From ca789abdf73fe6ff989b8eecbc4bfe669c739dd5 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Tue, 13 Jun 2023 16:55:07 +0100 Subject: [PATCH] Introduce new notation for characteristic curves --- main.tex | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) diff --git a/main.tex b/main.tex index 4398595..d6fe72d 100644 --- a/main.tex +++ b/main.tex @@ -28,6 +28,7 @@ \newtheorem{lemmadfn}{Lemma/Definition}[section] \newtheorem{dfn}{Definition}[section] \newtheorem{lemma}{Lemma}[section] +\newtheorem{fact}{Fact}[section] \begin{document} @@ -123,6 +124,32 @@ These are given by the equations $\chern_i^{\alpha,\beta}(v)=0$ for $i=1,2$, and are illustrated in Fig \ref{fig:charact_curves_vis} (dotted line for $i=1$, solid for $i=2$). +\begin{dfn}[Characteristic Curves $V_v$ and $\Theta_v$] +Given a Chern character $v$, with positive rank and $\Delta(v) \geq 0$, we +define two characteristic curves on the $(\alpha, \beta)$-plane: + +\begin{align*} + V_v &\colon \chern_1^{\alpha, \beta}(v) = 0 \\ + \Theta_v &\colon \chern_2^{\alpha, \beta}(v) = 0 +\end{align*} +\end{dfn} + +\begin{fact}[Geometry of Characteristic Curves] +The following facts can be deduced from the formulae for $\chern_i^{\alpha, \beta}(v)$ +as well as the restrictions on $v$: +\begin{itemize} + \item $V_v$ is a vertical line at $\beta=\mu(v)$ + \item $\Theta_v$ is a hyperbola with assymptotes angled at $\pm 45^\circ$ + crossing where $V_v$ meets the $\beta$-axis: $(\mu(v),0)$ + \item $\Theta_v$ is oriented with left-right branches (as opposed to up-down). + The left branch shall be labelled $\Theta_v^-$ and the right $\Theta_v^+$. + \item The gap along the $\beta$-axis between either branch of $\Theta_v$ + and $V_v$ is $\sqrt{\Delta(v)}/\chern_0(v)$. + \item When $\Delta(v)=0$, $\Theta_v$ degenerates into a pair of lines, but the + labels $\Theta_v^\pm$ will still be used for convenience. +\end{itemize} +\end{fact} + \minorheading{Relevance of $\chern_1^{\alpha, \beta}=0$ vertical line} -- GitLab