diff --git a/main.tex b/main.tex index f1c8d2efa4679bb0b88058a285c700b1fd17d2ed..4c6899f6a2088c6ebef87e67caa6b9d46d3811ef 100644 --- a/main.tex +++ b/main.tex @@ -24,6 +24,8 @@ sorting=ynt \newcommand{\NN}{\mathbb{N}} \newcommand{\PP}{\mathbb{P}} \newcommand{\chern}{\operatorname{ch}} +\newcommand{\coh}{\operatorname{coh}} +\newcommand{\homol}{\mathcal{H}} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\firsttilt}[1]{\mathcal{B}^{#1}} \newcommand{\bddderived}{\mathcal{D}^{b}} @@ -32,11 +34,13 @@ sorting=ynt \newtheorem{theorem}{Theorem}[section] \newtheorem{corrolary}{Corrolary}[section] -\newtheorem{lemmadfn}{Lemma/Definition}[section] -\newtheorem{dfn}{Definition}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{fact}{Fact}[section] \newtheorem{example}{Example}[section] +\newtheorem{lemmadfn}{Lemma/Definition}[section] + +\theoremstyle{definition} +\newtheorem{definition}{Definition}[section] \newtheorem{problem}{Problem Statement} \begin{document} @@ -161,12 +165,12 @@ Throughout this article, as noted in the introduction, we will be exclusively working over one of the following two surfaces: principally polarized abelian surfaces and $\PP^2$. -\begin{dfn}[Pseudo-semistabilizers] +\begin{definition}[Pseudo-semistabilizers] \label{dfn:pseudo-semistabilizer} % NOTE: SURFACE SPECIALIZATION Given a Chern Character $v$, and a given stability condition $\sigma_{\alpha,\beta}$, - a pseudo-semistabilizing $u$ is a `potential' Chern character: + a \textit{pseudo-semistabilizing} $u$ is a `potential' Chern character: \[ u = \left(r, c\ell, d \frac{1}{2} \ell^2\right) \] @@ -182,13 +186,23 @@ surfaces and $\PP^2$. Note $u$ does not need to be a Chern character of an actual sub-object of some object in the stability condition's heart with Chern character $v$. -\end{dfn} +\end{definition} At this point, and in this document, we do not care about whether pseudo-semistabilizers are even Chern characters of actual elements of $\bddderived(X)$, some other sources may have this extra restriction too. -\begin{lemma}[ Sanity check for Pseudo-semistabilizers ] +\begin{definition}[Pseudo-walls] +\label{dfn:pseudo-wall} + Let $u$ be a pseudo-semistabilizer of $v$, for some stability condition. + Then the \textit{pseudo-wall} associated to $u$ is the set of all stablity + conditions where $u$ is a pseudo-semistabilizer of $v$. +\end{definition} + +% TODO possibly reference forwards to Bertram's nested wall theorem section to +% cover that being a pseudo-semistabilizer somewhere implies also on whole circle + +\begin{lemma}[Sanity check for Pseudo-semistabilizers] % NOTE: SURFACE SPECIALIZATION Given a stability condition $\sigma_{\alpha,\beta}$, @@ -198,7 +212,31 @@ $\bddderived(X)$, some other sources may have this extra restriction too. \end{lemma} \begin{proof} - q.e.d. (TODO) + Suppose $E\hookrightarrow F\twoheadrightarrow G$ is a semistabilizing + sequence with respect to a stability condition $\sigma_{\alpha,\beta}$. + \begin{equation*} + \chern(E) = -\chern(\homol^{-1}_{\coh}(E)) + \chern(\homol^{0}_{\coh}(E)) + \end{equation*} + Therefore, $\chern(E)$ is of the form $(r,c\ell,d\frac{1}{2}\ell^2)$ + provided that this is true for any coherent sheaf. + For any coherent sheaf $H$, we have the following: + \begin{equation*} + \chern(H) = \left(c_0(H), c_1(H), - c_2(H) + \frac{1}{2} {c_1(H)}^2\right) + \end{equation*} + Given that $\ell$ generates the Neron-Severi group, $c_1(H)$ can then be + written as a multiple of $\ell$. + Furthermore, for $\PP^2$ and principally polarized abelian surfaces, + $\ell^2=1$ or $2$. + This fact along with $c_2$ being an integer on surfaces implies that + $\chern(H)$ (and hence $\chern(E)$ too) is of the required form + $(r,c\ell,d\frac{1}{2}\ell^2)$ for some $r,c,d \in \ZZ$. + + + Since all the objects in the sequence are in $\firsttilt\beta$, we have + $\chern_1^{\beta} \geq 0$ for each of them. Due to additivity + ($\chern(F) = \chern(E) + \chern(G)$), we can deduce + $0 \leq \chern(E) \leq \chern(F)$. + % TODO unfinished \end{proof} @@ -214,7 +252,7 @@ These are given by the equations $\chern_i^{\alpha,\beta}(v)=0$ for $i=1,2$, and are illustrated in Fig \ref{fig:charact_curves_vis} (dotted line for $i=1$, solid for $i=2$). -\begin{dfn}[Characteristic Curves $V_v$ and $\Theta_v$] +\begin{definition}[Characteristic Curves $V_v$ and $\Theta_v$] Given a Chern character $v$, with positive rank and $\Delta(v) \geq 0$, we define two characteristic curves on the $(\alpha, \beta)$-plane: @@ -222,7 +260,7 @@ define two characteristic curves on the $(\alpha, \beta)$-plane: V_v &\colon \chern_1^{\alpha, \beta}(v) = 0 \\ \Theta_v &\colon \chern_2^{\alpha, \beta}(v) = 0 \end{align*} -\end{dfn} +\end{definition} \begin{fact}[Geometry of Characteristic Curves] The following facts can be deduced from the formulae for $\chern_i^{\alpha, \beta}(v)$ @@ -615,7 +653,7 @@ however this will also be proved again in passing in this article. \subsection{Loose Bounds on $\chern_0(E)$ for Semistabilizers Along Fixed $\beta\in\QQ$} -\begin{dfn}[Twisted Chern Character] +\begin{definition}[Twisted Chern Character] \label{sec:twisted-chern} For a given $\beta$, define the twisted Chern character as follows. \[\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)\] @@ -631,7 +669,7 @@ Component-wise, this is: where $\chern_i$ is the coefficient of $\ell^i$ in $\chern$. % TODO I think this^ needs adjusting for general Surface with $\ell$ -\end{dfn} +\end{definition} $\chern^\beta_1(E)$ is the imaginary component of the central charge $\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$