diff --git a/content.tex b/content.tex new file mode 100644 index 0000000000000000000000000000000000000000..53138be78437c0ebe762ad453b2f7b110d3563cb --- /dev/null +++ b/content.tex @@ -0,0 +1,1991 @@ +\section{Introduction} +\label{sec:intro} + +The theory of Bridgeland stability conditions \cite{BridgelandTom2007SCoT} on +complexes of sheaves was developed as a generalisation of stability for vector +bundles. The definition is most analoguous to Mumford stability, but is more +aware of the features that sheaves can have on spaces of dimension greater +than 1. Whilst also asymptotically matching up with Gieseker stability. +For K3 surfaces, explicit stability conditions were defined in +\cite{Bridgeland_StabK3}, and later shown to also be valid on other surfaces. + +The moduli spaces of stable objects of some fixed Chern character $v$ is +studied, as well as how they change as we vary the Bridgeland stability +condition. They in fact do not change over whole regions of the stability +space (called chambers), but do undergo changes as we cross `walls' in the +stability space. These are where there is some stable object $F$ of $v$ which +has a subobject who's slope overtakes the slope of $v$, making $F$ unstable +after crossing the wall. + +% NOTE: SURFACE SPECIALIZATION +% (come back to these when adjusting to general Picard rank 1) +In this document we concentrate on two surfaces: Principally polarized abelian +surfaces and the projective surface $\PP^2$. Although this can be generalised +for Picard rank 1 surfaces, the formulae will need adjusting. +The Bridgeland stability conditions (defined in \cite{Bridgeland_StabK3}) are +given by two parameters $\alpha \in \RR_{>0}$, $\beta \in \RR$, which will be +illustrated throughout this article with diagrams of the upper half plane. + +It is well known that for any rational $\beta_0$, +the vertical line $\{\sigma_{\alpha,\beta_0} \colon \alpha \in \RR_{>0}\}$ only +intersects finitely many walls +\cite[Thm 1.1]{LoJason2014Mfbs} +\cite[Prop 4.2]{alma9924569879402466} +\cite[Lemma 5.20]{MinaHiroYana_SomeModSp}. +A consequence of this is that if +$\beta_{-}$ is rational, then there can only be finitely many circular walls to the +left of the vertical wall $\beta = \mu$. +On the other hand, when $\beta_{-}$ is not rational, \cite{yanagida2014bridgeland} +showed that there are infinitely many walls. + +This dichotomy does not only hold for real walls, realised by actual objects in +$\bddderived(X)$, but also for pseudowalls. Here pseudowalls are defined as +`potential' walls, induced by hypothetical Chern characters of semistabilizers +which satisfy certain numerical conditions which would be satisfied by any real +destabilizer, regardless of whether they are realised by actual semistabilizers +in $\bddderived(X)$ (dfn \ref{dfn:pseudo-semistabilizer}). + +Since real walls are a subset of pseudowalls, the irrational $\beta_{-}$ case +follows immediately from the corresponding case for real walls. +However, the rational $\beta_{-}$ case involves showing that the following +conditions only admit finitely many solutions (despite the fact that the same +conditions admit infinitely many solutions when $\beta_{-}$ is irrational). + + +For a semistabilizing sequence +$E \hookrightarrow F \twoheadrightarrow G$ in $\mathcal{B}^\beta$ +we have the following conditions. +There are some Bogomolov-Gieseker inequalities: +$0 \leq \Delta(E), \Delta(G)$. +We also have a condition relating to the tilt category $\firsttilt\beta$: +$0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F)$. +Finally, there is a condition ensuring that the radius of the circular wall is +strictly positive: $\chern^{\beta_{-}}_2(E) > 0$. + +For any fixed $\chern_0(E)$, the inequality +$0 \leq \chern^{\beta}_1(E) \leq \chern^{\beta}_1(F)$, +allows us to bound $\chern_1(E)$. Then, the other inequalities allow us to +bound $\chern_2(E)$. The final part to showing the finiteness of pseudowalls +would be bounding $\chern_0(E)$. This has been hinted at in +\cite{SchmidtBenjamin2020Bsot} and done explicitly by Benjamin Schmidt within a +SageMath \cite{sagemath} library which computes pseudowalls +\cite{SchmidtGithub2020}. +Here we discuss these bounds in more detail, along with the methods used, +followed by refinements on them which give explicit formulae for tighter bounds +on $\chern_0(E)$ of potential destabilizers $E$ of $F$. + + +\section{Setting and Definitions: Clarifying `pseudo'} + +%\begin{definition}[Twisted Chern Character] +%\label{sec:twisted-chern} +%For a given $\beta$, define the twisted Chern character as follows. +%\[\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)\] +%\noindent +%Component-wise, this is: +%\begin{align*} +% \chern^\beta_0(E) &= \chern_0(E) +%\\ +% \chern^\beta_1(E) &= \chern_1(E) - \beta \chern_0(E) +%\\ +% \chern^\beta_2(E) &= \chern_2(E) - \beta \chern_1(E) + \frac{\beta^2}{2} \chern_0(E) +%\end{align*} +%where $\chern_i$ is the coefficient of $\ell^i$ in $\chern$. +% +%% TODO I think this^ needs adjusting for general Surface with $\ell$ +%\end{definition} +% +%$\chern^\beta_1(E)$ is the imaginary component of the central charge +%$\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$ +%satisfies $\chern^\beta_1 \geq 0$. + +Throughout this article, as noted in the introduction, we will be exclusively +working over surfaces $X$ with Picard rank 1, with a choice of ample line bundle +$L$ such that $\ell\coloneqq c_1(L)$ generates $NS(X)$. +We take $m\coloneqq \ell^2$ as this will be the main quantity which will +affect the results. + +\begin{definition}[Pseudo-semistabilizers] +\label{dfn:pseudo-semistabilizer} +% NOTE: SURFACE SPECIALIZATION + Given a Chern Character $v$, and a given stability + condition $\sigma_{\alpha,\beta}$, + a \textit{pseudo-semistabilizing} $u$ is a `potential' Chern character: + \[ + u = \left(r, c\ell, \frac{e}{\lcm(m,2)} \ell^2\right) + \qquad + r,c,e \in \ZZ + \] + which has the same tilt slope as $v$: + $\nu_{\alpha,\beta}(u) = \nu_{\alpha,\beta}(v)$. + + \noindent + Furthermore the following inequalities are satisfied: + \begin{itemize} + \item $\Delta(u) \geq 0$ + \item $\Delta(v-u) \geq 0$ + \item $0 \leq \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v)$ + \end{itemize} + + Note $u$ does not need to be a Chern character of an actual sub-object of some + object in the stability condition's heart with Chern character $v$. +\end{definition} + +At this point, and in this document, we do not care about whether +pseudo-semistabilizers are even Chern characters of actual elements of +$\bddderived(X)$, some other sources may have this extra restriction too. + +Later, Chern characters will be written $(r,c\ell,d\ell^2)$ because operations +(such as multiplication) are more easily defined in terms of the coefficients of +the $\ell^i$. However, at the end, it will become important again that +$d \in \frac{1}{\lcm(m,2)}\ZZ$. + +\begin{definition}[Pseudo-walls] +\label{dfn:pseudo-wall} + Let $u$ be a pseudo-semistabilizer of $v$, for some stability condition. + Then the \textit{pseudo-wall} associated to $u$ is the set of all stablity + conditions where $u$ is a pseudo-semistabilizer of $v$. +\end{definition} + +% TODO possibly reference forwards to Bertram's nested wall theorem section to +% cover that being a pseudo-semistabilizer somewhere implies also on whole circle + +\begin{lemma}[Sanity check for Pseudo-semistabilizers] + Given a stability + condition $\sigma_{\alpha,\beta}$, + if $E\hookrightarrow F\twoheadrightarrow G$ is a semistabilizing sequence in + $\firsttilt\beta$ for $F$. + Then $\chern(E)$ is a pseudo-semistabilizer of $\chern(F)$ +\end{lemma} + +\begin{proof} + Suppose $E\hookrightarrow F\twoheadrightarrow G$ is a semistabilizing + sequence with respect to a stability condition $\sigma_{\alpha,\beta}$. + \begin{equation*} + \chern(E) = -\chern(\homol^{-1}_{\coh}(E)) + \chern(\homol^{0}_{\coh}(E)) + \end{equation*} + Therefore, $\chern(E)$ is of the form + $(r,c\ell,\frac{e}{\lcm(m,2)}\ell^2)$ + provided that this is true for any coherent sheaf. + For any coherent sheaf $H$, we have the following: + \begin{equation*} + \chern(H) = \left(c_0(H), c_1(H), - c_2(H) + \frac{1}{2} {c_1(H)}^2\right) + \end{equation*} + Given that $\ell$ generates the Neron-Severi group, $c_1(H)$ can then be + written $c\ell$. + \begin{equation*} + \chern(H) = \left( + c_0(H), c\ell, + \left(- \frac{c_2(H)}{\ell^2} + \frac{c^2}{2} \right)\ell^2 + \right) + \end{equation*} + This fact along with $c_0$, $c_2$ being an integers on surfaces, and + $m\coloneqq \ell^2$ implies that $\chern(H)$ + (hence $\chern(E)$ too) is of the required form. + + + Since all the objects in the sequence are in $\firsttilt\beta$, we have + $\chern_1^{\beta} \geq 0$ for each of them. Due to additivity + ($\chern(F) = \chern(E) + \chern(G)$), we can deduce + $0 \leq \chern_1^{\beta}(E) \leq \chern_1^{\beta}(F)$. + + + $E \hookrightarrow F \twoheadrightarrow G$ being a semistabilizing sequence + means $\nu_{\alpha,\beta}(E) = \nu_{\alpha,\beta}(F) = \nu_{\alpha,\beta}(F)$. + % MAYBE: justify this harder + But also, that this is an instance of $F$ being semistable, so $E$ must also + be semistable + (otherwise the destabilizing subobject would also destabilize $F$). + Similarly $G$ must also be semistable too. + $E$ and $G$ being semistable implies they also satisfy the Bogomolov + inequalities: + % TODO ref Bogomolov inequalities for tilt stability + $\Delta(E), \Delta(G) \geq 0$. + Expressing this in terms of Chern characters for $E$ and $F$ gives: + $\Delta(\chern(E)) \geq 0$ and $\Delta(\chern(F)-\chern(E)) \geq 0$. + +\end{proof} + + +\section{Characteristic Curves of Stability Conditions Associated to Chern +Characters} + +% NOTE: SURFACE SPECIALIZATION +Considering the stability conditions