From ee88d79f6967fb0227ea2cb960283df26e7770af Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Tue, 25 Jul 2023 23:03:48 +0100 Subject: [PATCH] Refactor extravagant example into notebook --- main.tex | 33 ++++++--------------------------- plots_and_expressions.ipynb | 10 +++++----- 2 files changed, 11 insertions(+), 32 deletions(-) diff --git a/main.tex b/main.tex index c6618e6..c3c66cc 100644 --- a/main.tex +++ b/main.tex @@ -767,29 +767,19 @@ rank that appears turns out to be 25. This will be a recurring example to illustrate the performance of later theorems about rank bounds \end{example} -\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] -\label{exmpl:extravagant-first} \begin{sagesilent} -extravagant = Object() -extravagant.chern = Chern_Char(29, 13, -3/2) -extravagant.b = beta_minus(extravagant.chern) -extravagant.twisted = extravagant.chern.twist(extravagant.b) -extravagant.actual_rmax = 49313 +from plots_and_expressions import extravagant \end{sagesilent} + +\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] +\label{exmpl:extravagant-first} Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that $m=2$, $\beta_-=\sage{extravagant.b}$, giving $n=\sage{extravagant.b.denominator()}$ and $\chern_1^{\sage{extravagant.b}}(F) = \sage{extravagant.twisted.ch[1]}$. -\begin{sagesilent} -n = extravagant.b.denominator() -m = 2 -loose_bound = ( - m*n^2*extravagant.twisted.ch[1]^2 -) / gcd(m, 2*n^2) -\end{sagesilent} Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of -tilt semistabilizers for $v$ are bounded above by $\sage{loose_bound}$. +tilt semistabilizers for $v$ are bounded above by $\sage{extravagant.loose_bound}$. However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum rank that appears turns out to be $\sage{extravagant.actual_rmax}$. \end{example} @@ -1675,20 +1665,9 @@ $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that $m=2$, $\beta=\sage{extravagant.b}$, giving $n=\sage{extravagant.b.denominator()}$. -\begin{sagesilent} -extravagant.n = extravagant.b.denominator() -extravagant.bgmlv = extravagant.chern.Q_tilt() -corrolary_bound = ( - r_upper_bound_all_q.expand() - .subs(Delta==extravagant.bgmlv) - .subs(nu==1) ## \ell^2=1 on P^2 - .subs(R==extravagant.chern.ch[0]) - .subs(n==extravagant.n) -) -\end{sagesilent} Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that the ranks of tilt semistabilizers for $v$ are bounded above by -$\sage{corrolary_bound} \approx \sage{float(corrolary_bound)}$, +$\sage{extravagant.corrolary_bound} \approx \sage{float(extravagant.corrolary_bound)}$, which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the original bound 215296. \end{example} diff --git a/plots_and_expressions.ipynb b/plots_and_expressions.ipynb index 84ad3f6..acefe54 100644 --- a/plots_and_expressions.ipynb +++ b/plots_and_expressions.ipynb @@ -362,7 +362,7 @@ "# RENDERED TO LATEX: recurring.twisted.ch[1]\n", "n = recurring.b.denominator()\n", "m = 2\n", - "loose_bound = (\n", + "recurring.loose_bound = (\n", " m*n^2*recurring.twisted.ch[1]^2\n", ") / gcd(m, 2*n^2)\n", "# RENDERED TO LATEX: loose_bound\n", @@ -376,7 +376,7 @@ "# RENDERED TO LATEX: extravagant.twisted.ch[1]\n", "n = extravagant.b.denominator()\n", "m = 2\n", - "recurring.loose_bound = (\n", + "extravagant.loose_bound = (\n", " m*n^2*extravagant.twisted.ch[1]^2\n", ") / gcd(m, 2*n^2)" ] @@ -405,7 +405,7 @@ } ], "source": [ - "loose_bound" + "recurring.loose_bound" ] }, { @@ -1690,7 +1690,7 @@ "source": [ "extravagant.n = extravagant.b.denominator()\n", "extravagant.bgmlv = extravagant.chern.Q_tilt()\n", - "corrolary_bound = (\n", + "extravagant.corrolary_bound = (\n", " r_upper_bound_all_q.expand()\n", " .subs(Delta==extravagant.bgmlv)\n", " .subs(nu==1) ## \\ell^2=1 on P^2\n", @@ -1723,7 +1723,7 @@ } ], "source": [ - "float(corrolary_bound)" + "float(extravagant.corrolary_bound)" ] }, { -- GitLab