diff --git a/tex/bounds-on-semistabilisers.tex b/tex/bounds-on-semistabilisers.tex index 6b3ec6514aaf2e140e8e28585f65a728600e1a66..d4a980357ac1caaa729b009379b9ab08829a0b8a 100644 --- a/tex/bounds-on-semistabilisers.tex +++ b/tex/bounds-on-semistabilisers.tex @@ -160,6 +160,10 @@ As opposed to only eliminating possible values of $\chern_0(u)$ for which all corresponding $\chern_1^{\beta}(u)$ fail one of the inequalities (which is what was implicitly happening before in the proof of Theorem \ref{thm:loose-bound-on-r}). +To pursue this, we shall restate the earlier numerical characterisations of the +problems from Lemma \ref{lem:num_test_prob1} +and Corollary \ref{cor:num_test_prob2}, in a way which better fits our direction +of travel. \begin{lemma} \label{lem:fixed-q-semistabs-criterion} @@ -1120,7 +1124,7 @@ $\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$ and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. %% TODO transcode notebook code The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabiliser $u$ of $v$ -in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: +in terms of the possible values for $q\coloneqq\chern_1^{\beta_{-}}(u)$ are as follows: \begin{sagesilent} from examples import bound_comparisons @@ -1131,7 +1135,7 @@ qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring) \noindent \directlua{ table_width = 3*4+1 } \begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}} - $q=\chern_1^\beta(u)$ + $q=\chern_1^{\beta_{-}}(u)$ \directlua{for i=0,table_width-1 do local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" tex.sprint(cell) @@ -1152,7 +1156,7 @@ end} \vspace{1em} \noindent -It's worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1} +It is worth noting that the bounds given by Theorem \ref{thm:rmax_with_eps1} reach, but do not exceed the actual maximum rank 25 of the pseudo-semistabilisers of $v$ in this case. As a reminder, the original loose bound from Theorem \ref{thm:loose-bound-on-r} @@ -1168,7 +1172,7 @@ take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that $\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$ and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. This example was chosen because the $n$ value is moderatly large, giving more -possible values for $k_{v,q}$, in dfn/Lemma \ref{lemdfn:epsilon_q}. This allows +possible values for $k_{v,q}$, in Definition/Lemma \ref{lemdfn:epsilon_q}. This allows for a larger possible difference between the bounds given by Theorems \ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound from the second being up to $\sage{n}$ times smaller, for any given $q$ value.