From dc237ada244d43b63364353fb75e2e6a263b1b04 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Fri, 16 Jun 2023 01:09:38 +0100 Subject: [PATCH] First of the recurring examples for 3,2l,-2 --- main.tex | 39 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 39 insertions(+) diff --git a/main.tex b/main.tex index aaab6d5..42255ff 100644 --- a/main.tex +++ b/main.tex @@ -16,6 +16,7 @@ \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\RR}{\mathbb{R}} \newcommand{\NN}{\mathbb{N}} +\newcommand{\PP}{\mathbb{P}} \newcommand{\chern}{\operatorname{ch}} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\firsttilt}[1]{\mathcal{B}^{#1}} @@ -29,6 +30,7 @@ \newtheorem{dfn}{Definition}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{fact}{Fact}[section] +\newtheorem{example}{Example}[section] \begin{document} @@ -40,6 +42,16 @@ from pseudowalls import * Δ = lambda v: v.Q_tilt() mu = stability.Mumford().slope + +def beta_minus(v): + beta = stability.Tilt().beta + solutions = solve( + stability.Tilt(alpha=0).degree(v)==0, + beta) + return min(map(lambda s: s.rhs(), solutions)) + +class Object(object): + pass \end{sagesilent} \title{Explicit Formulae for Bounds on the Ranks of Tilt Destabilizers and @@ -471,6 +483,7 @@ normal one. So $0 \leq \Delta(E)$ yields: \end{equation} \begin{theorem}[Bound on $r$ - Benjamin Schmidt] +\label{thm:loose-bound-on-r} Given a Chern character $v$ such that $\beta_-:=\beta_{-}(v)\in\QQ$, the rank $r$ of any semistabilizer $E$ of some $F \in \firsttilt{\beta_-}$ with $\chern(F)=v$ is bounded above by: @@ -507,6 +520,32 @@ bound for the rank of $E$: \end{proof} +\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] +\begin{sagesilent} +recurring = Object() +recurring.chern = Chern_Char(3, 2, -2) +recurring.b = beta_minus(recurring.chern) +recurring.twisted = recurring.chern.twist(recurring.b) +\end{sagesilent} +Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so +that $m=2$, $\beta_-=\sage{recurring.b}$, +giving $n=\sage{recurring.b.denominator()}$ and +$\chern_1^{\sage{recurring.b}}(F) = \sage{recurring.twisted.ch[1]}$. + +\begin{sagesilent} +n = recurring.b.denominator() +m = 2 +loose_bound = ( + m*n^2*recurring.twisted.ch[1]^2 +) / gcd(m, 2*n^2) +\end{sagesilent} +Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of +tilt semistabilizers for $v$ are bounded above by $\sage{loose_bound}$. +However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum +rank that appears turns out to be 25. This will be a recurring example to +illustrate the performance of later theorems about rank bounds +\end{example} + \section{B.Schmidt's Method} Goals: -- GitLab