx47Vm+4EDtRGmrdY9VKpvQlyVsWPHMmTIEN566y1Lh1Kv1oyvdj5CYX2sMqGzllGuDbn+em2Ouv/9Xxg1Cp57Dp56Cuxljfh2SynIzNRWUzh8WHus3fLztWOcnLR1SwcO1P5tDByobQEBrTiQRqpvQogW8tZbbzFp0iSLxnDmzBliYmJ4/PHHGzwmMzOTztfgYuxWmdBZ0yjXhgQFQWwsLF8Oy5bB11/DW29BVJSlIxNXw2CA1NQLydrFyZterx3j6Kg1jYaGwoQJ0K+flriFhFhgrkKpvgnRLCorKy2+uLqljB07locffpi77rqrwWO2bNmCj48PPXpYdv5OHx8fxowZw9q1a4mOjq73mG3btrFt2zbuvfdexo0bZ9Z54+Pj2bhxI0OHDmXHjh0sXbqU7t27N2foZtu/fz+vv/46p06d4qmnnmLUqFEsW7aMiooKsrOzef755xkyZEjdNyorVlRUpABVVFRk6VAaFRenVHi4UqDUXXcpdfy4pSMSl1NZqdTRo0p9841S//iHUtOnKzV8uFIdO2o/R1DK2VmpsDClZsxQ6uWXlfr3v5U6dkyp6moLBW2oUarwD6WOf6DU7geU+k9/pTbqlNqIUl96KLX1FqUOvKhU1s9KVVr374xoW0pLS1VCQoIqLS296nMFBwerVatWmbw2ePBg9fzzzyullIqKilLR0dEqOjpaubm5KU9PT/XMM88og8FgPN6cYwwGg3r11VdV9+7dlZOTkxo0aJD68ssv65xj0aJFysvLS40ZM6bBmC93vXPnzqmFCxcqHx8f5ejoqEaNGqXi4uKadN+111m4cKFasmSJ8vDwUH5+fib7lVKqpKRE3X///crZ2Vn5+/ur119/XUVFRalHHnmkwfgbs3nzZjV+/HjVq1cvVVlZ2eBxt912m6q22B+/umbMmKHOnDnT4P6qqioVExOj5syZo3744YdGz3Xu3DkVHByssrOzlVJK7dy5U0VFRZkVR+3vxldffaXWr1+vVq1apfLz882+j/rMnj1bVVVVqeXLlysfHx81ZcoUlZ6errZu3ars7e3VggUL6n2fVVbo2prwcNi9W5uE+KmntMrNgw/CY49BcLClo7t2KaWNSE5J0bajRy98ffIkVFdrx7m5aT+z2mlBQkO1qltQkIWnp5Hqm7BiZVVlHMk7ctnj+nr3paN909Z/jYmJYc6cOezZs4eEhATmzZtHcHAwc+fONfuYZ599lq+//pp169bRq1cvtm/fzvTp0/Hx8SHqfFNKTEwM8+fPZ8eOHajLLGve2PWeeOIJNm3aRExMDMHBwaxcuZKbbrqJ48eP4+np2eR7X7x4MXv27GHXrl3MmjWLUaNGMWHCBACWLFnCr7/+yubNm/H39+fpp58mMTHRWLHZsGEDs2fPvuz9AFRXV5OYmMgXX3xBz549effdd1mwYEGd4w4cOEBgYCC2VrRc0qRJk9iwYUODTa92dnbMmDGD6dOn8+WXX/LXv/6ViRMncuedd9ZZanH79u106tQJPz8/ACIiIti9ezc5OTnG11rLiRMn6Ny5M3Z2dmRmZnL27FmefvppunTpwq5du3BxcWHixIn1v/mq0sgW1lYqdBcrLVXqpZeU8vRUytZWqWnTlIqNVeqi/ziKZlZYqFR8vFKffqrUc88pNXWqUsOGKeXicqHaZmurVEiIUrfeqtSiRUqtW6fUL78olZlpJT8bqb4JK1ZfhS4xM1HxApfdEjMTTc5lToWuX79+JtW2J598UvXr18/4/HLHlJSUKCcnJ7Vz506T68yZM0fde++9xnMMGTLErPtv7HolJSXK3t5ebdy40bivsrJSde7cWa1cudLs+669zujRo02OCQ8PV08++aRSSqni4mLl4OCgPv/8c+P+/Px81aFDB2OF7uuvv1Z9+vQx677Wr1+vjh07ppRS6pVXXlE+Pj71ft6++eabav369cbn1dXVas2aNWr69OnGSuS0adNUTEyMWddtTHV1tVq9erWaOXOm8dxpaWl1KmZnzpxR48aNM/u8BoNBffPNN+q+++5T//3vf032vffee3XO7+3trX755ZfLnre5K3Q7duxQSUlJSimlBg4caHalUCkrrdBZ+6CIxnTsCM88A48+qq0w8fbb8NlnWv+q2bPh/vu1yo8wn8EAGRnaqgknT2rbxV/n5V041t9fm3B3+HC4917t6z59oHt3sKruMVJ9E21cX+++JM5LNOu4poqMjDSpoowcOZI33niDmpoaY5WosWMOHTrEuXPnjFWtWpWVlQwdOtT4PCws7KpjOn78OFVVVYwaNcq4z97enoiICA4fPmz+TZ83aNAgk+cBAQHk5uYCWvWmsrKSkSNHGvd7enrSp08f4/PJkyczefLky16npKSEM2fOEBISAsAjjzzCunXrePXVV1mxYoXJsenp6YwdO9b4/N///jf33HMPW7du5fTp04SHhzNx4kTyLv5jfIW+/fZbpk6dym+//capU6cIDw/n559/JjAw0OQ4b29vTpw4YfZ58/LySEpKwsvLq07fuLy8PJycnExec3JyorCw8Irv40pdd911xpgOHjzIc889Z/Z7rTKhawuDIi7H2VmbjHjBAvjtN/jwQ3jpJS3ZGzIEJk6E22+HsDBZdcJg0Kb+SEvTttOnTRO306cvrFOq00GXLtCjhzb1x8SJ2td9+kCvXtDJGgdtKgPoj16UvMnIU9H2dbTvyLCAYU1+n42NTZ3mwKqqquYKCwCDwQDA999/T5cuXUz2OV400aOzs3OzXfPSZjyllMlr5t63/SXTJeh0OuP9XPr+q/H++++bNGE7OTmxYsUK5s2bx0MPPWTyfSspKaFDhw7G5+PHj8dgMPDbb7/x6aefAtCzZ896B0y8/fbbnDp1qsE4oqKiTBLQG264AYCtW7fy4YcfAtogh0uTc6j7Pa9PZmYmq1evpqqqioULFxJcTz8oNze3Ot/bkpISvL29L3v+lvLrr7+ilDJJpC/HKhO69sTGRhv5GhUFq1fDDz/Ad9/BmjXaCFkvL23qk9pt8GBwcbF01M1HKSgqupCspabW/To9/ULCBlqVs0cPbbv1VujZ88Lzbt206UGsmlTfhGiQj48PWVlZxud6vb7OB/7u3bvrPO/Vq5dJH67GjgkNDcXR0ZHU1FRjf7mr1dD1QkJCcHBw4Pfff2fatGmAlqglJCTw6KOPGo83574vJyQkBHt7e3bv3k3Xrl0BKCgoICUlpUn3mZ2djZOTE16XzIw/bdo0Vq1axXPPPccHH3xgfN3b25uCggLjc3d3dz755BPGjh1rTPSSk5OZNWtWnWs98sgjTblFOnXqxOeff86YMWOMCXdsbCz/+Mc/KCwsxP2ixartGln78PTp06xduxYHBwcefvhhAgICGjy2b9++vP/++8bnFRUVFBcX15v8tZZff/0VR0dHIiMjzX6PJHStqFMnmDpV26qrYedO+OUX2LEDXnzxwrqd3bpp1acBA7THvn21ZlpfX+uo5ikFJSVw9izk5EB2dsOP2dnasbVsbaFzZ22VhKAgbVLm2q+DgrSvvbxacd62qyXVNyGaZPz48WzYsIGJEyfi4eHB3//+9zqd7dPS0li8eDEPPvggSUlJrF69mjfeeMPsY1xdXXn88cdZtGgRBoOB0aNHo9fr2blzJy4uLsycObPJcTd0PWdnZ+bPn8+SJUvw9PSka9eurFy5krKyMubMmdOk+74cFxcX5syZw5IlS/Dy8sLPz49nnnkGm4s+GDZv3szSpUs5cqThASvr1q1j3rx59TaRPvXUU0ydOpVFixYxYMAAAPr160dqaqrJcTk5OSZJpYuLi0kcVyMtLc3YFHzw4EHs7e3x9fUlJiaGBx54ANCSZldX13rf//rrr1NWVsZTTz1VJ2mtz5gxY8jNzSU9PZ3AwEBiY2MJDw+3eEIXGRlZpym4MZLQWYidHYwZo22gJXgXLxP1xx/aqNmLf4fs7bXmxtrkzs3twubufuFrZ2ct8bO11R4v3QDOndO28vIL26XPi4qgoEBL3AoKTLfaEaK1dDrw8dH6sPn5aX3WIiO1ry9O1vz9W3BB+dYg1TchrsrSpUs5efIkt99+O25ubixfvrxOpWrGjBmUl5cTERGBra0tCxcuZN68eU06Zvny5fj6+vLyyy9z8uRJ3N3dGTZsGE8//fQVxd3Y9V555RUMBgP3338/xcXFhIWF8dNPP+Hh4dGk+zbHa6+9RklJCZMmTcLV1ZXHHnuMoqIi4/6ioiKOHj3a4PtTUlJYsWIFL774YqPXefrpp/n2228BuPnmm5k7dy6PPfaYcf/UqVNZvHgxn3zyCdXV1VeUJDdkypQpPPnkk3zxxRcADB8+nDVr1phUAOPj4xk/fny9729s0uH62NnZERMTw4oVK4iMjCQ2NpaNGzdecfxXKzs7myNHjnDPPfc06X061ZyN8mZQSlFcXFzvvoqKCioqKozPi4uLCQ0NJS0tjU5W2Tmq5en1Wl+yzExtYEDtlp8PhYXafr1eS77Onbu6a9nZQYcOWpOmk5NWUXR315aucne/sNU+9/DQEktfX62q1qYTtfooA+iPQX4cnI3THovO/6/XwR08w7Sqm3cEeA6X6ptot86dO0daWhr9+vWjY8emTUHSVOYsY2XtS3G1R/PmzePFF1/E39/f0qEA2rQ0kyZNIsLCa2+WlZVx+PBhjh07RkFBAcXFxdxzzz0mybyrq6tZ/f1q7d+/n5tuuomtW7cSGhpq9vta/SO4uLi4yQMdgmRYaKuorobiYm0Tl1MI/Pf8JkT71qdPH4tWLITlPffcc6xZs4aXXnrJ0qGg1+s5c+ZMg8ncqlWrGh0BO27cOKZMmdKsMX300UekpaXh6OjIc889Z1KcKioqalJRavDgwWRnZzc5hlZP6FxdXU3Kwxe7tEKXlZVFREQEhw4dqjNSqaWEh4cTHx/f7q7V2tdrzWvp9XqCgoKaVsm9iuqb/Nza3vWu6N/IVWpPP7faCp24dgUGBjJ58mR++OEHbr31VovFoZRi1apVjSaWixYtasWINLNnz260QtcaWj2h0+l0Tf6D6urq2mp/hG1tbdvltVr7eq19b6CNjmrwmpfr+xY8BryfNKvvm/zc2u71Gv030sza08+tsdGEzW3btm3NcoxofsOHD7d0COTn5zN//nx8fHwsHYoJe3t7HBwccHBwaNWc5WLtrdfTVWtosd+2fq3Wvl5r35uJFh55Kj+3tnu91tSef25CWIol54azdq0+KKIp0tPTjc0kl84SLUQtfX4a/zOuK99+uBSn4qS61TfvkdomI0+vWbWTlDe1L4vQ1Hb8bo1BEUK0JbW/G6dPn6awsJDi4mJmzJjR5DV8m4NVVuhql/6qPj83xsUze4trXD3VN9eiQ2x5CtSpf4G3zPsm6nJ0dOT555+XvyVCiHbLqit08r9qcdm+b1J9E6LFXesVOmufJqU146v9dyA0UqEToj6y6oIQQlitt956i0mTJl32uDNnzhATE9PoBL+ZmZl07ty5OcO75klCJyxHVl0QQliJyspKHBwcLB2GRYwdO5aHH36Yu+66q8FjtmzZgo+PDz169Ljs+Xx8fBgzZgxr165tcMDOtm3b2LZtG/feey/jxo0zK874+Hg2btzI0KFD2bFjB0uXLqV79+5mvfdaIJ+QonUoAxQdhhMfwp658P0A+MoDfr0Jjr4N2GjVt/E/w92FcOsBiHgXeswCt76SzAnRTnTr1q1O0+CQIUN44YUXAC25WLBgAQsWLMDd3R0vLy+effZZLu4dZM4xSilWrlxJjx496NChA4MHD+arr76qc47Fixfj7e3NhAkTGo27urq6wetVVFTw8MMP4+vri5OTE6NHj64zL+Dl7rs2pocffpgnnngCT09P/P39TfYDlJaWMmPGDFxcXAgICKizxm1TffPNN9ja2vLUU09RVVXV4HHvvPMOU6dONfu8ERERxMXF1bteLMC0adP45z//SVpaGg888AD/7//9v0bPV1FRwd13383SpUuZOXMms2fPZvbs2WbHcy2QT0nRMiqLIGsLJC+DX2+Gr7zg+1DY84BWlfMZBZEfwm2HYUoejPsBBv4d/G+UplQh2oCyMkhKuvxWVtb0c8fExGBnZ8eePXt45513WLVqFevXr2/SMc8++ywfffQR69at448//mDRokVMnz6d2NjYOufYsWMH77777hXH9MQTT7Bp0yZiYmJISkoiJCSEm266ibNnz17RvTs7O7Nnzx5WrlzJiy++yM8//2zcv2TJEn799Vc2b97Mli1b2LZtG4mJicb9GzZsMHuZqerqahITE/niiy/Izc1t8Htw4MABAgMDsbW1bdK9TJo0iQ0bNjS4387OjhkzZvDee++h1+v561//yubNm6mva//27dvp1KkTfn5+gJYw7t69m5ycnCbF1K4pK7RmzRrVr18/1bt3bwWooqIiS4ckGmOoUarwkFLHP1Bq9wNK/ae/Uht1Sm1EqS89lNp6i1IHXlQq62elKpvnZ/n8888rwGTz8/NrlnOLtis2NlbdfvvtKiAgQAFq8+bNJvsNBoN6/vnnVUBAgHJyclJRUVHq4MGDlgm2DSktLVUJCQmqtLTU+FpiolJw+S0x0fRcwcHBatWqVSavDR48WD3//PNKKaWioqJUv379lMFgMO5/8sknVb9+/YzPL3dMSUmJcnJyUjt37jS5zpw5c9S9995rPMeQIUPMuv/GrldSUqLs7e3Vxo0bjfsqKytV586d1cqVK82+79rrjB492uSY8PBw9eSTTyqllCouLlYODg7q888/N+7Pz89XHTp0UI888ohSSqmvv/5a9enTx6z7Wr9+vTp27JhSSqlXXnlF+fj41Pt5++abb6r169cbn1dXV6vVq1ermTNnqri4OKWUUmlpaSoqKsrkfWfOnFHjxo0zKxaltN/Pb775Rt13333qv//9r8m+9957r875vb291S+//GL2+VtC7e/GrFmz1KuvvqpWrVql8vPzLRKLVVbooqOjOXToUKsuQSSawEqqb/379ycrK8u4JScnN9u5RdtUWlrK4MGDWbNmTb37V65cyZtvvsmaNWuIj4/H39+fCRMmUCwLGDdZ376QmHj5rW/fpp87MjLSpMo0cuRIjh07Rk1NjVnHHDp0iHPnzjFhwgRcXFyM28cff2yyxmdYWNhVx3T8+HGqqqoYNWqUcZ+9vT0REREcPny4yfc+aNAgk+cBAQHk5uYCcOLECSorKxk5cqRxv6enJ3369DE+nzx5MkeOHLnsdUpKSjhz5gwhISEAPPLII3Ts2JFXX321zrHp6en4+voan3/77bdMnTqV8vJyTp06BcDPP/9cZ75Yb2/vRtdUvVReXh5JSUl4eXnV6RuXl5eHk5OTyWtOTk4UFhaaff6W1KFDB7766qtGm61bmgyKEI2z4pGndnZ2+Pv7t9r1hPW75ZZbuOWWW+rdp5Tirbfe4plnnjF2/o6JicHPz4/PPvuMBx98sDVDbfM6doRhw5r+PhsbmzpNas39IWgwGAD4/vvv66wDfvFchM7Ozs12zUubOZVSJq+Ze9/29vZ1zlt7P5e+/2q8//77zJ071/jcycmJFStWMG/ePB566CGT71tJSQkdOnQwPr/hhhsA2Lp1Kx9++CGgDXKorx+iOc2/mZmZrF69mqqqKhYuXEhwcHCdY9zc3Orcf0lJidWsHDFu3Dh2797NyZMnLRaDVVbohAVZSfXNHMeOHaNz5850796dqVOnWvQXSVi/U6dOkZ2dzV/+8hfja46OjkRFRbFz504LRnZt8fHxISsry/hcr9cbqzy1du/eXed5r169TPpwNXZMaGgojo6OpKamEhISYrIFBQVdUdwNXS8kJAQHBwd+//13476qqioSEhJM5msz574vJyQkBHt7e5NYCgoKSElJadJ5srOzcXJywsvLy+T1adOm0a9fP5577jmT1729vSkoKDA+79SpEz/88ANjxowxJsWxsbHceOONdSpmja0DfPr0aZYsWcLatWt5+OGHef311+tN5gD69u1rrFSCNkiiuLi4weNbm42NDYGBgSYxtjap0F3LrLj6djkjRozg448/pnfv3uTk5PDSSy9x3XXX8ccff9T5IyUEaB9igLFTdS0/Pz/+/PNPS4R0TRo/fjwbNmxg4sSJeHh48Pe//71OZ/u0tDQWL17Mgw8+SFJSEqtXr64zmrOxY1xdXXn88cdZtGgRBoOB0aNHo9fr2blzJy4uLsycObPJcTd0PWdnZ+bPn8+SJUvw9PSka9eurFy5krKyMubMmdOk+74cFxcX5syZw5IlS/Dy8sLPz49nnnkGG5sLtZnNmzezdOnSRptd161bx7x58+odgfrUU08xdepUFi1axIABAwDo168fqampdb4ftc21Bw8exN7eHl9fX2JiYnjggQcALbF1dXWtN4bXX3+dsrIynnrqKbP+Zo8ZM4bc3FzS09MJDAwkNjaW8PBwq0noQGt2LSkpsdj1rTKhq1366+L+EqIZtKN53y5uVhs4cCAjR46kZ8+exMTEsHjxYgtGJqzd5ZrGRMtaunQpJ0+e5Pbbb8fNzY3ly5fXqVTNmDGD8vJyIiIisLW1ZeHChcybN69JxyxfvhxfX19efvllTp48ibu7O8OGDePpp5++orgbu94rr7yCwWDg/vvvp7i4mLCwMH766Sc8PDyadN/meO211ygpKWHSpEm4urry2GOPUVRUZNxfVFTE0aNHG3x/SkoKK1as4MUXX2z0Ok8//TTffvstADfffDNz587lscceM+6fMmUKTz75JF988QUAw4cPZ82aNcyaNct4THx8POPHj6/3/I1NOlwfOzs7YmJiWLFiBZGRkcTGxrJx48YmnaO9k6W/2itzqm/eI62y+nalJkyYQEhICOvWrbN0KMIK6HQ6Nm/ezJ133gnAyZMn6dmzJ0lJSQwdOtR43B133IG7uzsxMTEWitT6tebSX+YsY2XtS3G1R/PmzePFF19sUr/lZ599lkmTJhEREdGCkVnWxUt/xcTEYG9vz/vvvy9Lf4mr0I6qb1eioqKCw4cPc/3111s6FGGlunfvjr+/Pz///LMxoausrCQ2NrbekX1CiAuee+451qxZw0svvWTW8Xq9njNnzjSYzK1atarREbDjxo1jypQpVxSrJRgMBtLT0xkxYoTFYpCEri1qw33fmsvjjz/OxIkT6dq1K7m5ubz00kvo9for6hsj2o+SkhKOHz9ufH7q1Cn27dtn7Nv06KOP8o9//INevXrRq1cv/vGPf9CxY0emTZtmwaiFsH6BgYFMnjyZH374gVtvvbXRY5VSrFq1qtHkb9GiRc0dokX9+uuv2NnZmbU0WkuRhK4tuMarb/VJT0/n3nvvJS8vDx8fHyIjI9m9e7dVdZAVrS8hIcFkXcja/pQzZ85kw4YNPPHEE5SXl/PQQw9RUFDAiBEj2LJlS4Mdt0Xr27ZtW7McI5rf8OHDzTouPz+f+fPn4+Pj08IRWY+ysjKmTJlSZ9qZ1iR96KzNNdj3TQhh3VqzD50QbcnFfegKCwspLi5mxowZ0oeu1jU1ylWqb0IIIYS4Si2a0K1YsYLvv/+effv24eDgYPYSHdHR0URHRxsrdO2G9H0TQgghRAto0YSusrKSu+++m5EjR/LBBx+05KWsk7H6tvt8Ardbqm9CCCHapMTERCoqKnB2dmbw4MGWDkdcokUTumXLlgGwYcOGlryMdZDqmxBCiHZq8+bN3Hzzzdja2jJv3rxr43O9jbGqPnQVFRVUVFQYn+v1egtGcxlSfRNCiCZrK5MCW3ucrRlfcnIyw4YNY8uWLXz22Wc88sgjZr+3djCNaHlWldC9/PLLxqqeVZHqmxBCiHaqrKwMpRTOzs717s/MzCQ0NJSEhARycnKwszMvdXjrrbeYNGmSWceeOXOGmJiYJi8JJi5octnohRdeQKfTNbolJCRcUTBLly6lqKjIuKWlpV3Rea5aZRFkbYHkF+HXW+ArL/g+FPY8oFXlfEZB5Idw22GYkgfjfoCBfwf/GyWZE0KINqSystLSIVjU999/z7Bhw3jttdcaPEYpha2tLVOmTGHSpElmDXDcsmULPj4+Zk+06+Pjw5gxY1i7dq25oZslPj6eRx99lJiYGObNm3dF6+e2FU1O6BYsWMDhw4cb3QYMGHBFwTg6OtKpUyeTrcUpAxQdhhMfwp658P0A+MoDfr0Jjr4F6LTq2/if4e5CuPUARLwLPWaBW19pShVCiCtUUVHBww8/jK+vL05OTowePZr4+Hjj/u+++w53d3cMBgMA+/btQ6fTsWTJEuMxDz74IPfeey+gJR4rV66kR48edOjQgcGDB/PVV1+ZXHPs2LEsWLCAxYsX4+3tzYQJExqMr7q6mgULFuDu7o6XlxfPPvssF0/dern4u3XrVqdJdMiQIbzwwgsm8Tz88MM88cQTeHp64u/vb7IfoLS0lBkzZuDi4kJAQABvvPFG49/YJrjtttu45557Gtyfm5vLkSNHACgvL+fIkSOMGzeO9PR0fvzxR+O2b98+k/e98847TJ06tUmxREREEBcXR15eXpPvoz4VFRXcfffdLF26lJkzZzJ79mxmz57dLOe2Rk1ucvX29sbb27slYmkd0vdNCCGswhNPPMGmTZuIiYkhODiYlStXctNNN3H8+HE8PT0ZM2YMxcXF7N27l+HDhxMbG4u3tzexsbHGc2zbts24jNSzzz7L119/zbp16+jVqxfbt29n+vTp+Pj4EBUVZXxPTEwM8+fPZ8eOHTQ2t35MTAxz5sxhz549JCQkMG/ePIKDg5k7d65Z8ZsrJiaGxYsXs2fPHnbt2sWsWbMYNWqUMdlcsmQJv/76K5s3b8bf35+nn36axMREhgwZYjzHhg0bmD17dqP30xCdTtfgvsTERG666SZ27NhBQUEBb7/9Nvb29gQGBhIYGFjvew4cOEBgYCC2trZNjmXSpEls2LCh3qbXt99+m6KiIubNm4e/v/9lz7V9+3Y6deqEn58foCWMu3fvJicnx/hae9KifehSU1M5e/Ysqamp1NTUGDP4kJAQXFxcWvLSGun7JoQQLaO6DPRHLn9cp75gV3d1idLSUtatW8eGDRu45ZZbAHj//ff5+eef+eCDD1iyZAlubm4MGTKEbdu2MXz4cGPytmzZMoqLiyktLSUlJYWxY8dSWlrKm2++ydatWxk5ciQAPXr04Pfff+fdd981SehCQkJYuXLlZUMPCgpi1apV6HQ6+vTpQ3JyMqtWrWLu3LlmxW+uQYMG8fzzzwPQq1cv1qxZwy+//MKECRMoKSnhgw8+4OOPPzYmeDExMXWSKTc3N/r06dPodXbu3Mnnn3/OwIEDOXHiBLfffjujR48GtJ9HTEwMAN988w2ffvopzs7O6HS6Jg9q+OWXXwgPDzd5raamhnXr1pGQkEB0dDTh4eGkp6czffp0k6XcoqKiWLt2bb0J3SOPPEJOTg7/+te/KC0tZc6cOY3e8+nTp00Sa1tbW1xdXfnjjz8koWuq5557zvgPBGDo0KGAtojt2LFjm/+CUn0TQojWoT8CP5qxtufNieA5rM7LJ06coKqqilGjRhlfs7e3JyIigsOHDxtfGzt2LNu2bWPx4sX89ttvvPTSS2zatInff/+dwsJC/Pz86Nu3L/Hx8Zw7d65OE2plZaXxs6dWWFiYWbcYGRlpUr0aOXIkb7zxBjU1NWbHb45BgwaZPA8ICCA3NxfQvk+VlZXGJBXA09OzTiIzefJkJk+e3OA1srKymDJlCnv37jU26yYmJhoTuj179hj70W3atImffvqJu+66y2RtZHOlp6fX+Yz/9ttvmTp1Kr/99hunTp0iPDycn3/+uU5i6u3tzYkTJxo8t5+fH88//zzFxcWsX7+eNWvWMG3aNJPvT628vDycnJxMXnNycjJ7kYO2pkUTug0bNlzRXDVmLf0l1TchhLCcTn21ZM2c4+pR2zR4aXOfUsrktbFjx/LBBx+wf/9+bGxsCA0NJSoqitjYWAoKCoyVt9p+dt9//z1dunQxOaejo6PJ84ZGczaFOfHb2NjUaQKtqqqqc65LF3TX6XTG+2mu5dY3bdpE165djU2Vl/bTGz78QnLu6elpnDbs0u+dOUpKSujQoYPJazfccAMAW7du5cMPPwS05vL6+jA21gRcy9XVlUWLFlFZWcnGjRv58MMPmTlzpjFBBa1qeen3r6SkpG13G2uEVZaooqOjOXTokEnnUhl5KoQQVsSuo1Z5u9xWT3MraM2eDg4O/P7778bXqqqqSEhIMGniq+1H99ZbbxEVFYVOpyMqKopt27axbds2Y0IXGhqKo6MjqamphISEmGxBQUFXdIu7d++u87xXr17Y2tqaFb+Pjw9ZWVnG/Xq9vsmjLENCQrC3tzeJpaCggJSUlCadx2AwNJocXkl/t4Z4e3tTUFBg8lqnTp344YcfGDNmjDGhjo2N5cYbb6xTMTN3WhTQvqcZGRm4uLjg6+trsq9v377GSidogySKi4sJDg5u4h21DVY1D10dued/UX4aAVVHkeqbEEK0D87OzsyfP58lS5bg6elJ165dWblyJWVlZcyZM8d4XG0/uk8//ZS3334b0JK8u+++m6qqKmPTnqurK48//jiLFi3CYDAwevRo9Ho9O3fuxMXFhZkzZzY5xrS0NBYvXsyDDz5IUlISq1evNo4wNSf+8ePHs2HDBiZOnIiHhwd///vfm5w4ubi4MGfOHJYsWYKXlxd+fn4888wz2NiY1mM2b97M0qVLjSNSLzV58mSWL19OamoqXbt2BeDzzz+/7EjU3NxctmzZgo2NDYmJibz66quXTbj69etHampqndfT0tIICQkB4ODBg9jb2+Pr60tMTAwPPPAAoCXFrq6ujZ4f4NSpU7z33nvY2Njwt7/9rd6kfcyYMeTm5pKenk5gYCCxsbGEh4dLQmcRxUe1R69I6Pak9H0TQoh25JVXXsFgMHD//fdTXFxMWFgYP/30Ex4eHibHjRs3jqSkJGPy5uHhQWhoKJmZmSbVvOXLl+Pr68vLL7/MyZMncXd3Z9iwYTz99NNXFN+MGTMoLy8nIiICW1tbFi5cyLx588yOf+nSpZw8eZLbb78dNzc3li9ffkXzoL322muUlJQwadIkXF1deeyxxygqKjI5pqioiKNHjzZ4jqCgIDZt2sSzzz7L6NGjMRgM3Hrrrfz444/85z//oaqqiv/85z8UFxezY8cO0tPT6du3L6dPn6awsJAFCxawe/du/vvf/3LzzTc3Gu/NN9/M3Llzeeyxx0xenzJlCk8++SRffPEFoDXzrlmzhlmzZhmPiY+PZ/z48Q2ee+/evcTExODv788TTzxR59/Kxezs7IiJiWHFihVERkYSGxvLxo0bG429LdOp5mqgbwF6vR43NzeKiopaZ046IYQQdZSVlRmXcOrYsf4mVNH+/e///i8rV66kW7dulz123rx5vPjii2ZNL3KxZ599lkmTJhEREVFn39tvv42TkxMzZ86sM9jBUmp/N2oT3+LiYmbMmNGkaWuai1WWutauXUtoaGidYc9CCCGEaH3ff/89d999t1nJHGizXKxZs6ZJ19Dr9Zw5c6beZA60aUsefPBBq0nmrI1VJnT1DooQQgghRKuLj4/Hz8+Pu+++m0OHDpn1nsDAQCZPnswPP/xg1vFKKVatWsVLL710NaFe06y7D50QQgghLGbXrl08+OCD+Pr6UllZybp168x+78VToVxOfn4+8+fPx8fH50rCFEhCJ4QQQogGjBw5kgMHDrT4ddrr3HCtySqbXIUQQgghhPkkoRNCCCGEaOOsMqGTUa5CCCGEEOazyoRORrkKIYQQQpjPKhM6IYQQQghhPknohBBCCCHaOEnohBBCCCHaOKtM6GRQhBBCCCGE+axyYuHo6Giio6PR6/W4ublZOhwhhBBAeXm5pUMQwqpY0+9EiyV0p0+fZvny5WzdupXs7Gw6d+7M9OnTeeaZZ3BwcGipywohhGhmdnZ22NjYcPr0aUuHIoTVUUpRU1Nj6TBaLqE7cuQIBoOBd999l5CQEA4ePMjcuXMpLS3l9ddfb6nLCiGEaGYODg7079+f6upqioqK+M9//oOzszOOjo6WDk0Ii6upqaG6utrSYbRcQnfzzTdz8803G5/36NGDo0ePsm7dOknohBCijXFwcMDBwYFz585RWlpKVVWVJHRCXKSiosKi12/VPnRFRUV4eno2uL+iosLkG6LX61sjLCGEEGZydHSkU6dO6PV6KisrLR2OEFalU6dOFvuPjk4ppVrjQidOnGDYsGG88cYbPPDAA/Ue88ILL7Bs2bI6rxcVFdGpU6eWDlEIIYQZSktLLV6NEMIaOTo64uzsbJFrNzmhayjpulh8fDxhYWHG55mZmURFRREVFcX69esbfF99FbqgoCBJ6IQQQgghGtHkhC4vL4+8vLxGj+nWrRtOTk6AlsyNGzeOESNGsGHDBmxszJ/6rnbaEknohBBCCCEa1uQ+dN7e3nh7e5t1bEZGBuPGjWP48OF89NFHTUrmhBBCCCGEeVqsD11tM2vXrl35+OOPsbW1Ne7z9/c36xxKKYqLi3F1dUWn07VEmEIIIYQQbV6LjXLdsmULx48f5/jx4wQGBprsMzeH1Ol00tQqhBBCCHEZrTbKVQghhBBCtAzp1CaEEEII0cZJQieEEEII0cZJQieEEEII0cZJQieEEEII0cZJQieEEEII0cZJQieEEEII0cZJQieEEEII0cZJQieEEEII0cZJQieEEEII0cZJQieEEEII0cZJQieEEEII0cb9/4xBeUpaPw3qAAAAAElFTkSuQmCC\n",
       "text/plain": [
        "Graphics object consisting of 3 graphics primitives"
       ]
@@ -973,10 +992,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\left(\\frac{{k_{v,q}}}{{\\operatorname{lcm}(m,2n^2)}} &lt; \\frac{q^{2}}{2 \\, r}, \\frac{{k_{v,q}}}{{\\operatorname{lcm}(m,2n^2)}} &lt; -\\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}\\right)\\)</html>"
+       "<html>\\(\\displaystyle \\left(\\frac{{k_{v,q}}}{{\\operatorname{lcm}(m,2n^2)}} &lt; \\frac{q^{2}}{2 \\, r}, \\frac{{k_{v,q}}}{{\\operatorname{lcm}(m,2n^2)}} &lt; -\\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}\\right)\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\left(\\frac{{k_{v,q}}}{{\\operatorname{lcm}(m,2n^2)}} < \\frac{q^{2}}{2 \\, r}, \\frac{{k_{v,q}}}{{\\operatorname{lcm}(m,2n^2)}} < -\\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}\\right)$"
+       "$\\displaystyle \\left(\\frac{{k_{v,q}}}{{\\operatorname{lcm}(m,2n^2)}} < \\frac{q^{2}}{2 \\, r}, \\frac{{k_{v,q}}}{{\\operatorname{lcm}(m,2n^2)}} < -\\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2}}{2 \\, {\\left(R - r\\right)}}\\right)$"
       ],
       "text/plain": [
        "(k/lcm_m_2n2 < 1/2*q^2/r, k/lcm_m_2n2 < -1/2*(ch1bv - q)^2/(R - r))"
@@ -1022,10 +1041,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\left(r &lt; \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}}, r &lt; \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R\\right)\\)</html>"
+       "<html>\\(\\displaystyle \\left(r &lt; \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}}, r &lt; \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R\\right)\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\left(r < \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}}, r < \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R\\right)$"
