From f31a146377aefb2368b25bff38cdbe211b963acb Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Tue, 2 Jul 2024 19:18:33 +0100 Subject: [PATCH] Complete statement of main lemma about fixing q value --- tex/bounds-on-semistabilisers.tex | 58 ++++++++++++++++++++++++++++++- 1 file changed, 57 insertions(+), 1 deletion(-) diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index 7e40dec..d3156e5 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -198,12 +198,68 @@ from plots_and_expressions import c_in_terms_of_q \qquad 0 \leq q \coloneqq \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v) \end{equation} -Furthermore, if $\beta$ is rational, $\chern_1(u) \in \ZZ$ so we only need to consider +Furthermore, $\chern_1(u) \in \ZZ$, so if $\beta$ is rational we only need to consider $q \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)]$, where $n$ is the denominator of $\beta$. For the next subsections, we consider $q$ to be fixed with one of these values, and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. +\begin{lemma} + Consider the Problem \ref{problem:problem-statement-1} (or \ref{problem:problem-statement-2}), + and $\beta_{0}\coloneqq \beta(P)$ (or $\beta_{-}(v)$ resp.). + + \noindent + If $u$ is a solution to the Problem then $u$ satisfies: + \begin{align} + q\coloneqq \chern^{\beta_0}_1(u) &\in \left( 0, \chern_1^{\beta_0}(v) \right) + \label{lem:eqn:cond-for-fixed-q} + \\ + \chern_0(u) &> \frac{q}{\mu(v) - \beta_0} + \nonumber + \end{align} + + \noindent + Conversely, any $u = (r,c\ell,d\ell^2)$ + with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ + satisfying the above Equations \ref{lem:eqn:cond-for-fixed-q} + is a solution to the Problem if and only if the following are satisfied: + \begin{multicols}{3} + \begin{itemize} + \item $\Delta(u) \geq 0$ + \item $\Delta(v-u) \geq 0$ + \item $\chern^P_2(u) \geq 0$ + \end{itemize} + \end{multicols} + + \noindent + Furthermore, suppose $\beta_0$ is rational, and written $\beta_0=\frac{a_v}{n}$ for + some coprime integers $a_v$, $n$ with $n>0$. + Then any solution $u$ satisfies: + \begin{align*} + \chern^{\beta_0}_1(u) + &= \frac{b_q}{n} + &\text{for some } + b_q \in \left\{ 1, 2, \ldots, n\chern_1^{\beta_0}(v) - 1 \right\} + \\ + a_v r &\equiv -b_q \pmod{n} + \end{align*} + And any $u = (r,c\ell,d\ell^2)$ + with $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$ + satisfying these equations is a solution to the Problem if and only if, again, + the following are satisfied: + \begin{multicols}{3} + \begin{itemize} + \item $\Delta(u) \geq 0$ + \item $\Delta(v-u) \geq 0$ + \item $\chern^P_2(u) \geq 0$ + \end{itemize} + \end{multicols} + +\end{lemma} + +\begin{proof} + proof +\end{proof} \subsection{Bounds on \texorpdfstring{`$d$'}{d}-values for Solutions of Problems} -- GitLab