with two parameters $\alpha, \beta$ on +Picard rank 1 surfaces. +We can draw 2 characteristic curves for any given Chern character $v$ with +$\Delta(v) \geq 0$ and positive rank. +These are given by the equations $\chern_i^{\alpha,\beta}(v)=0$ for $i=1,2$. + +\begin{definition}[Characteristic Curves $V_v$ and $\Theta_v$] +Given a Chern character $v$, with positive rank and $\Delta(v) \geq 0$, we +define two characteristic curves on the $(\alpha, \beta)$-plane: + +\begin{align*} + V_v &\colon \:\: \chern_1^{\alpha, \beta}(v) = 0 \\ + \Theta_v &\colon \:\: \chern_2^{\alpha, \beta}(v) = 0 +\end{align*} +\end{definition} + +\subsection{Geometry of the Characteristic Curves} + +These characteristic curves for a Chern character $v$ with $\Delta(v)\geq0$ are +not affected by flipping the sign of $v$ so it's only necessary to consider +non-negative rank. +As discussed in subsection \ref{subsect:relevance-of-V_v}, making this choice +has Gieseker stable coherent sheaves appearing in the heart of the stability +condition $\firsttilt{\beta}$ as we move `left' (decreasing $\beta$). + +\subsubsection{Positive Rank Case} +\label{subsect:positive-rank-case-charact-curves} + +\begin{fact}[Geometry of Characteristic Curves in Positive Rank Case] +The following facts can be deduced from the formulae for $\chern_i^{\alpha, \beta}(v)$ +as well as the restrictions on $v$, when $\chern_0(v)>0$: +\begin{itemize} + \item $V_v$ is a vertical line at $\beta=\mu(v)$ + \item $\Theta_v$ is a hyperbola with assymptotes angled at $\pm 45^\circ$ + crossing where $V_v$ meets the $\beta$-axis: $(\mu(v),0)$ + \item $\Theta_v$ is oriented with left-right branches (as opposed to up-down). + The left branch shall be labelled $\Theta_v^-$ and the right $\Theta_v^+$. + \item The gap along the $\beta$-axis between either branch of $\Theta_v$ + and $V_v$ is $\sqrt{\Delta(v)}/\chern_0(v)$. + \item When $\Delta(v)=0$, $\Theta_v$ degenerates into a pair of lines, but the + labels $\Theta_v^\pm$ will still be used for convenience. +\end{itemize} +\end{fact} + +These are illustrated in Fig \ref{fig:charact_curves_vis} +(dotted line for $i=1$, solid for $i=2$). + +\begin{sagesilent} +from characteristic_curves import \ +typical_characteristic_curves, \ +degenerate_characteristic_curves +\end{sagesilent} + + +\begin{figure} +\centering +\begin{subfigure}{.49\textwidth} + \centering + \sageplot[width=\textwidth]{typical_characteristic_curves} + \caption{$\Delta(v)>0$} + \label{fig:charact_curves_vis_bgmvlPos} +\end{subfigure}% +\hfill +\begin{subfigure}{.49\textwidth} + \centering + \sageplot[width=\textwidth]{degenerate_characteristic_curves} + \caption{ + $\Delta(v)=0$: hyperbola collapses + } + \label{fig:charact_curves_vis_bgmlv0} +\end{subfigure} +\caption{ + Characteristic curves ($\chern_i^{\alpha,\beta}(v)=0$) of stability conditions + associated to Chern characters $v$ with $\Delta(v) \geq 0$ and positive rank. +} +\label{fig:charact_curves_vis} +\end{figure} + +\begin{definition}[$\beta_{\pm}$] + \label{dfn:beta_pm} + Given a formal Chern character $v$ with positive rank, we define $\beta_{\pm}(v)$ to be + the $\beta$-coordinate of where $\Theta_v^{\pm}$ meets the $\beta$-axis: + \[ + \beta_\pm(R,C\ell,D\ell^2) = \frac{C \pm \sqrt{C^2-2RD}}{R} + \] + \noindent + In particular, this means $\beta_\pm(v)$ are the two roots of the quadratic + equation $\chern_2^{\beta}(v)=0$. + + This definition will be extended to the rank 0 case in definition \ref{dfn:beta_-_rank0}. +\end{definition} + + +\subsubsection{Rank Zero Case} +\label{subsubsect:rank-zero-case-charact-curves} + +\begin{sagesilent} +from rank_zero_case import Theta_v_plot +\end{sagesilent} + +\begin{fact}[Geometry of Characteristic Curves in Rank 0 Case] +The following facts can be deduced from the formulae for $\chern_i^{\alpha, \beta}(v)$ +as well as the restrictions on $v$, when $\chern_0(v)=0$ and $\chern_1(v)>0$: + + +\begin{minipage}{0.5\textwidth} +\begin{itemize} + \item $V_v = \emptyset$ + \item $\Theta_v$ is a vertical line at $\beta=\frac{D}{C}$ + where $v=\left(0,C\ell,D\ell^2\right)$ +\end{itemize} +\end{minipage} +\hfill +\begin{minipage}{0.49\textwidth} + \sageplot[width=\textwidth]{Theta_v_plot} + %\caption{$\Delta(v)>0$} + %\label{fig:charact_curves_rank0} +\end{minipage} +\end{fact} + +We can view the characteristic curves for $\left(0,C\ell, D\ell^2\right)$ with $C>0$ as +the limiting behaviour of those of $\left(\varepsilon, C\ell, D\ell^2\right)$. +Indeed: +\begin{align*} + \mu\left(\varepsilon, C\ell, D\ell^2\right) = \frac{C}{\varepsilon} &\longrightarrow +\infty + \\ + \text{as} \:\: 0<\varepsilon &\longrightarrow 0 +\end{align*} +So we can view $V_v$ as moving off infinitely to the right, with $\Theta_v^+$ even further. +But also, considering the base point of $\Theta_v^-$: +\begin{align*} + \beta_{-}\left(\varepsilon, C\ell, D\ell^2\right) = \frac{C - \sqrt{C^2-2D\varepsilon}}{\varepsilon} + &\longrightarrow \frac{D}{C} + \\ + \text{as} \:\: 0<\varepsilon &\longrightarrow 0 + &\text{(via L'H\^opital)} +\end{align*} + +So we can view $\Theta_v^-$ as approaching the vertical line that $\Theta_v$ becomes. +For this reason, I will refer to the whole of $\Theta_v$ in the rank zero case +as $\Theta_v^-$ to be able to use the same terminology in both positive rank +and rank zero cases. + +\begin{definition}[Extending $\beta_-$ to rank 0 case] + \label{dfn:beta_-_rank0} + Given a formal Chern character $v$ with rank 0 and $\chern_1(v)>0$, we define + $\beta_-(v)$ to be the $\beta$-coordinate of point where $\Theta_v$ meets the + $\beta$-axis: + \[ + \beta_-(0,C\ell,D\ell^2) = \frac{D}{C} + \] + \noindent + If $\beta_+$ were also to be generalised to the rank 0 case, we would consider + its value to be $+\infty$ due to the discussion above. +\end{definition} + + +\subsection{Relevance of \texorpdfstring{$V_v$}{V_v}} +\label{subsect:relevance-of-V_v} + +For the positive rank case, by definition of the first tilt $\firsttilt\beta$, objects of Chern character +$v$ can only be in $\firsttilt\beta$ on the left of $V_v$, where +$\chern_1^{\alpha,\beta}(v)>0$, and objects of Chern character $-v$ can only be +in $\firsttilt\beta$ on the right, where $\chern_1^{\alpha,\beta}(-v)>0$. In +fact, if there is a Gieseker semistable coherent sheaf $E$ of Chern character +$v$, then $E \in \firsttilt\beta$ if and only if $\beta<\mu(E)$ (left of the +$V_v$), and $E[1] \in \firsttilt\beta$ if and only if $\beta\geq\mu(E)$. +Because of this, when using these characteristic curves, only positive ranks are +considered, as negative rank objects are implicitly considered on the right hand +side of $V_v$. + +In the rank zero case, this still applies if we consider $V_v$ to be +`infinitely to the right' ($\mu(v) = +\infty$). Precisely, Gieseker semistable +coherent sheaves $E$ of Chern character $v$ are contained in +$\firsttilt{\beta}$ for all $\beta$ + + + +\subsection{Relevance of \texorpdfstring{$\Theta_v$}{Θ_v}} + +Since $\chern_2^{\alpha, \beta}$ is the numerator of the tilt slope +$\nu_{\alpha, \beta}$. The curve $\Theta_v$, where this is 0, firstly divides the +$(\alpha$-$\beta)$-half-plane into regions where the signs of tilt slopes of +objects of Chern character $v$ (or $-v$) are fixed. Secondly, it gives more of a +fixed target for some $u=(r,c\ell,d\frac{1}{2}\ell^2)$ to be a +pseudo-semistabilizer of $v$, in the following sense: If $(\alpha,\beta)$, is on +$\Theta_v$, then for any $u$, $u$ can only be a pseudo-semistabilizer of $v$ if +$\nu_{\alpha,\beta}(u)=0$, and hence $\chern_2^{\alpha, \beta}(u)=0$. In fact, +this allows us to use the characteristic curves of some $v$ and $u$ (with +$\Delta(v), \Delta(u)\geq 0$ and positive ranks) to determine the location of +the pseudo-wall where $u$ pseudo-semistabilizes $v$. This is done by finding the +intersection of $\Theta_v$ and $\Theta_u$, the point $(\beta,\alpha)$ where +$\nu_{\alpha,\beta}(u)=\nu_{\alpha,\beta}(v)=0$, and a pseudo-wall point on +$\Theta_v$, and hence the apex of the circular pseudo-wall with centre $(\beta,0)$ +(as per subsection \ref{subsect:bertrams-nested-walls}). + + +\subsection{Bertram's Nested Wall Theorem} +\label{subsect:bertrams-nested-walls} + +Although Bertram's nested wall theorem can be proved more directly, it's also +important for the content of this document to understand the connection with +these characteristic curves. +Emanuele Macri noticed in (TODO ref) that any circular wall of $v$ reaches a critical +point on $\Theta_v$ (TODO ref). This is a consequence of +$\frac{\delta}{\delta\beta} \chern_2^{\alpha,\beta} = -\chern_1^{\alpha,\beta}$. +This fact, along with the hindsight knowledge that non-vertical walls are +circles with centers on the $\beta$-axis, gives an alternative view to see that +the circular walls must be nested and non-intersecting. + +\subsection{Characteristic Curves for Pseudo-semistabilizers} + +These characteristic curves introduced are convenient tools to think about the +numerical conditions that can be used to test for pseudo-semistabilizers, and +for solutions to the problems +(\ref{problem:problem-statement-1},\ref{problem:problem-statement-2}) +tackled in this article (to be introduced later). +In particular, problem (\ref{problem:problem-statement-1}) will be translated to +a list of numerical inequalities on it's solutions $u$. +% ref to appropriate lemma when it's written + +The next lemma is a key to making this translation and revolves around the +geometry and configuration of the characteristic curves involved in a +semistabilizing sequence. + +\begin{lemma}[Numerical tests for left-wall pseudo-semistabilizers] +\label{lem:pseudo_wall_numerical_tests} +Let $v$ and $u$ be Chern characters with $\Delta(v), +\Delta(u)\geq 0$, and $v$ has non-negative rank (and $\chern_1(v)>0$ if rank 0). +Let $P$ be a point on $\Theta_v^-$. + +\noindent +The following conditions: +\begin{enumerate} +\item $u$ is a pseudo-semistabilizer of $v$ at some point on $\Theta_v^-$ above + $P$ +\item $u$ destabilizes $v$ going `inwards', that is, + $\nu_{\alpha,\beta}(u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and + $\nu_{\alpha,\beta}(u)>\nu_{\alpha,\beta}(v)$ inside. +\end{enumerate} + +\noindent +are equivalent to the following more numerical conditions: +\begin{enumerate} + \item $u$ has positive rank + \item $\beta(P)<\mu(u)<\mu(v)$, i.e. $V_u$ is strictly between $P$ and $V_v$. + \item $\chern_1^{\beta(P)}(u) \leq \chern_1^{\beta(P)}(v)$, $\Delta(v-u) \geq 0$ + \item $\chern_2^{P}(u)>0$ +\end{enumerate} +\end{lemma} + +\begin{proof} +Let $u,v$ be Chern characters with +$\Delta(u),\Delta(v) \geq 0$, and $v$ has positive rank. + + +For the forwards implication, assume that the suppositions of the lemma are +satisfied. Let $Q$ be the point on $\Theta_v^-$ (above $P$) where $u$ is a +pseudo-semistabilizer of $v$. +Firstly, consequence 3 is part of the definition for $u$ being a +pseudo-semistabilizer at a point with same $\beta$ value of $P$ (since the +pseudo-wall surrounds $P$). +If $u$ were to have 0 rank, it's tilt slope would be decreasing as $\beta$ +increases, contradicting supposition b. So $u$ must have strictly non-zero rank, +and we can consider it's characteristic curves (or that of $-u$ in case of +negative rank). +$\nu_Q(v)=0$, and hence $\nu_Q(u)=0$ too. This means that $\Theta_{\pm u}$ must +intersect $\Theta_v^-$ at $Q$. Considering the shapes of the hyperbolae alone, +there are 3 distinct ways that they can intersect, as illustrated in Fig +\ref{fig:hyperbol-intersection}. These cases are distinguished by whether it is +the left, or the right branch of $\Theta_u$ involved, as well as the positions +of the base. However, considering supposition b, only case 3 (green in +figure) is possible. This is because we need $\nu_{P}(u)>0$ (or $\nu_{P}(-u)>0$ in +case 1 involving $\Theta_u^+$), to satisfy supposition b. +Recalling how the sign of $\nu_{\alpha,\beta}(\pm u)$ changes (illustrated in +Fig \ref{fig:charact_curves_vis}), we can eliminate cases 1 and 2. + +\begin{sagesilent} +from characteristic_curves import \ +hyperbola_intersection_plot, \ +correct_hyperbola_intersection_plot +\end{sagesilent} + +\begin{figure} +\begin{subfigure}[t]{0.48\textwidth} + \centering + \sageplot[width=\textwidth]{hyperbola_intersection_plot()} + \caption{Three ways the characteristic hyperbola for $u$ can intersect the left + branch of the characteristic hyperbola for $v$} + \label{fig:hyperbol-intersection} +\end{subfigure} +\hfill +\begin{subfigure}[t]{0.48\textwidth} + \centering + \sageplot[width=\textwidth]{correct_hyperbola_intersection_plot()} + \caption{Closer look at characteristic curves for valid case} + \label{fig:correct-hyperbol-intersection} +\end{subfigure} +\end{figure} + +Fixing attention on the only possible case (2), illustrated in Fig +\ref{fig:correct-hyperbol-intersection}. +$P$ is on the left of $V_{\pm u}$ (first part of consequence 2), so $u$ must +have positive rank (consequence 1) +to ensure that $\chern_1^{\beta(P)} \geq 0$ (since the pseudo-wall passed over +$P$). +Furthermore, $P$ being on the left of $V_u$ implies +$\chern_1^{\beta{P}}(u) \geq 0$, +and therefore $\chern_2^{P}(u) > 0$ (consequence 4) to satisfy supposition b. +Next considering the way the hyperbolae intersect, we must have $\Theta_u^-$ taking a +base-point to the right $\Theta_v$, but then, further up, crossing over to the +left side. The latter fact implies that the assymptote for $\Theta_u^-$ must be +to the left of the one for $\Theta_v^-$. Given that they are parallel and +intersect the $\beta$-axis at $\beta=\mu(u)$ and $\beta=\mu(v)$ respectively. We +must have $\mu(u)<\mu(v)$ (second part of consequence 2), +that is, $V_u$ is strictly to the left of $V_v$. + + +Conversely, suppose that the consequences 1-4 are satisfied. Consequence 2 +implies that the assymptote for $\Theta_u^-$ is to the left of $\Theta_v^-$. +Consequence 4, along with $\beta(P)<\mu(u)$, implies that $P$ must be in the +region left of $\Theta_u^-$. These two facts imply that $\Theta_u^-$ is to the +right of $\Theta_v^-$ at $\alpha=\alpha(P)$, but crosses to the left side as +$\alpha \to +\infty$, intersection at some point $Q$ above $P$. +This implies that the characteristic curves for $u$ and $v$ are in the +configuration illustrated in Fig \ref{fig:correct-hyperbol-intersection}. +We then have $\nu(u)=\nu(v)$ along a circle to the left of $V_u$ reaching it's +apex at $Q$, and encircling $P$. This along with consequence 3 implies that $u$ +is a pseudo-semistabilizer at the point on the circle with $\beta=\beta(P)$. +Therefore, it's also a pseudo-semistabilizer further along the circle at $Q$ +(supposition a). +Finally, consequence 4 along with $P$ being to the left of $V_u$ implies +$\nu_P(u) > 0$ giving supposition b. + +The case with rank 0 can be handled the same way. + +\end{proof} + +\section{The Problem: Finding Pseudo-walls} + +As hinted in the introduction (\ref{sec:intro}), the main motivation of the +results in this article are not only the bounds on pseudo-semistabilizer +ranks; +but also applications for finding a list (comprehensive or subset) of +pseudo-walls. + +After introducing the characteristic curves of stability conditions associated +to a fixed Chern character $v$, we can now formally state the problems that we +are trying to solve for. + +\subsection{Problem statements} + +\begin{problem}[sufficiently large `left' pseudo-walls] +\label{problem:problem-statement-1} + +Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0), +and $\Delta(v) \geq 0$. +The goal is to find all pseudo-semistabilizers $u$ +which give circular pseudo-walls containing some fixed point +$P\in\Theta_v^-$. +With the added restriction that $u$ `destabilizes' $v$ moving `inwards', that is, +$\nu(u)>\nu(v)$ inside the circular pseudo-wall. +\end{problem} +This will give all pseudo-walls between the chamber corresponding to Gieseker +stability and the stability condition corresponding to $P$. +The purpose of the final `direction' condition is because, up to that condition, +semistabilizers are not distinguished from their corresponding quotients: +Suppose $E\hookrightarrow F\twoheadrightarrow G$, then the tilt slopes +$\nu_{\alpha,\beta}$ +are strictly increasing, strictly decreasing, or equal across the short exact +sequence (consequence of the see-saw principle). +In this case, $\chern(E)$ is a pseudo-semistabilizer of $\chern(F)$, if and +only if $\chern(G)$ is a pseudo-semistabilizer of $\chern(F)$. +The numerical inequalities in the definition for pseudo-semistabilizer cannot +tell which of $E$ or $G$ is the subobject. +However, what can be distinguished is the direction across the wall that +$\chern(E)$ or $\chern(G)$ destabilizes $\chern(F)$ +(they will each destabilize in the opposite direction to the other). +The `inwards' semistabilizers are preferred because we are moving from a +typically more familiar chamber +(the stable objects of Chern character $v$ in the outside chamber will only be +Gieseker stable sheaves). + +Also note that this last restriction does not remove any pseudo-walls found, +and if we do want to recover `outwards' semistabilizers, we can simply take +$v-u$ for each solution $u$ of the problem. + + +\begin{problem}[all `left' pseudo-walls] +\label{problem:problem-statement-2} + +Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0), +$\Delta(v) \geq 0$, and $\beta_{-}(v) \in \QQ$. +The goal is to find all pseudo-semistabilizers $u$ which give circular +pseudo-walls on the left side of $V_v$. +\end{problem} + +This is a specialization of problem (\ref{problem:problem-statement-1}) +with the choice $P=(\beta_{-},0)$, the point where $\Theta_v^-$ meets the +$\beta$-axis. +This is because all circular walls left of $V_v$ intersect $\Theta_v^-$ (once). +The $\beta_{-}(v) \in \QQ$ condition is to ensure that there are finitely many +solutions. As mentioned in the introduction (\ref{sec:intro}), this is known, +however this will also be proved again implicitly in section +\ref{sect:prob2-algorithm}, where an algorithm is produced to find all +solutions. + +This description still holds for the case of rank 0 case if we consider $V_v$ to +be infinitely far to the right +(see section \ref{subsubsect:rank-zero-case-charact-curves}). +Note also that the condition on $\beta_-(v)$ always holds for $v$ rank 0. + +\subsection{Numerical Formulations of the Problems} + +The problems introduced in this section are phrased in the context of stability +conditions. However, these can be reduced down completely to purely numerical +problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. + +\begin{lemma}[Numerical Tests for Sufficiently Large `left' Pseudo-walls] + \label{lem:num_test_prob1} + Given a Chern character $v$ with non-negative rank + (and $\chern_1(v)>0$ if rank 0), + and $\Delta(v) \geq 0$, + and a choice of point $P$ on $\Theta_v^-$. + Solutions $u=(r,c\ell,d\ell^2)$ + to problem \ref{problem:problem-statement-1}. + Are precisely given by $r,c \in \ZZ$, $d \in \frac{1}{\lcm(m,2)}$ + satisfying the following conditions: + \begin{enumerate} + \item $r > 0$ + \label{item:rankpos:lem:num_test_prob1} + \item $\Delta(u) \geq 0$ + \label{item:bgmlvu:lem:num_test_prob1} + \item $\Delta(v-u) \geq 0$ + \label{item:bgmlvv-u:lem:num_test_prob1} + \item $\mu(u)<\mu(v)$ + \item $0\leq\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$ + \label{item:chern1bound:lem:num_test_prob1} + \item $\chern_2^{P}(u)>0$ + \label{item:radiuscond:lem:num_test_prob1} + \end{enumerate} +\end{lemma} + +\begin{proof} + Consider the context of $v$ being a Chern character