From f3e74d657c57d76c444088748918f365124a990b Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Sun, 11 Jun 2023 18:29:21 +0100 Subject: [PATCH] Add explanation for characteristic curves --- main.tex | 44 +++++++++++++++++++++++++++++++++++++------- 1 file changed, 37 insertions(+), 7 deletions(-) diff --git a/main.tex b/main.tex index 6b05075..edfd643 100644 --- a/main.tex +++ b/main.tex @@ -118,6 +118,22 @@ Considering the stability conditions with two parameters $\alpha, \beta$ on Picard rank 1 surfaces. We can draw 2 characteristic curves for any given Chern character $v$ with $\Delta(v) \geq 0$ and positive rank. +These are given by the equations $\chern_i^{\alpha,\beta}(v)=0$ for $i=1,2$, and +are illustrated in Fig \ref{fig:charact_curves_vis} +(dotted line for $i=1$, solid for $i=2$). + + +\minorheading{Relevance of $\chern_1^{\alpha, \beta}=0$ vertical line} + +By definition of the first tilt $\firsttilt\beta$, objects of Chern character +$v$ can only be in $\firsttilt\beta$ on the left of the vertical line, and +objects of Chern character $-v$ can only be in $\firsttilt\beta$ on the right. +In fact, if there is a Gieseker semistable coherent sheaf $E$ of Chern character $v$, +then $E \in \firsttilt\beta$ if and only if $\beta<\mu(E)$ (left of the vertical +line), and $E[1] \in \firsttilt\beta$ if and only if $\beta\geq\mu(E)$. +Because of this, when using these characteristic curves, we shall only +consider positive rank, as negative rank objects are implicitly considered on +the right hand side of the vertical line. \begin{sagesilent} def charact_curves(v): @@ -145,12 +161,6 @@ v1 = Chern_Char(3, 2, -2) v2 = Chern_Char(3, 2, 2/3) \end{sagesilent} -%\begin{figure} -% \centering -% \sageplot[width=\textwidth]{charact_curves(v1)} -% \caption{} -% \label{fig:charact_curves_vis} -%\end{figure} \begin{figure} \centering \begin{subfigure}{.49\textwidth} @@ -163,7 +173,9 @@ v2 = Chern_Char(3, 2, 2/3) \begin{subfigure}{.49\textwidth} \centering \sageplot[width=\textwidth]{charact_curves(v2)} - \caption{$\Delta(v)=0$} + \caption{ + $\Delta(v)=0$: hyperbola collapses + } \label{fig:charact_curves_vis_bgmlv0} \end{subfigure} \caption{ @@ -174,6 +186,24 @@ v2 = Chern_Char(3, 2, 2/3) \end{figure} +\minorheading{Relevance of $\chern_2^{\alpha, \beta}=0$ hyperbola} + +Since $\chern_2^{\alpha, \beta}$ is the numerator of the tilt slope +$\nu_{\alpha, \beta}$. +The second characteristic curve, where this is 0, firstly divides the +$\alpha$-$\beta$-half-plane into regions where the signs objects of Chern character $v$ +(or $-v$) are fixed. +Secondly, it gives more of a fixed target for some $u=(r,c\ell,d\frac{1}{2}\ell^2)$ to +be a pseudo-semistabilizer of $v$, in the following sense: +If $(\alpha,\beta)$, is on the hyperbola $\chern_2^{\alpha, \beta}(v)=0$, then +$\mu_{\alpha,\beta}(v)=0$ and for any $u$, $u$ is a pseudo-semistabilizer of $v$ +iff $\mu_{\alpha,\beta}(u)=0$, and hence $\chern_2^{\alpha, \beta}(u)=0$. + + + + + + \begin{sagesilent} v = Chern_Char(3, 2, -2) u = Chern_Char(1, 0, 0) -- GitLab