diff --git a/main.tex b/main.tex index 79cc356227f6a372308cd9454434534c487b0e40..6c0320967c64a6b2875024f133868fbd5f81c3cd 100644 --- a/main.tex +++ b/main.tex @@ -23,6 +23,8 @@ \newcommand{\centralcharge}{\mathcal{Z}} \newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}} +\newtheorem{rmax_with_uniform_eps}{Theorem}[section] + \begin{document} \title{Explicit Formulae for Bounds on the Ranks of Tilt Destabilizers and @@ -829,8 +831,35 @@ radius of the pseudo-wall being positive \frac{1}{2n^2}\ZZ \end{equation} +\begin{rmax_with_uniform_eps}[Bound on $r$ \#1] + Let $v = (R,C,D)$ be a fixed Chern character. Then the ranks of the + pseudo-semistabilizers for $v$ are bounded above by the following expression. + + \begin{align*} + &\frac{\lcm(m,2n^2)}{2} + \max_{q \in [0,\chern_1^\beta(v)]} + \\ + &\left\{ + \min + \left( + q^2, + 2R\beta q + +C^2 + -2DR + -2Cq + +q^2 + +\frac{R}{\lcm(m,2n^2)} + \right) + \right\} + \end{align*} +\end{rmax_with_uniform_eps} + +\begin{proof} + \noindent -Both $d$ and the lower bound are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. +Both $d$ and the lower bound in +(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) +are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. So, if any of the two upper bounds on $d$ come to within $\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for $d$. @@ -887,6 +916,9 @@ assert bounds_too_tight_condition1.rhs() == r assert bounds_too_tight_condition2.rhs() == r \end{sagesilent} +\noindent +This is equivalent to: + \begin{equation} r > \min\left( @@ -903,6 +935,13 @@ assert bounds_too_tight_condition2.rhs() == r \right) \end{equation} +If this condition holds for all $q$, then there are no solutions for $d$, +and therefore $r$ cannot satisfy this condition for all $q$. +Taking the maximum of all these expressions over $q$, and substituting the value +for $\epsilon$ gives the result. + +\end{proof} + %% refinements using specific values of q and beta \begin{sagesilent}