with non-negative rank + (and $\chern_1(v)>0$ if rank 0) + and + $\Delta \geq 0$, and $u$ being a Chern character with $\Delta(u) \geq 0$. + Lemma \ref{lem:pseudo_wall_numerical_tests} gives that the remaining + conditions for $u$ being a solution to problem + \ref{problem:problem-statement-1} are precisely equivalent to the + remaining conditions in this lemma. + % TODO maybe make this more explicit + % (the conditions are not exactly the same) + +\end{proof} + +\begin{corollary}[Numerical Tests for All `left' Pseudo-walls] +\label{cor:num_test_prob2} + Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, + such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$. + Solutions $u=(r,c\ell,d\ell^2)$ + to problem \ref{problem:problem-statement-2}. + Are precisely given by $r,c \in \ZZ$, $d\in\frac{1}{\lcm(m,2)}\ZZ$ satisfying + the following conditions: + \begin{enumerate} + \item $r > 0$ + \label{item:rankpos:lem:num_test_prob2} + \item $\Delta(u) \geq 0$ + \label{item:bgmlvu:lem:num_test_prob2} + \item $\Delta(v-u) \geq 0$ + \label{item:bgmlvv-u:lem:num_test_prob2} + \item $\mu(u)<\mu(v)$ + \label{item:mubound:lem:num_test_prob2} + \item $0\leq\chern_1^{\beta_{-}}(u)\leq\chern_1^{\beta_{-}}(v)$ + \label{item:chern1bound:lem:num_test_prob2} + \item $\chern_2^{\beta_{-}}(u)>0$ + \label{item:radiuscond:lem:num_test_prob2} + \end{enumerate} +\end{corollary} + +\begin{proof} + This is a specialization of the previous lemma, using $P=(\beta_{-},0)$. + +\end{proof} + + +\section{B.Schmidt's Solutions to the Problems} + +\subsection{Bound on \texorpdfstring{$\chern_0(u)$}{ch0(u)} for Semistabilizers} +\label{subsect:loose-bound-on-r} + +The proof for the following theorem \ref{thm:loose-bound-on-r} was hinted at in +\cite{SchmidtBenjamin2020Bsot}, but the value appears explicitly in +\cite{SchmidtGithub2020}. The latter reference is a SageMath \cite{sagemath} +library for computing certain quantities related to Bridgeland stabilities on +Picard rank 1 varieties. It also includes functions to compute pseudo-walls and +pseudo-semistabilizers for tilt stability. + + +\begin{theorem}[Bound on $r$ - Benjamin Schmidt] +\label{thm:loose-bound-on-r} +Given a Chern character $v$ such that $\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of +any semistabilizer $E$ of some $F \in \firsttilt{\beta_-}$ with $\chern(F)=v$ is +bounded above by: + +\begin{equation*} + r \leq \frac{mn^2 \chern^{\beta_-}_1(v)^2}{\gcd(m,2n^2)} +\end{equation*} +\end{theorem} + +\begin{proof} +The Bogomolov form applied to the twisted Chern character is the same as the +normal one. So $0 \leq \Delta(E)$ yields: + +\begin{equation} + \label{eqn-bgmlv-on-E} + 2\chern^\beta_0(E) \chern^\beta_2(E) \leq \chern^\beta_1(E)^2 +\end{equation} + +\noindent +Furthermore, $E \hookrightarrow F$ in $\firsttilt{\beta_{-}}$ gives: +\begin{equation} + \label{eqn-tilt-cat-cond} + 0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F) +\end{equation} +% FUTURE maybe ref this back to some definition of first tilt + +\noindent +The restrictions on $\chern^{\beta_-}_0(E)$ and $\chern^{\beta_-}_2(E)$ +is best seen with the following graph: + +% TODO: hyperbola restriction graph (shaded) + + +This is where the rationality of $\beta_{-}$ comes in. If +$\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$. +Then $\chern^{\beta_-}_2(E) \in \frac{1}{\lcm(m,2n^2)}\ZZ$. +In particular, since $\chern_2^{\beta_-}(E) > 0$ (by using $P=(\beta_-,0)$ in +lemma \ref{lem:pseudo_wall_numerical_tests}) we must also have +$\chern^{\beta_-}_2(E) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a +bound for the rank of $E$: + +\begin{align} + \chern_0(E) &= \chern^{\beta_-}_0(E) \\ + &\leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(E)^2}{2} \\ + &= \frac{mn^2 \chern^{\beta_-}_1(F)^2}{\gcd(m,2n^2)} +\end{align} + +\end{proof} + +\begin{sagesilent} +from examples import recurring +\end{sagesilent} + +\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] +\label{exmpl:recurring-first} +Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so +that $m=1$, $\beta_-=\sage{recurring.betaminus}$, +giving $n=\sage{recurring.n}$ and +$\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. + +Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of +tilt semistabilizers for $v$ are bounded above by $\sage{recurring.loose_bound}$. +However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum +rank that appears turns out to be 25. This will be a recurring example to +illustrate the performance of later theorems about rank bounds +\end{example} + +\begin{sagesilent} +from examples import extravagant +\end{sagesilent} + +\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] +\label{exmpl:extravagant-first} +Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so +that $m=1$, $\beta_-=\sage{extravagant.betaminus}$, +giving $n=\sage{extravagant.n}$ and +$\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. + +Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of +tilt semistabilizers for $v$ are bounded above by $\sage{extravagant.loose_bound}$. +However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum +rank that appears turns out to be $\sage{extravagant.actual_rmax}$. +\end{example} + +\subsection{Pseudo-Wall Finding Method} + +The SageMath Library \cite{SchmidtGithub2020} provides a function which +calculates all solutions to problems \ref{problem:problem-statement-1} +or \ref{problem:problem-statement-2}. +Here is an outline of the algorithm involved to do this. Simplifications will be +made in the presentation to concentrate on the case we are interested in: +problem \ref{problem:problem-statement-2}, finding all pseudo-walls when $\beta_{-}\in\QQ$. +% FUTURE add reference to section explaining new alg +In section [ref], a different +algorithm will be presented making use of the later theorems in this article, +with the goal of cutting down the run time. + +\subsubsection{Finding possible \texorpdfstring{$r$}{r} and +\texorpdfstring{$c$}{c}} +To do this, first calculate the upper bound $r_{max}$ on the ranks of tilt +semistabilizers, as given by theorem \ref{thm:loose-bound-on-r}. + +Recalling consequence 2 of lemma \ref{lem:pseudo_wall_numerical_tests}, we can +iterate through the possible values of $\mu(u)=\frac{c}{r}$ taking a decreasing +sequence of all fractions between $\mu(v)$ and $\beta_{-}$, who's denominators +are no large than $r_{max}$ (giving a finite sequence). This can be done with +Farey sequences \cite[chapter 6]{alma994504533502466}, for which there exist +formulae to generate. + +These $\mu(u)$ values determine pairs $r,c$ up to multiples, we can then take +all multiples which satisy $0<r\leq r_{max}$. + +We now have a finite sequence of pairs $r,c$ for which there might be a solution +$(r,c\ell,d\ell^2)$ to our problem. In particular, any $(r,c\ell,d\ell^2)$ +satisfies consequence 2 of lemma \ref{lem:pseudo_wall_numerical_tests}, and the +positive rank condition. What remains is to find the $d$ values which satisfy +the Bogomolov inequalities and consequence 3 of lemma +\ref{lem:pseudo_wall_numerical_tests} +($\chern_2^{\beta_{-}}(u)>0$). + +\subsubsection{Finding \texorpdfstring{$d$}{d} for fixed \texorpdfstring{$r$}{r} +and \texorpdfstring{$c$}{c}} + +$\Delta(u) \geq 0$ induces an upper bound $\frac{c^2}{2r}$ on $d$, and the +$\chern_2^{\beta_{-}}(u)>0$ condition induces a lower bound on $d$. +The values in the range can be tested individually, to check that +the rest of the conditions are satisfied. + +\subsection{Limitations} + +The main downside of this algorithm is that many $r$,$c$ pairs which are tested +end up not yielding any solutions for the problem. +In fact, solutions $u$ to our problem with high rank must have $\mu(u)$ close to +$\beta_{-}$: +\begin{align*} + 0 &\leq \chern_1^{\beta_{-}}(u) \leq \chern_1^{\beta_{-}}(u) \\ + 0 &\leq \mu(u) - \beta_{-} \leq \frac{\chern_1^{\beta_{-}}(v)}{r} +\end{align*} +In particular, it's the $\chern_1^{\beta_{-}}(v-u) \geq 0$ conditions which +fails for $r$,$c$ pairs with large $r$ and $\frac{c}{r}$ too far from $\beta_{-}$. +This condition is only checked within the internal loop. +This, along with a conservative estimate for a bound on the $r$ values (as +illustrated in example \ref{exmpl:recurring-first}) occasionally leads to slow +computations. + +Here are some benchmarks to illustrate the performance benefits of the +alternative algorithm which will later be described in this article [ref]. + +\begin{center} +\begin{tabular}{ |r|l|l| } + \hline + Choice of $v$ on $\mathbb{P}^2$ + & $(3, 2\ell, -2)$ + & $(3, 2\ell, -\frac{15}{2})$ \\ + \hline + \cite[\texttt{tilt.walls_left}]{SchmidtGithub2020} exec time & \sim 20s & >1hr \\ + \cite{NaylorRust2023} exec time & \sim 50ms & \sim 50ms \\ + \hline +\end{tabular} +\end{center} + +\section{Tighter Bounds} +\label{sec:refinement} + +To get tighter bounds on the rank of destabilizers $E$ of some $F$ with some +fixed Chern character, we will need to consider each of the values which +$\chern_1^{\beta}(E)$ can take. +Doing this will allow us to eliminate possible values of $\chern_0(E)$ for which +each $\chern_1^{\beta}(E)$ leads to the failure of at least one of the inequalities. +As opposed to only eliminating possible values of $\chern_0(E)$ for which all +corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what +was implicitly happening before). + + +First, let us fix a Chern character for $F$, and some pseudo-semistabilizer +$u$ which is a solution to problem +\ref{problem:problem-statement-1} or +\ref{problem:problem-statement-2}. +Take $\beta = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem +\ref{problem:problem-statement-1} +(or $\beta = \beta_{-}$ for problem \ref{problem:problem-statement-2}). + +\begin{align} + \chern(F) =\vcentcolon\: v \:=& \:(R,C\ell,D\ell^2) + && \text{where $R,C\in \ZZ$ and $D\in \frac{1}{\lcm(m,2)}\ZZ$} + \\ + u \coloneqq& \:(r,c\ell,d\ell^2) + && \text{where $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$} +\end{align} + + + +Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in +lemma \ref{lem:num_test_prob1} +(or corollary \ref{cor:num_test_prob2}) +that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$, +and so we can write: + + + +\begin{sagesilent} +from plots_and_expressions import c_in_terms_of_q +\end{sagesilent} + +\begin{equation} + \label{eqn-cintermsofm} + c=\chern_1(u) = \sage{c_in_terms_of_q} + \qquad 0 \leq q \coloneqq \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v) +\end{equation} + +Furthermore, $\chern_1 \in \ZZ$ so we only need to consider +$q \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)]$, +where $n$ is the denominator of $\beta$. +For the next subsections, we consider $q$ to be fixed with one of these values, +and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. + + +\subsection{Numerical Inequalities} + +This section studies the numerical conditions that $u$ must satisfy as per +lemma \ref{lem:num_test_prob1} +(or corollary \ref{cor:num_test_prob2}) + +\subsubsection{Size of pseudo-wall\texorpdfstring{: $\chern_2^P(u)>0$}{}} +\label{subsect-d-bound-radiuscond} + +This condition refers to condition +\ref{item:radiuscond:lem:num_test_prob1} +from lemma \ref{lem:num_test_prob1} +(or corollary \ref{cor:num_test_prob2}). + +In the case where we are tackling problem \ref{problem:problem-statement-2} +(with $\beta = \beta_{-}$), this condition, when expressed as a bound on $d$, +amounts to: + +\begin{align} +\label{eqn:radius-cond-betamin} + \chern_2^{\beta_{-}}(u) &> 0 \\ + d &> \beta_{-}q + \frac{1}{2} \beta_{-}^2r +\end{align} + +\begin{sagesilent} +import other_P_choice as problem1 +\end{sagesilent} + +In the case where we are tackling problem \ref{problem:problem-statement-1}, +with some Chern character $v$ with positive rank, and some choice of point +$P=(A,B) \in \Theta_v^-$. +Then $\sage{problem1.A2_subs}$ follows from $\chern_2^P(v)=0$. Using this substitution into the +condition $\chern_2^P(u)>0$ yields: + +\begin{equation} + \sage{problem1.radius_condition} +\end{equation} + +\noindent +Expressing this as a bound on $d$, then yields: + +\begin{equation} + \sage{problem1.radius_condition_d_bound} +\end{equation} + + +\subsubsection{Semistability of the Semistabilizer: + \texorpdfstring{ + $\Delta(u) \geq 0$ + }{ + Δ(u) ≥ 0 + } +} +This condition refers to condition +\ref{item:bgmlvu:lem:num_test_prob1} +from lemma \ref{lem:num_test_prob1} +(or corollary \ref{cor:num_test_prob2}). + + +\noindent +Expressing $\Delta(u)\geq 0$ in terms of $q$ as defined in eqn \ref{eqn-cintermsofm} +we get the following: + + +\begin{sagesilent} +from plots_and_expressions import bgmlv2_with_q +\end{sagesilent} + +\begin{equation} + \sage{bgmlv2_with_q} +\end{equation} + + +\noindent +This can be rearranged to express a bound on $d$ as follows +(recall from condition \ref{item:rankpos:lem:num_test_prob1} +in lemma \ref{lem:num_test_prob1} or corollary +\ref{cor:num_test_prob2} that $r>0$): + + +\begin{sagesilent} +from plots_and_expressions import bgmlv2_d_ineq +\end{sagesilent} +\begin{equation} + \label{eqn-bgmlv2_d_upperbound} + \sage{bgmlv2_d_ineq} +\end{equation} + +\begin{sagesilent} +from plots_and_expressions import bgmlv2_d_upperbound_terms +\end{sagesilent} +Viewing equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term +of $r$ again, there is a constant term +$\sage{bgmlv2_d_upperbound_terms.const}$, +a linear term +$\sage{bgmlv2_d_upperbound_terms.linear}$, +and a hyperbolic term +$\sage{bgmlv2_d_upperbound_terms.hyperbolic}$. +Notice that in the context of problem \ref{problem:problem-statement-2} +($\beta = \beta_{-}$), +the constant and linear terms match up with the ones +for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}. + +\subsubsection{Semistability of the Quotient: + \texorpdfstring{ + $\Delta(v-u) \geq 0$ + }{ + Δ(v-u) ≥ 0 + } +} +\label{subsect-d-bound-bgmlv3} + +This condition refers to condition +\ref{item:bgmlvv-u:lem:num_test_prob1} +from lemma \ref{lem:num_test_prob1} +(or corollary \ref{cor:num_test_prob2}). + +Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on +$d$ yields: + + +\begin{sagesilent} +from plots_and_expressions import bgmlv3_d_upperbound_terms +\end{sagesilent} + +\begin{equation*} + \label{eqn-bgmlv3_d_upperbound} + d \leq + \sage{bgmlv3_d_upperbound_terms.linear} + + \sage{bgmlv3_d_upperbound_terms.const} + + \sage{bgmlv3_d_upperbound_terms.hyperbolic} + \qquad + \text{where }r>R +\end{equation*} + + +\noindent +For $r=R$, $\Delta(v-u)\geq 0$ is always true, and for $r<R$ it gives a lower +bound on $d$, but it is weaker than the one given by the lower bound in +subsubsection \ref{subsect-d-bound-radiuscond}. +Viewing the right hand side of equation \ref{eqn-bgmlv3_d_upperbound} +as a function of $r$, the linear and constant terms almost match up with the +ones in the previous section, up to the +$\chern_2^{\beta}(v)$ term. + + +However, when specializing to problem \ref{problem:problem-statement-2} again +(with $\beta = \beta_{-}$), then we have $\chern^{\beta}_2(v) = 0$. +And so in this context, the linear and constant terms do match up with the +previous subsubsections. + +\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem +\texorpdfstring{\ref{problem:problem-statement-2}}{2}} +\label{subsubsect:all-bounds-on-d-prob2} +%% RECAP ON INEQUALITIES TOGETHER + +%%%% RATIONAL BETA MINUS +As mentioned in passing, when specializing to solutions $u$ of problem +\ref{problem:problem-statement-2}, the bounds on +$d=\chern_2(u)$ induced by conditions +\ref{item:bgmlvu:lem:num_test_prob2}, +\ref{item:bgmlvv-u:lem:num_test_prob2}, and +\ref{item:radiuscond:lem:num_test_prob1} +from corollary \ref{cor:num_test_prob2} have the same constant and linear +terms in $r$, but different hyperbolic terms. +These give bounds with the same assymptotes when we take $r\to\infty$ +(for any fixed $q=\chern_1^{\beta_{-}}(u)$). + +% redefine \beta (especially coming from rendered SageMath expressions) +% to be \beta_{-} for the rest of this subsubsection +\bgroup + +\let\originalbeta\beta +\renewcommand\beta{{\originalbeta_{-}}} + +\begin{align} + d &>& + \frac{1}{2}\beta^2 r + &+ \beta q, + \phantom{+}& % to keep terms aligned + &\qquad\text{when\:} r > 0 + \label{eqn:radiuscond_d_bound_betamin} +\\ + d &\leq& + \sage{bgmlv2_d_upperbound_terms.problem2.linear} + &+ \sage{bgmlv2_d_upperbound_terms.problem2.const} + +& \sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic}, + &\qquad\text{when\:} r > 0 + \label{eqn:bgmlv2_d_bound_betamin} +\\ + d &\leq& + \sage{bgmlv3_d_upperbound_terms.problem2.linear} + &+ \sage{bgmlv3_d_upperbound_terms.problem2.const} + % ^ ch_2^\beta(F)=0 for beta_{-} + +& \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic}, + &\qquad\text{when\:} r > R + \label{eqn:bgmlv3_d_bound_betamin} +\end{align} + + +\begin{sagesilent} +from plots_and_expressions import \ +bounds_on_d_qmin, \ +bounds_on_d_qmax +\end{sagesilent} + +\begin{figure} +\centering +\begin{subfigure}{.45\textwidth} + \centering + \sageplot[width=\linewidth]{bounds_on_d_qmin} + \caption{$q = 0$ (all bounds other than green coincide on line)} + \label{fig:d_bounds_xmpl_min_q} +\end{subfigure}% +\hfill +\begin{subfigure}{.45\textwidth} + \centering + \sageplot[width=\linewidth]{bounds_on_d_qmax} + \caption{$q = \chern^{\beta}(F)$ (all bounds other than blue coincide on line)} + \label{fig:d_bounds_xmpl_max_q} +\end{subfigure} +\caption{ + Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq\chern_0(E)$ for fixed, extreme, + values of $q\coloneqq\chern_1^{\beta}(E)$. + Where $\chern(F) = (3,2,-2)$. +} +\label{fig:d_bounds_xmpl_extrm_q} +\end{figure} + +Recalling that $q \coloneqq \chern^{\beta}_1(E) \in [0, \chern^{\beta}_1(F)]$, +it is worth noting that the extreme values of $q$ in this range lead to the +tightest bounds on $d$, as illustrated in figure +(\ref{fig:d_bounds_xmpl_extrm_q}). +In fact, in each case, one of the weak upper bounds coincides with one of the +weak lower bounds, (implying no possible destabilizers $E$ with +$\chern_0(E)=\vcentcolon r>R\coloneqq\chern_0(F)$ for these $q$-values). +This indeed happens in general since the right hand sides of +(eqn \ref{eqn:bgmlv2_d_bound_betamin}) and +(eqn \ref{eqn:radiuscond_d_bound_betamin}) match when $q=0$. +In the other case, $q=\chern^{\beta}_1(F)$, it is the right hand sides of +(eqn \ref{eqn:bgmlv3_d_bound_betamin}) and +(eqn \ref{eqn:radiuscond_d_bound_betamin}) which match. + + +The more generic case, when $0 < q\coloneqq\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$ +for the bounds on $d$ in terms of $r$ is illustrated in figure +(\ref{fig:d_bounds_xmpl_gnrc_q}). +The question of whether there are pseudo-destabilizers of arbitrarily large +rank, in the context of the graph, comes down to whether there are points +$(r,d) \in \ZZ \oplus \frac{1}{\lcm(m,2)} \ZZ$ (with large $r$) +% TODO have a proper definition for pseudo-destabilizers/walls +that fit above the yellow line (ensuring positive radius of wall) but below the +blue and green (ensuring $\Delta(u), \Delta(v-u) > 0$). +These lines have the same assymptote at $r \to \infty$ +(eqns \ref{eqn:bgmlv2_d_bound_betamin}, +\ref{eqn:bgmlv3_d_bound_betamin}, +\ref{eqn:radiuscond_d_bound_betamin}). +As mentioned in the introduction (sec \ref{sec:intro}), the finiteness of these +solutions is entirely determined by whether $\beta$ is rational or irrational. +Some of the details around the associated numerics are explored next. + +\begin{sagesilent} +from plots_and_expressions import typical_bounds_on_d +\end{sagesilent} + +\begin{figure} +\centering +\sageplot[width=\linewidth]{typical_bounds_on_d} +\caption{ + Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed + value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$. + Where $\chern(F) = (3,2,-2)$. +} +\label{fig:d_bounds_xmpl_gnrc_q} +\end{figure} + +\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem +\texorpdfstring{\ref{problem:problem-statement-1}}{1}} +\label{subsubsect:all-bounds-on-d-prob1} + +Unlike for problem \ref{problem:problem-statement-2}, +the bounds on $d=\chern_2(u)$ induced by conditions +\ref{item:bgmlvu:lem:num_test_prob2}, +\ref{item:bgmlvv-u:lem:num_test_prob2}, and +\ref{item:radiuscond:lem:num_test_prob1} +from corollary \ref{cor:num_test_prob2} have different +constant and linear terms, so that the graphs for upper +bounds do not share the same assymptote as the lower bound +(and they will turn out to intersect). + +\begin{align} + \sage{problem1.radius_condition_d_bound.lhs()} + &> + \sage{problem1.radius_condition_d_bound.rhs()} + &\text{where }r>0 + \label{eqn:prob1:radiuscond} + \\ + d &\leq + \sage{problem1.bgmlv2_d_upperbound_terms.linear} + + \sage{problem1.bgmlv2_d_upperbound_terms.const} + + \sage{problem1.bgmlv2_d_upperbound_terms.hyperbolic} + &\text{where }r>R + \label{eqn:prob1:bgmlv2} + \\ + d &\leq + \sage{problem1.bgmlv3_d_upperbound_terms.linear} + + \sage{problem1.bgmlv3_d_upperbound_terms.const} + + \sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic} + &\text{where }r>R + \label{eqn:prob1:bgmlv3} +\end{align} + +Notice that as a function in $r$, the linear term in +equation \ref{eqn:prob1:radiuscond} is strictly greater than +those in equations \ref{eqn:prob1:bgmlv2} +and \ref{eqn:prob1:bgmlv3}. This is because $r$, $R$ +and $\chern_2^B(v)$ are all strictly positive: +\begin{itemize} + \item $R > 0$ from the setting of problem + \ref{problem:problem-statement-1} + \item $r > 0$ from lemma \ref{lem:num_test_prob1} + \item $\chern_2^B(v)>0$ because $B < \originalbeta_{-}$ due to the choice of $P$ being + a point on $\Theta_v^{-}$ +\end{itemize} + +This means that the lower bound for $d$ will be large than either of the two +upper bounds for sufficiently large $r$, and hence those values of $r$ would yield no +solution to problem \ref{problem:problem-statement-1}. + +A generic example of this is plotted in figure +\ref{fig:problem1:d_bounds_xmpl_gnrc_q}. + +\begin{figure} +\centering +\sageplot[width=\linewidth]{problem1.example_plot} +\caption{ + Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed + value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$. + Where $\chern(F) = (3,2,-2)$ and $P$ chosen as the point on $\Theta_v$ + with $B\coloneqq-2/3-1/99$ in the context of problem + \ref{problem:problem-statement-1}. +} +\label{fig:problem1:d_bounds_xmpl_gnrc_q} +\end{figure} + +\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem +\ref{problem:problem-statement-1}} + +As discussed at the end of subsection \ref{subsubsect:all-bounds-on-d-prob1} +(and illustrated in figure \ref{fig:problem1:d_bounds_xmpl_gnrc_q}), +there are no solutions $u$ to problem \ref{problem:problem-statement-1} +with large $r=\chern_0(u)$, since the lower bound on $d=\chern_2(u)$ is larger +than the upper bounds. +Therefore, we can calculate upper bounds on $r$ by calculating for which values, +the lower bound on $d$ is equal to one of the upper bounds on $d$ +(i.e. finding certain intersection points of the graph in figure +\ref{fig:problem1:d_bounds_xmpl_gnrc_q}). + +\begin{lemma}[Problem \ref{problem:problem-statement-1} upper Bound on $r$] +\label{lem:prob1:r_bound} + Let $u$ be a solution to problem \ref{problem:problem-statement-1} + and $q\coloneqq\chern_1^{B}(u)$. + Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression: + \begin{equation} + \sage{problem1.r_bound_expression} + \end{equation} +\end{lemma} + +\begin{proof} + Recall that $d\coloneqq\chern_2(u)$ has two upper bounds in terms of $r$: in + equations \ref{eqn:prob1:bgmlv2} and \ref{eqn:prob1:bgmlv3}; + and one lower bound: in equation \ref{eqn:prob1:radiuscond}. + + Solving for the lower bound in equation \ref{eqn:prob1:radiuscond} being + less than the upper bound in equation \ref{eqn:prob1:bgmlv2} yields: + \begin{equation} + r<\sage{problem1.positive_intersection_bgmlv2} + \end{equation} + + Similarly, but with the upper bound in equation \ref{eqn:prob1:bgmlv3}, gives: + \begin{equation} + r<\sage{problem1.positive_intersection_bgmlv3} + \end{equation} + + Therefore, $r$ is bounded above by the minimum of these two expressions which + can then be factored into the expression given in the lemma. + +\end{proof} + +The above lemma \ref{lem:prob1:r_bound} gives an upper bound on $r$ in terms of $q$. +But given that $0 \leq q \leq \chern_1^{B}(v)$, we can take the maximum of this +bound, over $q$ in this range, to get a simpler (but weaker) bound in the +following lemma \ref{lem:prob1:convenient_r_bound}. + +\begin{lemma} +\label{lem:prob1:convenient_r_bound} + Let $u$ be a solution to problem \ref{problem:problem-statement-1}. + Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression: + \begin{equation} + \sage{problem1.r_max} + \end{equation} +\end{lemma} + +\begin{proof} + The first term of the minimum in lemma \ref{lem:prob1:r_bound} + increases linearly in $q$, and the second + decreases linearly. So the maximum is achieved with the value of + $q=q_{\mathrm{max}}$ where they are equal. + Solving for the two terms in the minimum to be equal yields: + $q_{\mathrm{max}}=\sage{problem1.maximising_q}$. + Substituting $q=q_{\mathrm{max}}$ into the bound in lemma + \ref{lem:prob1:r_bound} gives the bound as stated in the current lemma. + +\end{proof} + +\begin{note} + $q_{\mathrm{max}} > 0$ is immediate from the expression, but + $q_{\mathrm{max}} \leq \chern_1^{B}(v)$ is equivalent to $\Delta(v) \geq 0$, + which is true by assumption in this setting. +\end{note} + + +\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem +\ref{problem:problem-statement-2}} + +Now, the inequalities from the above subsubsection +\ref{subsubsect:all-bounds-on-d-prob2} will be used to find, for +each given $q=\chern^{\beta}_1(E)$, how large $r$ needs to be in order to leave +no possible solutions for $d$. At that point, there are no solutions +$u=(r,c\ell,d\ell^2)$ to problem \ref{problem:problem-statement-2}. +The strategy here is similar to what was shown in theorem +\ref{thm:loose-bound-on-r}. + + +\renewcommand{\aa}{{a_v}} +\newcommand{\bb}{{b_q}} +Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$. +Then fix a value of $q$: +\begin{equation} + q\coloneqq \chern_1^{\beta}(E) + =\frac{\bb}{n} + \in + \frac{1}{n} \ZZ + \cap [0, \chern_1^{\beta}(F)] +\end{equation} +as noted at the beginning of this section \ref{sec:refinement} so that we are +considering $u$ which satisfy \ref{item:chern1bound:lem:num_test_prob2} +in corollary \ref{cor:num_test_prob2}. + +Substituting the current values of $q$ and $\beta$ into the condition for the +radius of the pseudo-wall being positive +(eqn \ref{eqn:radiuscond_d_bound_betamin}) we get: + +\begin{sagesilent} +from plots_and_expressions import \ +positive_radius_condition_with_q, \ +q_value_expr, \ +beta_value_expr +\end{sagesilent} +\begin{equation} +\label{eqn:positive_rad_condition_in_terms_of_q_beta} + \frac{1}{\lcm(m,2)}\ZZ + \ni + \qquad + \sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()} + \qquad + \in + \frac{1}{2n^2}\ZZ +\end{equation} + + +\begin{sagesilent} +from plots_and_expressions import main_theorem1 +\end{sagesilent} +\begin{theorem}[Bound on $r$ \#1] +\label{thm:rmax_with_uniform_eps} + Let $v = (R,C\ell,D\ell^2)$ be a fixed Chern character. Then the ranks of the + pseudo-semistabilizers for $v$, + which are solutions to problem \ref{problem:problem-statement-2}, + with $\chern_1^\beta = q$ + are bounded above by the following expression. + + \begin{align*} + \min + \left( + \sage{main_theorem1.r_upper_bound1}, \:\: + \sage{main_theorem1.r_upper_bound2} + \right) + \end{align*} + + Taking the maximum of this expression over + $q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ + would give an upper bound for the ranks of all solutions to problem + \ref{problem:problem-statement-2}. +\end{theorem} + +\begin{proof} + +\noindent +Both $d$ and the lower bound in +(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) +are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. +So, if any of the two upper bounds on $d$ come to within +$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for +$d$. +Hence any corresponding $r$ cannot be a rank of a +pseudo-semistabilizer for $v$. + +To avoid this, we must have, +considering equations +\ref{eqn:bgmlv2_d_bound_betamin}, +\ref{eqn:bgmlv3_d_bound_betamin}, +\ref{eqn:radiuscond_d_bound_betamin}. + +\begin{sagesilent} +from plots_and_expressions import \ +assymptote_gap_condition1, assymptote_gap_condition2, k +\end{sagesilent} + + +\begin{align} + &\sage{assymptote_gap_condition1.subs(k==1)} \\ + &\sage{assymptote_gap_condition2.subs(k==1)} +\end{align} + +\noindent +This is equivalent to: + +\begin{equation} + \label{eqn:thm-bound-for-r-impossible-cond-for-r} + r \leq + \min\left( + \sage{ + main_theorem1.r_upper_bound1 + } , + \sage{ + main_theorem1.r_upper_bound2 + } + \right) +\end{equation} + +\end{proof} + + +\begin{sagesilent} +from plots_and_expressions import q_sol, bgmlv_v, psi +\end{sagesilent} + +\begin{corollary}[Bound on $r$ \#2] +\label{cor:direct_rmax_with_uniform_eps} + Let $v$ be a fixed Chern character and + $R\coloneqq\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$. + Then the ranks of the pseudo-semistabilizers for $v$, + which are solutions to problem \ref{problem:problem-statement-2}, + are bounded above by the following expression. + + \begin{equation*} + \sage{main_theorem1.corollary_r_bound} + \end{equation*} +\end{corollary} + +\begin{proof} +The