diff --git a/main.tex b/main.tex index 3a6be6ee09e06a0aeb78f3ff7056fe2e0e7cc9de..2b3b217a9d05e3ce7a7ccb9a223a6aa739718955 100644 --- a/main.tex +++ b/main.tex @@ -88,9 +88,10 @@ $\chern^\beta_1(E)$ is the imaginary component of the central charge $\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$ satisfies $\chern^\beta_1 \geq 0$. This, along with additivity gives us, for any destabilizing sequence [ref]: -\[ +\begin{equation} + \label{eqn-tilt-cat-cond} 0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F) -\] +\end{equation} When finding Chern characters of potential destabilizers $E$ for some fixed Chern character $\chern(F)$, this bounds $\chern_1(E)$. @@ -98,9 +99,15 @@ Chern character $\chern(F)$, this bounds $\chern_1(E)$. The Bogomolov form applied to the twisted Chern character is the same as the normal one. So $0 \leq \Delta(E)$ yields: -\[ - \chern^\beta_0 \chern^\beta_2 \leq \left(\chern^\beta_1\right)^2 -\] +\begin{equation} + \label{eqn-bgmlv-on-E} + \chern^\beta_0(E) \chern^\beta_2(E) \leq \left(\chern^\beta_1(E)\right)^2 +\end{equation} + +The restrictions on $\chern^\beta_0(E)$ and $\chern^\beta_2(E)$ +is best seen with the following graph: + +% TODO: hyperbola restriction graph (shaded) \section{Section 3}