diff --git a/main.tex b/main.tex index 7cbb9d5d9aeb0ebb41f4de8a16d7f087fbf51e3b..68ea0be2e3292783329f490eaf96ac018b61d012 100644 --- a/main.tex +++ b/main.tex @@ -218,7 +218,6 @@ $d \in \frac{1}{\lcm(m,2)}\ZZ$. % cover that being a pseudo-semistabilizer somewhere implies also on whole circle \begin{lemma}[Sanity check for Pseudo-semistabilizers] -% NOTE: SURFACE SPECIALIZATION Given a stability condition $\sigma_{\alpha,\beta}$, if $E\hookrightarrow F\twoheadrightarrow G$ is a semistabilizing sequence in @@ -594,7 +593,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \label{lem:num_test_prob1} Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, and a choice of point $P$ on $\Theta_v^-$. - Solutions $u=(r,c\ell,d\frac{1}{2}\ell^2)$ + Solutions $u=(r,c\ell,\frac{e}{\lcm(m,2)}\ell^2)$ to problem \ref{problem:problem-statement-1}. Are precisely given by integers $r,c,d$ satisfying the following conditions: \begin{enumerate} @@ -604,7 +603,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \label{item:bgmlvu:lem:num_test_prob1} \item $\Delta(v-u) \geq 0$ \label{item:bgmlvv-u:lem:num_test_prob1} - \item $\mu(u)=\frac{c}{r}<\mu(v)$ + \item $\mu(u)<\mu(v)$ \item $0\leq\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$ \label{item:chern1bound:lem:num_test_prob1} \item $\chern_2^{P}(u)>0$ @@ -628,9 +627,9 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \label{cor:num_test_prob2} Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$. - Solutions $u=(r,c\ell,d\frac{1}{2}\ell^2)$ + Solutions $u=(r,c\ell,\frac{e}{\lcm(m,2)}\ell^2)$ to problem \ref{problem:problem-statement-2}. - Are precisely given by integers $r,c,d$ satisfying the following conditions: + Are precisely given by integers $r,c,e$ satisfying the following conditions: \begin{enumerate} \item $r > 0$ \label{item:rankpos:lem:num_test_prob2} @@ -638,7 +637,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \label{item:bgmlvu:lem:num_test_prob2} \item $\Delta(v-u) \geq 0$ \label{item:bgmlvv-u:lem:num_test_prob2} - \item $\mu(u)=\frac{c}{r}<\mu(v)$ + \item $\mu(u)<\mu(v)$ \label{item:mubound:lem:num_test_prob2} \item $0\leq\chern_1^{\beta_{-}}(u)\leq\chern_1^{\beta_{-}}(v)$ \label{item:chern1bound:lem:num_test_prob2}