From cf7adbeea0f8e0dcd9419566acf5149485c9fcba Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Mon, 24 Jul 2023 15:30:57 +0100 Subject: [PATCH] Relate the Tigter bounds section to problems 1,2 --- main.tex | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/main.tex b/main.tex index fb71815..2018c9c 100644 --- a/main.tex +++ b/main.tex @@ -960,6 +960,10 @@ First, let us fix a Chern character for $F$, and some pseudo-semistabilizer $u$ which is a solution to problem \ref{problem:problem-statement-1} or \ref{problem:problem-statement-2}. +Take $\beta = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem +\ref{problem:problem-statement-1} +(or $\beta = \beta_{-}$ for problem \ref{problem:problem-statement-2}). + \begin{align} \chern(F) =\vcentcolon\: v \:=& \:(R,C\ell,D\ell^2) && \text{where $R,C,2D\in \ZZ$} @@ -1006,7 +1010,8 @@ c_in_terms_of_q = c_lower_bound + q \end{equation} Furthermore, $\chern_1 \in \ZZ$ so we only need to consider -$q \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)]$. +$q \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)]$, +where $n$ is the denominator of $\beta$. For the next subsections, we consider $q$ to be fixed with one of these values, and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. -- GitLab