diff --git a/main.tex b/main.tex index d3020c52107b029044eaeb7f5f8ffab7d873f098..d2b3567dab96cbd45c1ad57647be8c66b474f574 100644 --- a/main.tex +++ b/main.tex @@ -1112,18 +1112,18 @@ Where $\epsilon_{q,1}$ and $\epsilon_{q,2}$ are defined as follows: \begin{equation*} \epsilon_{q,1} := - \frac{k_q^1}{2mn^2} + \frac{k_{q,1}}{2mn^2} \qquad \epsilon_{q,2} := - \frac{k_q^2}{2mn^2} + \frac{k_{q,2}}{2mn^2} \end{equation*} \begin{align*} \text{where } - &k_q^1 \text{ is the least } + &k_{q,1} \text{ is the least } k\in\ZZ_{>0}\: s.t.:\: k \equiv -\aa\bb m \mod n \\ - &k_q^2 \text{ is the least } + &k_{q,2} \text{ is the least } k\in\ZZ_{>0}\: s.t.:\: k \equiv \aa\bb m (\aa\aa^{'}-2) \mod n\gcd(2n,\aa^2 m) @@ -1174,13 +1174,13 @@ Consider the following tautology: In our situation, we want to find the least $k$ satisfying eqn \ref{eqn:finding_better_eps_problem}. Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n}, -we can pick the smallest $k_q^1 \in \ZZ_{>0}$ which satisfies this new condition +we can pick the smallest $k_{q,1} \in \ZZ_{>0}$ which satisfies this new condition (a computation only depending on $q$ and $\beta$, but not $r$). We are then guaranteed that the gap $\frac{k}{2mn^2}$ is at least $\epsilon_{q,1}$. Furthermore, $k$ also satisfies eqn \ref{eqn:better_eps_problem_k_mod_gcd2n2_a2mn} -so we can also pick the smallest $k_q^2 \in \ZZ_{>0}$ satisfying this condition, +so we can also pick the smallest $k_{q,2} \in \ZZ_{>0}$ satisfying this condition, which also guarantees that the gap $\frac{k}{2mn^2}$ is at least $\epsilon_{q,2}$. \end{proof}