diff --git a/main.tex b/main.tex index ac2e57e6e333187ab336f077d83c4bf0a78b2cd3..482ec559ebfbd664f3e338f0206e9e37e1a28f41 100644 --- a/main.tex +++ b/main.tex @@ -186,6 +186,7 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. \subsection{$\Delta(E) + \Delta(G) \leq \Delta(F)$} +\label{subsect-d-bound-bgmlv1} This condition expressed in terms of $R,C,D,r,c,d$ looks as follows: @@ -318,6 +319,7 @@ This can be rearranged to express a bound on $d$ as follows: \end{sagesilent} \begin{equation} + \label{eqn-bgmlv2_d_lowerbound} \sage{bgmlv2_d_ineq} \end{equation} @@ -328,17 +330,16 @@ This can be rearranged to express a bound on $d$ as follows: bgmlv2_d_lowerbound_linear_term = bgmlv2_d_lowerbound.subs(1/r == 0).subs(r==1)*r \end{sagesilent} -\begin{equation} - \sage{bgmlv2_d_lowerbound_exp_term} -\end{equation} - -\begin{equation} - \sage{bgmlv2_d_lowerbound_const_term} -\end{equation} -\begin{equation} - \sage{bgmlv2_d_lowerbound_linear_term} -\end{equation} - +Viewing equation \ref{eqn-bgmlv2_d_lowerbound} as a lower bound for $d$ in term +of $r$ again, there's a constant term +$\sage{bgmlv2_d_lowerbound_const_term}$, +a linear term +$\sage{bgmlv2_d_lowerbound_linear_term}$, +and a hyperbolic term +$\sage{bgmlv2_d_lowerbound_exp_term}$. +Notice that for $\beta = \beta_{-}$ (or $\beta_{+}$), that is when +$\chern^{\beta}_2(F)=0$, the constant and linear terms match up with the ones +for the bound found for $d$ in subsection \ref{subsect-d-bound-bgmlv1}. \section{Conclusion}