From d3819e943d911d140ad2a73f99a8590fddccc157 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Wed, 12 Apr 2023 12:31:33 +0100 Subject: [PATCH] Bound for rank --- main.tex | 21 ++++++++++++++++++++- 1 file changed, 20 insertions(+), 1 deletion(-) diff --git a/main.tex b/main.tex index 2b3b217..00d3d23 100644 --- a/main.tex +++ b/main.tex @@ -9,7 +9,10 @@ \usepackage{color} \newcommand{\QQ}{\mathbb{Q}} +\newcommand{\ZZ}{\mathbb{Z}} \newcommand{\chern}{\operatorname{ch}} +\newcommand{\lcm}{\operatorname{lcm}} +\newcommand{\gcd}{\operatorname{gcd}} \newcommand{\firsttilt}[1]{\mathcal{B}^{#1}} \newcommand{\bddderived}{\mathcal{D}^{b}} \newcommand{\centralcharge}{\mathcal{Z}} @@ -84,6 +87,8 @@ $\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)$: \chern^\beta_2(E) &= \chern_2(E) - \beta \chern_1(E) + \frac{\beta^2}{2} \chern_0(E) \end{align*} +% TODO I think this^ needs adjusting for general Surface with $\ell$ + $\chern^\beta_1(E)$ is the imaginary component of the central charge $\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$ satisfies $\chern^\beta_1 \geq 0$. This, along with additivity gives us, for any @@ -101,7 +106,7 @@ normal one. So $0 \leq \Delta(E)$ yields: \begin{equation} \label{eqn-bgmlv-on-E} - \chern^\beta_0(E) \chern^\beta_2(E) \leq \left(\chern^\beta_1(E)\right)^2 + 2\chern^\beta_0(E) \chern^\beta_2(E) \leq \left(\chern^\beta_1(E)\right)^2 \end{equation} The restrictions on $\chern^\beta_0(E)$ and $\chern^\beta_2(E)$ @@ -109,6 +114,20 @@ is best seen with the following graph: % TODO: hyperbola restriction graph (shaded) +This is where the $\beta_{-}$ criterion comes in. If $\beta_{-} = \frac{*}{n}$ +for some $*,n \in \ZZ$. +Then $\chern^\beta_2(E) \in \frac{1}{\lcm(m,2n^2)}\ZZ$ where $m$ is the integer +which guarantees $\chern_2(E) \in \frac{1}{m}\ZZ$ (determined by the variety). +In particular, since $\chern_2(E) > 0$ we must also have +$\chern^\beta_2(E) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a bound +for the rank of $E$: + +\begin{align} + \chern_0(E) &= \chern^\beta_0(E) \\ + &\leq \frac{\lcm(m,2n^2) \chern^\beta_1(E)^2}{2} \\ + &\leq \frac{mn^2 \chern^\beta_1(F)^2}{\gcd(m,2n^2)} +\end{align} + \section{Section 3} \section{Conclusion} -- GitLab