diff --git a/main.tex b/main.tex index 690bc32853e0cc44e76ba11ad580537a3a63cec5..db5b4c1f82e8a510ad3b90cc454f75285ff7992e 100644 --- a/main.tex +++ b/main.tex @@ -165,12 +165,12 @@ $\chern(F)$, and so we can write: c_lower_bound = -(ts(beta=beta_min).rank(u)/ts().alpha).expand() + c var("q", domain="real") - c_val = c_lower_bound + q + c_in_terms_of_q = c_lower_bound + q \end{sagesilent} \begin{equation} \label{eqn-cintermsofm} - c=\chern_1(E) = \sage{c_val} + c=\chern_1(E) = \sage{c_in_terms_of_q} \qquad 0 \leq q \leq \chern_1^{\beta_{-}}(F) \end{equation} @@ -185,11 +185,11 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. This condition expressed in terms of $R,C,D,r,c,d$ looks as follows: \begin{sagesilent} - positive_condition = - u.Q_tilt() - (v-u).Q_tilt() + v.Q_tilt() + bgmlv1 = - u.Q_tilt() - (v-u).Q_tilt() + v.Q_tilt() \end{sagesilent} \begin{equation} - \sage{(0 <= positive_condition.expand() )} + \sage{0 <= bgmlv1.expand() } \end{equation} @@ -198,11 +198,11 @@ Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) we get the following: \begin{sagesilent} - positive_condition = positive_condition.expand().subs(c == c_val) + bgmlv1_with_q = bgmlv1.expand().subs(c == c_in_terms_of_q) \end{sagesilent} \begin{equation} - \sage{(0 <= positive_condition) + 2*R*d - 4*d*r} + \sage{0 <= bgmlv1_with_q} \end{equation} @@ -210,14 +210,16 @@ we get the following: This can be rearranged to express a bound on $d$ as follows: \begin{sagesilent} - var("r_alt",domain="real") - nc = (positive_condition.subs(r == r_alt + R/2)/r_alt).expand() - nc = ((0 > -nc) + 4*d)/4 # rearrange for d - nc = nc.subs(r_alt == r - R/2).expand() # resubs r back in + var("r_alt",domain="real") # r_alt = r - R/2 temporary substitution + bgmlv1_with_q_reparam = (bgmlv1_with_q.subs(r == r_alt + R/2)/r_alt).expand() + bgmlv1_d_ineq = ((0 > -bgmlv1_with_q_reparam) + 4*d)/4 # Rearrange for d + bgmlv1_d_ineq = bgmlv1_d_ineq.subs(r_alt == r - R/2).expand() # Resubstitute r back in + + bgmlv1_d_lowerbound = bgmlv1_d_ineq.rhs() # Keep hold of lower bound for d \end{sagesilent} \begin{dmath} - \sage{nc} + \sage{bgmlv1_d_ineq} \end{dmath}