diff --git a/main.tex b/main.tex
index ac2e57e6e333187ab336f077d83c4bf0a78b2cd3..482ec559ebfbd664f3e338f0206e9e37e1a28f41 100644
--- a/main.tex
+++ b/main.tex
@@ -186,6 +186,7 @@ and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail.
 
 
 \subsection{$\Delta(E) + \Delta(G) \leq \Delta(F)$}
+\label{subsect-d-bound-bgmlv1}
 
 This condition expressed in terms of $R,C,D,r,c,d$ looks as follows:
 
@@ -318,6 +319,7 @@ This can be rearranged to express a bound on $d$ as follows:
 \end{sagesilent}
 
 \begin{equation}
+	\label{eqn-bgmlv2_d_lowerbound}
 	\sage{bgmlv2_d_ineq}
 \end{equation}
 
@@ -328,17 +330,16 @@ This can be rearranged to express a bound on $d$ as follows:
 	bgmlv2_d_lowerbound_linear_term = bgmlv2_d_lowerbound.subs(1/r == 0).subs(r==1)*r
 \end{sagesilent}
 
-\begin{equation}
-	\sage{bgmlv2_d_lowerbound_exp_term}
-\end{equation}
-
-\begin{equation}
-	\sage{bgmlv2_d_lowerbound_const_term}
-\end{equation}
-\begin{equation}
-	\sage{bgmlv2_d_lowerbound_linear_term}
-\end{equation}
-
+Viewing equation \ref{eqn-bgmlv2_d_lowerbound} as a lower bound for $d$ in term
+of $r$ again, there's a constant term
+$\sage{bgmlv2_d_lowerbound_const_term}$,
+a linear term
+$\sage{bgmlv2_d_lowerbound_linear_term}$,
+and a hyperbolic term
+$\sage{bgmlv2_d_lowerbound_exp_term}$.
+Notice that for $\beta = \beta_{-}$ (or $\beta_{+}$), that is when
+$\chern^{\beta}_2(F)=0$, the constant and linear terms match up with the ones
+for the bound found for $d$ in subsection \ref{subsect-d-bound-bgmlv1}.
 
 \section{Conclusion}