From e4cf3a424a9439f41962f4527886348acab76612 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Wed, 10 May 2023 00:31:46 +0100 Subject: [PATCH] Correct bgmlv2 'lowerbounds' to 'upperbounds' --- main.tex | 48 ++++++++++++++++++++++++++++++------------------ 1 file changed, 30 insertions(+), 18 deletions(-) diff --git a/main.tex b/main.tex index 893d31f..0da3ee1 100644 --- a/main.tex +++ b/main.tex @@ -360,45 +360,45 @@ bgmlv2_d_ineq = ( ).expand() # Keep hold of lower bound for d -bgmlv2_d_lowerbound = bgmlv2_d_ineq.rhs() +bgmlv2_d_upperbound = bgmlv2_d_ineq.rhs() \end{sagesilent} \begin{equation} - \label{eqn-bgmlv2_d_lowerbound} + \label{eqn-bgmlv2_d_upperbound} \sage{bgmlv2_d_ineq} \end{equation} \begin{sagesilent} # Seperate out the terms of the lower bound for d -bgmlv2_d_lowerbound_without_hyp = ( - bgmlv2_d_lowerbound +bgmlv2_d_upperbound_without_hyp = ( + bgmlv2_d_upperbound .subs(1/r == 0) ) -bgmlv2_d_lowerbound_const_term = ( - bgmlv2_d_lowerbound_without_hyp +bgmlv2_d_upperbound_const_term = ( + bgmlv2_d_upperbound_without_hyp .subs(r==0) ) -bgmlv2_d_lowerbound_linear_term = ( - bgmlv2_d_lowerbound_without_hyp - - bgmlv2_d_lowerbound_const_term +bgmlv2_d_upperbound_linear_term = ( + bgmlv2_d_upperbound_without_hyp + - bgmlv2_d_upperbound_const_term ).expand() -bgmlv2_d_lowerbound_exp_term = ( - bgmlv2_d_lowerbound - - bgmlv2_d_lowerbound_without_hyp +bgmlv2_d_upperbound_exp_term = ( + bgmlv2_d_upperbound + - bgmlv2_d_upperbound_without_hyp ).expand() \end{sagesilent} -Viewing equation \ref{eqn-bgmlv2_d_lowerbound} as a lower bound for $d$ in term +Viewing equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term of $r$ again, there's a constant term -$\sage{bgmlv2_d_lowerbound_const_term}$, +$\sage{bgmlv2_d_upperbound_const_term}$, a linear term -$\sage{bgmlv2_d_lowerbound_linear_term}$, +$\sage{bgmlv2_d_upperbound_linear_term}$, and a hyperbolic term -$\sage{bgmlv2_d_lowerbound_exp_term}$. +$\sage{bgmlv2_d_upperbound_exp_term}$. Notice that for $\beta = \beta_{-}$ (or $\beta_{+}$), that is when $\chern^{\beta}_2(F)=0$, the constant and linear terms match up with the ones for the bound found for $d$ in subsection \ref{subsect-d-bound-bgmlv1}. @@ -554,10 +554,22 @@ Suppose we take $\beta = \beta_{-}$ in the previous subsections, to find all circular walls to the left of the vertical wall (TODO as discussed in ref). \begin{equation*} - \sage{ bgmlv3_d_upperbound_const_term } + d \geq + \sage{bgmlv1_d_lowerbound_const_term_alt.subs(chbv == 0)} + + \sage{bgmlv1_d_lowerbound_linear_term} + + \sage{bgmlv1_d_lowerbound_exp_term_alt.subs(chbv == 0)} \end{equation*} \begin{equation*} - \sage{bgmlv3_d_upperbound_const_term_alt1.subs(chbv == 0)} + d \geq + \sage{bgmlv2_d_lowerbound_const_term} + + \sage{bgmlv2_d_lowerbound_linear_term} + + \sage{bgmlv2_d_lowerbound_exp_term} +\end{equation*} +\begin{equation*} + d \leq + \sage{bgmlv3_d_upperbound_const_term_alt.subs(chbv == 0)} + + \sage{bgmlv3_d_upperbound_linear_term} + + \sage{bgmlv3_d_upperbound_exp_term_alt.subs(chbv == 0)} \end{equation*} -- GitLab