From d617f6b99e6e1a2bdca898c3b0693e206034a5d6 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Mon, 24 Jul 2023 17:18:55 +0100 Subject: [PATCH] Start adjusting references in beginning of section with theorems --- main.tex | 33 +++++++++++++++------------------ 1 file changed, 15 insertions(+), 18 deletions(-) diff --git a/main.tex b/main.tex index 14e8b49..80fc261 100644 --- a/main.tex +++ b/main.tex @@ -761,6 +761,7 @@ problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. \section{B.Schmidt's Solutions to the Problems} \subsection{Bound on $\chern_0(u)$ for Semistabilizers} +\label{subsect:loose-bound-on-r} The proof for the following theorem \ref{thm:loose-bound-on-r} was hinted at in \cite{SchmidtBenjamin2020Bsot}, but the value appears explicitly in @@ -1288,6 +1289,7 @@ previous subsubsections. \subsubsection{All Bounds on $d$ Together for Problem \ref{problem:problem-statement-2}} +\label{subsubsect:all-bounds-on-d-prob2} %% RECAP ON INEQUALITIES TOGETHER %%%% RATIONAL BETA MINUS @@ -1498,23 +1500,16 @@ Some of the details around the associated numerics are explored next. \label{fig:d_bounds_xmpl_gnrc_q} \end{figure} -\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{r}} +\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{r} in Problem +\ref{problem:problem-statement-2}} -Now, the inequalities from the above (TODO REF) will be used to find, for +Now, the inequalities from the above subsubsection +\ref{subsubsect:all-bounds-on-d-prob2} will be used to find, for each given $q=\chern^{\beta}_1(E)$, how large $r$ needs to be in order to leave -no possible solutions for $d$. At that point, there are no Chern characters -$(r,c,d)$ that satisfy all inequalities to give a pseudowall. - - -\subsubsection{All Semistabilizers Left of $V_v$ for Rational beta} - - -The strategy here is similar to what was shown in (sect -\ref{sec:twisted-chern}). -One specialization here is to use that $\ell\coloneqq c_1(H)$ generates $NS(X)$, so that -in fact, any Chern character can be written as -$\left(r,c\ell,\frac{e}{2}\ell^2\right)$ for $r,c,e\in\ZZ$. -% ref to Schmidt? +no possible solutions for $d$. At that point, there are no solutions +$u=(r,c\ell,d\ell^2)$ to problem \ref{problem:problem-statement-2}. +The strategy here is similar to what was shown in theorem +\ref{thm:loose-bound-on-r}. \begin{sagesilent} var("a_v b_q n") # Define symbols introduce for values of beta and q @@ -1533,11 +1528,13 @@ Then fix a value of $q$: \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)] \end{equation} -as noted at the beginning of this section (\ref{sec:refinement}). +as noted at the beginning of this section \ref{sec:refinement} so that we are +considering $u$ which satisfy \ref{item:chern1bound:lem:num_test_prob2} +in corollary \ref{cor:num_test_prob2}. Substituting the current values of $q$ and $\beta$ into the condition for the radius of the pseudo-wall being positive -(eqn \ref{eqn:positive_rad_d_bound_betamin}) we get: +(eqn \ref{eqn:radiuscond_d_bound_betamin}) we get: \begin{equation} \label{eqn:positive_rad_condition_in_terms_of_q_beta} @@ -1611,7 +1608,7 @@ To avoid this, we must have, considering equations \ref{eqn:bgmlv2_d_bound_betamin}, \ref{eqn:bgmlv3_d_bound_betamin}, -\ref{eqn:positive_rad_d_bound_betamin}. +\ref{eqn:radiuscond_d_bound_betamin}. \bgroup -- GitLab