+       "$\\displaystyle \\left(r < \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}}, r < \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R\\right)$"
       ],
       "text/plain": [
        "(r < 1/2*lcm_m_2n2*q^2/k, r < 1/2*(ch1bv - q)^2*lcm_m_2n2/k + R)"
@@ -1079,13 +1098,13 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle r &lt; \\min\\left( \\frac{1}{2} \\, {\\operatorname{lcm}(m,2n^2)} q^{2} , \\frac{1}{2} \\, {\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)} + R \\right)\\)</html>"
+       "<html>\\(\\displaystyle r &lt; \\min\\left( \\frac{1}{2} \\, {\\operatorname{lcm}(m,2n^2)} q^{2} , \\frac{1}{2} \\, {\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)} + R \\right)\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle r < \\min\\left( \\frac{1}{2} \\, {\\operatorname{lcm}(m,2n^2)} q^{2} , \\frac{1}{2} \\, {\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)} + R \\right)$"
+       "$\\displaystyle r < \\min\\left( \\frac{1}{2} \\, {\\operatorname{lcm}(m,2n^2)} q^{2} , \\frac{1}{2} \\, {\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)} + R \\right)$"
       ],
       "text/plain": [
-       "r < \\min\\left( \\frac{1}{2} \\, {\\operatorname{lcm}(m,2n^2)} q^{2} , \\frac{1}{2} \\, {\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)} + R \\right)"
+       "r < \\min\\left( \\frac{1}{2} \\, {\\operatorname{lcm}(m,2n^2)} q^{2} , \\frac{1}{2} \\, {\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)} + R \\right)"
       ]
      },
      "execution_count": 28,
@@ -1120,10 +1139,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\frac{{\\operatorname{ch}_1^{\\beta}(v)}^{2} {\\operatorname{lcm}(m,2n^2)} + 2 \\, R}{2 \\, {\\operatorname{ch}_1^{\\beta}(v)} {\\operatorname{lcm}(m,2n^2)}}\\)</html>"
+       "<html>\\(\\displaystyle \\frac{{\\operatorname{ch}_1^{\\beta_0}(v)}^{2} {\\operatorname{lcm}(m,2n^2)} + 2 \\, R}{2 \\, {\\operatorname{ch}_1^{\\beta_0}(v)} {\\operatorname{lcm}(m,2n^2)}}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\frac{{\\operatorname{ch}_1^{\\beta}(v)}^{2} {\\operatorname{lcm}(m,2n^2)} + 2 \\, R}{2 \\, {\\operatorname{ch}_1^{\\beta}(v)} {\\operatorname{lcm}(m,2n^2)}}$"
+       "$\\displaystyle \\frac{{\\operatorname{ch}_1^{\\beta_0}(v)}^{2} {\\operatorname{lcm}(m,2n^2)} + 2 \\, R}{2 \\, {\\operatorname{ch}_1^{\\beta_0}(v)} {\\operatorname{lcm}(m,2n^2)}}$"
       ],
       "text/plain": [
        "1/2*(ch1bv^2*lcm_m_2n2 + 2*R)/(ch1bv*lcm_m_2n2)"
@@ -1159,10 +1178,10 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle \\frac{1}{8} \\, {\\operatorname{ch}_1^{\\beta}(v)}^{2} {\\operatorname{lcm}(m,2n^2)} + \\frac{1}{2} \\, R + \\frac{R^{2}}{2 \\, {\\operatorname{ch}_1^{\\beta}(v)}^{2} {\\operatorname{lcm}(m,2n^2)}}\\)</html>"
+       "<html>\\(\\displaystyle \\frac{1}{8} \\, {\\operatorname{ch}_1^{\\beta_0}(v)}^{2} {\\operatorname{lcm}(m,2n^2)} + \\frac{1}{2} \\, R + \\frac{R^{2}}{2 \\, {\\operatorname{ch}_1^{\\beta_0}(v)}^{2} {\\operatorname{lcm}(m,2n^2)}}\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle \\frac{1}{8} \\, {\\operatorname{ch}_1^{\\beta}(v)}^{2} {\\operatorname{lcm}(m,2n^2)} + \\frac{1}{2} \\, R + \\frac{R^{2}}{2 \\, {\\operatorname{ch}_1^{\\beta}(v)}^{2} {\\operatorname{lcm}(m,2n^2)}}$"
