From f621928ba5d582998232b1c26b4eb48424fa77eb Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Wed, 21 Jun 2023 20:05:56 +0100 Subject: [PATCH] Rewrite second reccurring ex more directly --- main.tex | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/main.tex b/main.tex index ae1ebb9..a0ce7aa 100644 --- a/main.tex +++ b/main.tex @@ -1483,14 +1483,14 @@ that $m=2$, $\beta=\sage{recurring.b}$, giving $n=\sage{recurring.b.denominator()}$. \begin{sagesilent} -n = recurring.b.denominator() -m = 2 +recurring.n = recurring.b.denominator() recurring.bgmlv = recurring.chern.Q_tilt() -recurring.lcm = lcm(m, 2*n^2) corrolary_bound = ( - recurring.bgmlv * recurring.lcm / 8 - + recurring.chern.ch[0] / 2 - + recurring.chern.ch[0]^2 / (2*recurring.bgmlv*recurring.lcm) + r_upper_bound_all_q.expand() + .subs(Delta==recurring.bgmlv) + .subs(nu==1) ## \ell^2=1 on P^2 + .subs(R==recurring.chern.ch[0]) + .subs(n==recurring.n) ) \end{sagesilent} Using the above corrolary \ref{cor:direct_rmax_with_uniform_eps}, we get that @@ -1506,7 +1506,7 @@ Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of $\frac{1}{2}\ZZ$ is at least $\frac{1}{2n^2}$ away. However this a conservative estimate, and a larger gap can sometimes be guaranteed if we know -this value of $\frac{1}{2n^2}\ZZ$ explicitly. +this value of $\frac{1}{2n^2}\ZZ$ explicitly. The expressions that will follow will be a bit more complicated and have more parts which depend on the values of $q$ and $\beta$, even their numerators -- GitLab