From d4910357483a3cb3f27dedb425d437f370e64253 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Sun, 14 May 2023 19:51:16 +0100 Subject: [PATCH] Correct recent work related to modular arithmetic --- main.tex | 65 ++++++++++++++++++++++++++++++++------------------------ 1 file changed, 37 insertions(+), 28 deletions(-) diff --git a/main.tex b/main.tex index a0c4921..ad2fced 100644 --- a/main.tex +++ b/main.tex @@ -951,7 +951,7 @@ this value of $\frac{1}{2n^2}\ZZ$ explicitly. The expressions that will follow will be a bit more complicated and have more parts which depend on the values of $q$ and $\beta$, even their numerators $\aa,\bb$ specifically. The upcoming theorem (TODO ref) is less useful as a -`nice' formula for a bound on the ranks of the pseudo-semistabilizers, but has a +`clean' formula for a bound on the ranks of the pseudo-semistabilizers, but has a purpose in the context of writing a computer program to find pseudo-semistabilizers. Such a program would iterate through possible values of $q$, then iterate through values of $r$ within the bounds (dependent on $q$), @@ -959,7 +959,8 @@ which would then determine $c$, and then find the corresponding possible values for $d$. -Firstly, we only consider $r$-values for which $c:=\chern_1(E)$ is integral: +Firstly, we only need to consider $r$-values for which $c:=\chern_1(E)$ is +integral: \begin{equation} c = @@ -982,24 +983,9 @@ rhs_numerator = ( \end{sagesilent} \noindent -Considering the numerator of the right-hand-side of -(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}): +Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$. -\begin{align} - \sage{rhs_numerator} - &\equiv (\aa(-\aa^{-1}\bb)+2\bb)\aa &\mod n -\\ - &\equiv \aa\bb &\mod n -\end{align} - -\noindent -And so, we also have $\aa(\aa r+2\bb) \equiv \aa\bb$ (mod $2n^2$). -Now, suppose that $x/m$ is the smallest element of $\frac{1}{m}\ZZ$ strictly -greater than the right-hand-side of -(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}), and define $\epsilon$ -as the size of the gap. - -Using the following tautology: +Considering the following tautology: \begin{align} &\frac{ x }{ m } @@ -1009,25 +995,48 @@ Using the following tautology: 2n^2 } = \frac{ k }{ 2mn^2 } - \quad \text{for some } x \in \ZZ + \quad \text{for some } x \in \ZZ, k \in \ZZ_{>0} + \label{eqn:finding_better_eps_problem} \\ &\iff - (\aa r+2\bb)\aa m \equiv k \quad \mod 2n^2 + \quad \text{for some } k \in \ZZ_{>0} \\ &\iff - - \aa\bb m + - \aa^2 m r - 2\aa\bb m \equiv k \quad \mod 2n^2 + \quad \text{for some } k \in \ZZ_{>0} +\\ &\Longrightarrow + \aa^2 \aa^{'}\bb m - 2\aa\bb m + \equiv k + \quad \mod \gcd(2n^2, \aa^2 mn) + \quad \text{for some } k \in \ZZ_{>0} + \label{eqn:better_eps_problem_k_mod_gcd2n2_a2mn} +\\ &\Longrightarrow + -\aa\bb m + \equiv k + \quad \mod n + \quad \text{for some } k \in \ZZ_{>0} + \label{eqn:better_eps_problem_k_mod_n} \end{align} -We can recover how much greater $x/m$ is than the right-hand-side of -(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}). -First calculate the smallest $k_q \in \ZZ_{>0}$, such that -$k_q \equiv -\aa\bb m \mod 2n^2$. Then we have -$\epsilon = \epsilon_q := \frac{k_q}{2mn^2}$, -an expression independent of $x$ and $r$, only depending on $q$. +In our situation, we want to find the gap between the right-hand-side of eqn +\ref{eqn:positive_rad_condition_in_terms_of_q_beta}, +and the least element of $\frac{1}{m}\ZZ$ which is strictly greater. +This amounts to finding the least $k \in \ZZ_{>0}$ for which +eqn \ref{eqn:finding_better_eps_problem} holds. +Since such a $k$ satisfies eqn \ref{eqn:better_eps_problem_k_mod_n}, +we can pick the smallest $k \in \ZZ_{>0}$ which satisfies this new condition +(a computation only depending on $q$ and $\beta$, but not $r$) +and we are then guaranteed that the gap is at least $\frac{k}{2mn^2}$. + +A potentially larger gap can also be guaranteed if we choose the least +$k \in \ZZ_{>0}$ satisfying eqn \ref{eqn:better_eps_problem_k_mod_gcd2n2_a2mn} +instead, but at the cost of computing several $\gcd$'s and modulo reductions +for each $q$ considered. + -%% TODO: check this^ result seems a bit strange -- GitLab