+       "$\\displaystyle \\frac{1}{8} \\, {\\operatorname{ch}_1^{\\beta_0}(v)}^{2} {\\operatorname{lcm}(m,2n^2)} + \\frac{1}{2} \\, R + \\frac{R^{2}}{2 \\, {\\operatorname{ch}_1^{\\beta_0}(v)}^{2} {\\operatorname{lcm}(m,2n^2)}}$"
       ],
       "text/plain": [
        "1/8*ch1bv^2*lcm_m_2n2 + 1/2*R + 1/2*R^2/(ch1bv^2*lcm_m_2n2)"
@@ -1235,13 +1254,13 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle r &lt; \\min\\left( \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R \\right)\\)</html>"
+       "<html>\\(\\displaystyle r &lt; \\min\\left( \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R \\right)\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle r < \\min\\left( \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R \\right)$"
+       "$\\displaystyle r < \\min\\left( \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R \\right)$"
       ],
       "text/plain": [
-       "r < \\min\\left( \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R \\right)"
+       "r < \\min\\left( \\frac{{\\operatorname{lcm}(m,2n^2)} q^{2}}{2 \\, {k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} {\\operatorname{lcm}(m,2n^2)}}{2 \\, {k_{v,q}}} + R \\right)"
       ]
      },
      "execution_count": 32,
@@ -1282,13 +1301,13 @@
     {
      "data": {
       "text/html": [
-       "<html>\\(\\displaystyle r &lt; \\min\\left( \\frac{n^{2} q^{2}}{{k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} n^{2}}{{k_{v,q}}} + R \\right)\\)</html>"
+       "<html>\\(\\displaystyle r &lt; \\min\\left( \\frac{n^{2} q^{2}}{{k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} n^{2}}{{k_{v,q}}} + R \\right)\\)</html>"
       ],
       "text/latex": [
-       "$\\displaystyle r < \\min\\left( \\frac{n^{2} q^{2}}{{k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} n^{2}}{{k_{v,q}}} + R \\right)$"
+       "$\\displaystyle r < \\min\\left( \\frac{n^{2} q^{2}}{{k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} n^{2}}{{k_{v,q}}} + R \\right)$"
       ],
       "text/plain": [
-       "r < \\min\\left( \\frac{n^{2} q^{2}}{{k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta}(v)} - q\\right)}^{2} n^{2}}{{k_{v,q}}} + R \\right)"
+       "r < \\min\\left( \\frac{n^{2} q^{2}}{{k_{v,q}}} , \\frac{{\\left({\\operatorname{ch}_1^{\\beta_0}(v)} - q\\right)}^{2} n^{2}}{{k_{v,q}}} + R \\right)"
       ]
      },
      "execution_count": 33,
@@ -1404,7 +1423,7 @@
  ],
  "metadata": {
   "kernelspec": {
-   "display_name": "SageMath 10.0",
+   "display_name": "SageMath 10.1",
    "language": "sage",
    "name": "sagemath"
   },
@@ -1418,7 +1437,7 @@
    "name": "python",
    "nbconvert_exporter": "python",
    "pygments_lexer": "ipython3",
-   "version": "3.11.6"
+   "version": "3.11.7"
   }
  },
  "nbformat": 4,
diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex
index 63a5bb0d0dd816304b8cb2b0ccea6c8d2ea1ab93..97df8cd573b05525eda1e5094b5930745fc615f7 100644
--- a/tex/bounds-on-semistabilisers.tex
+++ b/tex/bounds-on-semistabilisers.tex
@@ -308,56 +308,29 @@ $d$ then yields:
 		Δ(u) ≥ 0
 	}
 }
-This condition refers to condition
-\ref{item:bgmlvu:lem:num_test_prob1}
-from Lemma \ref{lem:num_test_prob1}
-(or corollary \ref{cor:num_test_prob2}).
-
-
-\noindent
-Expressing $\Delta(u)\geq 0$ in terms of $q$ as defined in eqn \ref{eqn-cintermsofm}
-we get the following:
-
+Expressing $\Delta(u)\geq 0$ in terms of
+$q = \chern^{\beta_0}_1(u) = c - r\beta_0$,
+we get:
 
 \begin{sagesilent}
 from plots_and_expressions import bgmlv2_with_q
 \end{sagesilent}
-
 \begin{equation}
 	\sage{bgmlv2_with_q}
 \end{equation}
 
-
 \noindent
-This can be rearranged to express a bound on $d$ as follows
-(recall from condition \ref{item:rankpos:lem:num_test_prob1}
-in Lemma \ref{lem:num_test_prob1} or corollary
-\ref{cor:num_test_prob2} that $r>0$):
-
+Rearranging to express this as a bound on $d$, we get the following.
+Recall that $r>0$ is ensured by Equations \ref{lem:eqn:cond-for-fixed-q}.
 
 \begin{sagesilent}
 from plots_and_expressions import bgmlv2_d_ineq
 \end{sagesilent}
 \begin{equation}
 	\label{eqn-bgmlv2_d_upperbound}
-	\sage{bgmlv2_d_ineq}
+	\sage{bgmlv2_d_ineq.expand()}
 \end{equation}
 
-\begin{sagesilent}
-from plots_and_expressions import bgmlv2_d_upperbound_terms
-\end{sagesilent}
-Viewing Equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term
-of $r$ again, there is a constant term
-$\sage{bgmlv2_d_upperbound_terms.const}$,
-a linear term
-$\sage{bgmlv2_d_upperbound_terms.linear}$,
-and a hyperbolic term
-$\sage{bgmlv2_d_upperbound_terms.hyperbolic}$.
-Notice that in the context of problem \ref{problem:problem-statement-2}
-($\beta = \beta_{-}$),
-the constant and linear terms match up with the ones
-for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}.
-
 \subsubsection{Semistability of the Quotient:
 	\texorpdfstring{
 		$\Delta(v-u) \geq 0$
@@ -367,11 +340,6 @@ for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}.
 }
 \label{subsect-d-bound-bgmlv3}
 
-This condition refers to condition
-\ref{item:bgmlvv-u:lem:num_test_prob1}
-from Lemma \ref{lem:num_test_prob1}
-(or corollary \ref{cor:num_test_prob2}).
-
 Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on
 $d$ yields:
 
@@ -385,26 +353,25 @@ from plots_and_expressions import bgmlv3_d_upperbound_terms
 	d \leq
 	\sage{bgmlv3_d_upperbound_terms.linear}
 	+ \sage{bgmlv3_d_upperbound_terms.const}
-	+ \sage{bgmlv3_d_upperbound_terms.hyperbolic}
+	\sage{bgmlv3_d_upperbound_terms.hyperbolic}
 	\qquad
-	\text{where }r>R
+	\text{when }r>R
 \end{equation*}
 
-
 \noindent
-For $r=R$, $\Delta(v-u)\geq 0$ is always true, and for $r<R$ it gives a lower
-bound on $d$, but it is weaker than the one given by the lower bound in
-subsubsection \ref{subsect-d-bound-radiuscond}.
-Viewing the right hand side of Equation \ref{eqn-bgmlv3_d_upperbound}
-as a function of $r$, the linear and constant terms almost match up with the
-ones in the previous section, up to the 
-$\chern_2^{\beta}(v)$ term.
-
+If $r=R$, then $\Delta(v-u)=(C-c)^2 \geq 0$ is always true, and for $r<R$ it gives a lower
+bound on $d$, but it is weaker than the one given by the lower bound
+given by $\chern^P_2(u)>0$:
+\begin{equation*}
+	d \geq
+	\sage{bgmlv3_d_upperbound_terms.linear}
+	+ \sage{bgmlv3_d_upperbound_terms.const}
+	+ \sage{-bgmlv3_d_upperbound_terms.hyperbolic}
+	\qquad
+	\text{when }r<R
+\end{equation*}
 
-However, when specializing to problem \ref{problem:problem-statement-2} again
-(with $\beta = \beta_{-}$), then we have $\chern^{\beta}_2(v) = 0$.
-And so in this context, the linear and constant terms do match up with the
-previous subsubsections.
+{\color{red} THIS IS BECAUSE TODO}
 
 \subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem
 \texorpdfstring{\ref{problem:problem-statement-2}}{2}}
@@ -427,9 +394,10 @@ These give bounds with the same assymptotes when we take $r\to\infty$
 % to be \beta_{-} for the rest of this subsubsection
 \bgroup
 
-\let\originalbeta\beta
-\renewcommand\beta{{\originalbeta_{-}}}
 
+\begin{sagesilent}
+from plots_and_expressions import bgmlv2_d_upperbound_terms
+\end{sagesilent}
 \begin{align}
 	d &>&
 	\frac{1}{2}\beta^2 r