ranks of the pseudo-semistabilizers for $v$ are bounded above by the +maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem +\ref{thm:rmax_with_uniform_eps}. +Noticing that the expression is a maximum of two quadratic functions in $q$: +\begin{equation*} + f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad + f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2} +\end{equation*} +These have their minimums at $q=0$ and $q=\chern_1^{\beta}(F)$ respectively. +It suffices to find their intersection in +$q\in [0, \chern_1^{\beta}(F)]$, if it exists, +and evaluating on of the $f_i$ there. +The intersection exists, provided that +$f_1(\chern_1^{\beta}(F)) \geq f_2(\chern_1^{\beta}(F))=R$, +or equivalently, +$R \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$. +Solving for $f_1(q)=f_2(q)$ yields +\begin{equation*} + q=\sage{q_sol.expand()} +\end{equation*} +And evaluating $f_1$ at this $q$-value gives: +\begin{equation*} + \sage{main_theorem1.corollary_intermediate} +\end{equation*} +Finally, noting that $\Delta(v)=\psi^2\ell^2$, we get the bound as +stated in the corollary. + +\end{proof} + +\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] +\label{exmpl:recurring-second} +Just like in example \ref{exmpl:recurring-first}, take +$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so +that $m=2$, $\beta=\sage{recurring.betaminus}$, +giving $n=\sage{recurring.n}$. + +Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that +the ranks of tilt semistabilizers for $v$ are bounded above by +$\sage{recurring.corrolary_bound} \approx \sage{float(recurring.corrolary_bound)}$, +which is much closer to real maximum 25 than the original bound 144. +\end{example} + +\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] +\label{exmpl:extravagant-second} +Just like in example \ref{exmpl:extravagant-first}, take +$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so +that $m=2$, $\beta=\sage{extravagant.betaminus}$, +giving $n=\sage{extravagant.n}$. + +Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that +the ranks of tilt semistabilizers for $v$ are bounded above by +$\sage{extravagant.corrolary_bound} \approx \sage{float(extravagant.corrolary_bound)}$, +which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the +original bound 215296. +\end{example} +%% refinements using specific values of q and beta + +These bound can be refined a bit more by considering restrictions from the +possible values that $r$ take. +Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact +that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of +$\frac{1}{2}\ZZ$ is at least $\frac{1}{2n^2}$ away. However this a +conservative estimate, and a larger gap can sometimes be guaranteed if we know +this value of $\frac{1}{2n^2}\ZZ$ explicitly. + +The expressions that will follow will be a bit more complicated and have more +parts which depend on the values of $q$ and $\beta$, even their numerators +$\aa,\bb$ specifically. The upcoming theorem (TODO ref) is less useful as a +`clean' formula for a bound on the ranks of the pseudo-semistabilizers, but has a +purpose in the context of writing a computer program to find +pseudo-semistabilizers. Such a program would iterate through possible values of +$q$, then iterate through values of $r$ within the bounds (dependent on $q$), +which would then determine $c$, and then find the corresponding possible values +for $d$. + + +Firstly, we only need to consider $r$-values for which $c\coloneqq\chern_1(E)$ is +integral: + +\begin{equation} + c = + \sage{c_in_terms_of_q.subs([q_value_expr,beta_value_expr])} + \in \ZZ +\end{equation} + +\noindent +That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to +$n$, and so invertible mod $n$). + + +\noindent +Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$. + +Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_F$ in the +proof of theorem \ref{thm:rmax_with_uniform_eps}: + +\begin{lemmadfn}[ + Finding a better alternative to $\epsilon_v$: + $\epsilon_{v,q}$ + ] + \label{lemdfn:epsilon_q} + Suppose $d \in \frac{1}{\lcm(m,2n^2)}\ZZ$ satisfies the condition in + eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. + That is: + + \begin{equation*} + \sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()} + \end{equation*} + + \noindent + Then we have: + + \begin{equation} + \label{eqn:epsilon_q_lemma_prop} + d - \frac{(\aa r + 2\bb)\aa}{2n^2} + \geq \epsilon_{v,q} \geq \epsilon_v > 0 + \end{equation} + + \noindent + Where $\epsilon_{v,q}$ is defined as follows: + + \begin{equation*} + \epsilon_{v,q} \coloneqq + \frac{k_{q}}{\lcm(m,2n^2)} + \end{equation*} + with $k_{v,q}$ being the least $k\in\ZZ_{>0}$ satisfying + \begin{equation*} + k \equiv -\aa\bb \frac{m}{\gcd(m,2n^2)} + \mod{\gcd\left( + \frac{n^2\gcd(m,2)}{\gcd(m,2n^2)}, + \frac{mn\aa}{\gcd(m,2n^2)} + \right)} + \end{equation*} + +\end{lemmadfn} + +\vspace{10pt} + +\begin{proof} + +Consider the following sequence of logical implications. +The one-way implication follows from +$\aa r + \bb \equiv 0 \pmod{n}$, +and the final logical equivalence is just a simplification of the expressions. + +\begin{align} + \frac{ x }{ \lcm(m,2) } + - \frac{ + (\aa r+2\bb)\aa + }{ + 2n^2 + } + = \frac{ k }{ \lcm(m,2n^2) } + \quad \text{for some } x \in \ZZ + \span \span \span \span \span + \label{eqn:finding_better_eps_problem} +\\ \nonumber +\\ \Leftrightarrow& & + - (\aa r+2\bb)\aa + \frac{\lcm(m,2n^2)}{2n^2} + &\equiv k && + \nonumber +\\ &&& + \mod \frac{\lcm(m,2n^2)}{\lcm(m,2)} + \span \span \span + \nonumber +\\ \Rightarrow& & + - \bb\aa + \frac{\lcm(m,2n^2)}{2n^2} + &\equiv k && + \nonumber +\\ &&& + \mod \gcd\left( + \frac{\lcm(m,2n^2)}{\lcm(m,2)}, + \frac{n \aa \lcm(m,2n^2)}{2n^2} + \right) + \span \span \span + \nonumber +\\ \Leftrightarrow& & + - \bb\aa + \frac{m}{\gcd(m,2n^2)} + &\equiv k && + \label{eqn:better_eps_problem_k_mod_n} +\\ &&& + \mod \gcd\left( + \frac{n^2\gcd(m,2)}{\gcd(m,2n^2)}, + \frac{mn \aa}{\gcd(m,2n^2)} + \right) + \span \span \span + \nonumber +\end{align} + +In our situation, we want to find the least $k>0$ satisfying +eqn \ref{eqn:finding_better_eps_problem}. +Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n}, +we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition +(a computation only depending on $q$ and $\beta$, but not $r$). +We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying eqn +\ref{eqn:finding_better_eps_problem}, giving the first inequality in eqn +\ref{eqn:epsilon_q_lemma_prop}. +Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality: +$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$. + +\end{proof} + +\begin{sagesilent} +from plots_and_expressions import main_theorem2 +\end{sagesilent} +\begin{theorem}[Bound on $r$ \#3] +\label{thm:rmax_with_eps1} + Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$ + rational and expressed in lowest terms. + Then the ranks $r$ of the pseudo-semistabilizers $u$ for $v$ with, + which are solutions to problem \ref{problem:problem-statement-2}, + $\chern_1^\beta(u) = q = \frac{b_q}{n}$ + are bounded above by the following expression: + + \begin{align*} + \min + \left( + \sage{main_theorem2.r_upper_bound1}, \:\: + \sage{main_theorem2.r_upper_bound2} + \right) + \end{align*} + Where $k_{v,q}$ is defined as in definition/lemma \ref{lemdfn:epsilon_q}, + and $R = \chern_0(v)$ + + Furthermore, if $\aa \not= 0$ then + $r \equiv \aa^{-1}b_q \pmod{n}$. +\end{theorem} + +Although the general form of this bound is quite complicated, it does simplify a +lot when $m$ is small. + +\begin{sagesilent} +from plots_and_expressions import main_theorem2_corollary +\end{sagesilent} +\begin{corollary}[Bound on $r$ \#3 on $\PP^2$ and Principally polarized abelian surfaces] +\label{cor:rmax_with_eps1} + Suppose we are working over $\PP^2$ or a principally polarized abelian surface + (or any other surfaces with $m=1$ or $2$). + Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$ + rational and expressed in lowest terms. + Then the ranks $r$ of the pseudo-semistabilizers $u$ for $v$ with, + which are solutions to problem \ref{problem:problem-statement-2}, + $\chern_1^\beta(u) = q = \frac{b_q}{n}$ + are bounded above by the following expression: + + \begin{align*} + \min + \left( + \sage{main_theorem2_corollary.r_upper_bound1}, \:\: + \sage{main_theorem2_corollary.r_upper_bound2} + \right) + \end{align*} + Where $R = \chern_0(v)$ and $k_{v,q}$ is the least + $k\in\ZZ_{>0}$ satisfying + \begin{equation*} + k \equiv -\aa\bb + \pmod{n} + \end{equation*} + + \noindent + Furthermore, if $\aa \not= 0$ then + $r \equiv \aa^{-1}b_q \pmod{n}$. +\end{corollary} + +\begin{proof} +This is a specialisation of theorem \ref{thm:rmax_with_eps1}, where we can +drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both +$2$ and $2n^2$, and that $a_v$ is coprime to $n$. +\end{proof} + +\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] +\label{exmpl:recurring-third} +Just like in examples \ref{exmpl:recurring-first} and +\ref{exmpl:recurring-second}, +take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that +$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$ +and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. +%% TODO transcode notebook code +The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ +in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: + +\begin{sagesilent} +from examples import bound_comparisons +qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring) +\end{sagesilent} + +\vspace{1em} +\noindent +\directlua{ table_width = 3*4+1 } +\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}} + $q=\chern_1^\beta(u)$ +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" + tex.sprint(cell) +end} + \\ \hline + Thm \ref{thm:rmax_with_uniform_eps} +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" + tex.sprint(cell) +end} + \\ + Thm \ref{thm:rmax_with_eps1} +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" + tex.sprint(cell) +end} +\end{tabular} +\vspace{1em} + +\noindent +It's worth noting that the bounds given by theorem \ref{thm:rmax_with_eps1} +reach, but do not exceed the actual maximum rank 25 of the +pseudo-semistabilizers of $v$ in this case. +As a reminder, the original loose bound from theorem \ref{thm:loose-bound-on-r} +was 144. + +\end{example} + +\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] +\label{exmpl:extravagant-third} +Just like in examples \ref{exmpl:extravagant-first} and +\ref{exmpl:extravagant-second}, +take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that +$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$ +and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. +This example was chosen because the $n$ value is moderatly large, giving more +possible values for $k_{v,q}$, in dfn/lemma \ref{lemdfn:epsilon_q}. This allows +for a larger possible difference between the bounds given by theorems +\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound +from the second being up to $\sage{n}$ times smaller, for any given $q$ value. +The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ +in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: + +\begin{sagesilent} +qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant) +\end{sagesilent} + + +\vspace{1em} +\noindent +\directlua{ table_width = 12 } +\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}} + $q=\chern_1^\beta(u)$ +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" + tex.sprint(cell) +end} + &$\cdots$ + \\ \hline + Thm \ref{thm:rmax_with_uniform_eps} +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" + tex.sprint(cell) +end} + &$\cdots$ + \\ + Thm \ref{thm:rmax_with_eps1} +\directlua{for i=0,table_width-1 do + local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" + tex.sprint(cell) +end} + &$\cdots$ +\end{tabular} +\vspace{1em} + + +\noindent +However the reduction in the overall bound on $r$ is not as drastic, since all +possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through +cyclically as we consider successive possible values for $q$. +And for each $q$ where $k_{v,q}=1$, both theorems give the same bound. +Calculating the maximums over all values of $q$ yields +$\sage{max(theorem2_bounds)}$ for theorem \ref{thm:rmax_with_uniform_eps}, and +$\sage{max(theorem3_bounds)}$ for theorem \ref{thm:rmax_with_eps1}. +\end{example} + +\egroup % end scope where beta redefined to beta_{-} + +\subsubsection{All Semistabilizers Giving Sufficiently Large Circular Walls Left +of Vertical Wall} + + +Goals: +\begin{itemize} + \item refresher on strategy + \item point out no need for rational beta + \item calculate intersection of bounds? +\end{itemize} + +\subsection{Irrational \texorpdfstring{$\beta_{-}$}{ꞵ_}} + +Goals: +\begin{itemize} + \item Point out if only looking for sufficiently large wall, look at above + subsubsection + \item Relate to Pell's equation through coordinate change? + \item Relate to numerical condition described by Yanagida/Yoshioka +\end{itemize} + +\section{Computing solutions to Problem \ref{problem:problem-statement-2}} +\label{sect:prob2-algorithm} + +Alongside this article, there is a library \cite{NaylorRust2023} to compute +the solutions to problem \ref{problem:problem-statement-2}, using the theorems +above. + +The way it works, is by yielding solutions to the problem +$u=(r,c\ell,\frac{e}{2}\ell^2)$ as follows. + +\subsection{Iterating Over Possible +\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}} + +Given a Chern character $v$, the domain of the problem are first verified: that +$v$ has positive rank, that it satisfies $\Delta(v) \geq 0$, and that +$\beta_{-}(v)$ is rational. + +Take $\beta_{-}(v)=\frac{a_v}{n}$ in simplest terms. +Iterate over $q \in [0,\chern_1^{\beta_{-}}(v)]\cap\frac{1}{n}\ZZ$. + +For any $u = (r,c\ell,\frac{e}{2}\ell^2)$, satisfying +$\chern_1^{\beta_{-}}(u)=q$ for one of the $q$ considered is equivalent to +satisfying condition \ref{item:chern1bound:lem:num_test_prob2} +in corollary \ref{cor:num_test_prob2}. + +\subsection{Iterating Over Possible +\texorpdfstring{$r=\chern_0(u)$}{r} +for Fixed +\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} +} + +Let $q=\frac{b_q}{n}$ be one of the values of $\chern_1^{\beta_{-}}(u)$ that we +have fixed. As mentioned before, the only values of $r$ which can +give $\chern_1^{\beta_{-}}(u)=q$ are precisely the ones which satisfy +$a_v r \equiv b_q \pmod{n}$. +This is true for all integers when $\beta_{-}=0$ (and so $n=1$), but otherwise, +this is equivalent to +$r \equiv {a_v}^{-1}b_q \pmod{n}$, since $a_v$ and $n$ are coprime. + +Note that expressing $\mu(u)$ in term of $q$ and $r$ gives: +\begin{align*} + \mu(u) & = \frac{c}{r} = \frac{q+r\beta_{-}}{r} + \\ + &= \beta_{-} + \frac{q}{r} +\end{align*} + +So condition \ref{item:mubound:lem:num_test_prob2} in corollary +\ref{cor:num_test_prob2} is satisfied at this point precisely when: + +\begin{equation*} + r > \frac{q}{\mu(u) - \beta_{-}} +\end{equation*} + +Note that the right hand-side is greater than, or equal, to 0, so such $r$ also +satisfies \ref{item:rankpos:lem:num_test_prob2}. + +Then theorem \ref{thm:rmax_with_eps1} gives an upper on possible $r$ values +for which it is possible to satisfy conditions +\ref{item:bgmlvu:lem:num_test_prob2}, +\ref{item:bgmlvv-u:lem:num_test_prob2}, and +\ref{item:radiuscond:lem:num_test_prob2}. + +Iterate over such $r$ so that we are guarenteed to satisfy conditions +\ref{item:mubound:lem:num_test_prob2}, and +\ref{item:radiuscond:lem:num_test_prob2} +in corollary +\ref{cor:num_test_prob2}, and have a chance at satisfying the rest. + +\subsection{Iterating Over Possible +\texorpdfstring{$d=\chern_2(u)$}{d} +for Fixed +\texorpdfstring{$r=\chern_0(u)$}{r} +and +\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} +} + +At this point we have fixed $\chern_0(u)=r$ and +$\chern_1(u)=c=q+r\beta_{-}$. +And the cases considered are precisely the ones which satisfy conditions +\ref{item:chern1bound:lem:num_test_prob2}, +\ref{item:mubound:lem:num_test_prob2}, and +\ref{item:radiuscond:lem:num_test_prob2} +in corollary \ref{cor:num_test_prob2}. + +It remains to find $\chern_2(u)=d=\frac{e}{2}$ +which satisfy the remaining conditions +\ref{item:bgmlvu:lem:num_test_prob2}, +\ref{item:bgmlvv-u:lem:num_test_prob2}, and +\ref{item:radiuscond:lem:num_test_prob2}. +These conditions induce upper and lower bounds on $d$, and it then remains to +just pick the integers $e$ that give $d$ values within the bounds. + +Thus, through this process yielding all solutions $u=(r,c\ell,\frac{e}{2}\ell^2)$ +to the problem for this choice of $v$. \ No newline at end of file diff --git a/main.tex b/main.tex index a0ed17c0ac4f82237d46fbae92cae8be2564964d..9abcf6c0f7d069d3cd0700f94f2fc34ac0f20ed7 100644 --- a/main.tex +++ b/main.tex @@ -1,25 +1,20 @@ -\documentclass[class=article, crop=false]{standalone} -\usepackage[subpreambles=true]{standalone} -\onlyifstandalone{ +\documentclass[]{article} + \input{packages.tex} \input{newcommands.tex} \input{theoremstyles.tex} \usepackage{sagetex} \addbibresource{references.bib} -} -\begin{document} +\author{Luke Naylor} +\date{} +\begin{document} -\onlyifstandalone{ \title{Tighter Bounds for Ranks of Tilt Semistabilizers on Picard Rank 1 Surfaces \\[1em] \large Practical Methods for Narrowing Down Possible Walls} - -\author{Luke Naylor} -\date{} - \maketitle \begin{abstract} @@ -28,2007 +23,12 @@ Practical Methods for Narrowing Down Possible Walls} \newpage \tableofcontents -} \newpage -\section{Introduction} -\label{sec:intro} - -The theory of Bridgeland stability conditions \cite{BridgelandTom2007SCoT} on -complexes of sheaves was developed as a generalisation of stability for vector -bundles. The definition is most analoguous to Mumford stability, but is more -aware of the features that sheaves can have on spaces of dimension greater -than 1. Whilst also asymptotically matching up with Gieseker stability. -For K3 surfaces, explicit stability conditions were defined in -\cite{Bridgeland_StabK3}, and later shown to also be valid on other surfaces. - -The moduli spaces of stable objects of some fixed Chern character $v$ is -studied, as well as how they change as we vary the Bridgeland stability -condition. They in fact do not change over whole regions of the stability -space (called chambers), but do undergo changes as we cross `walls' in the -stability space. These are where there is some stable object $F$ of $v$ which -has a subobject who's slope overtakes the slope of $v$, making $F$ unstable -after crossing the wall. - -% NOTE: SURFACE SPECIALIZATION -% (come back to these when adjusting to general Picard rank 1) -In this document we concentrate on two surfaces: Principally polarized abelian -surfaces and the projective surface $\PP^2$. Although this can be generalised -for Picard rank 1 surfaces, the formulae will need adjusting. -The Bridgeland stability conditions (defined in \cite{Bridgeland_StabK3}) are -given by two parameters $\alpha \in \RR_{>0}$, $\beta \in \RR$, which will be -illustrated throughout this article with diagrams of the upper half plane. - -It is well known that for any rational $\beta_0$, -the vertical line $\{\sigma_{\alpha,\beta_0} \colon \alpha \in \RR_{>0}\}$ only -intersects finitely many walls -\cite[Thm 1.1]{LoJason2014Mfbs} -\cite[Prop 4.2]{alma9924569879402466} -\cite[Lemma 5.20]{MinaHiroYana_SomeModSp}. -A consequence of this is that if -$\beta_{-}$ is rational, then there can only be finitely many circular walls to the -left of the vertical wall $\beta = \mu$. -On the other hand, when $\beta_{-}$ is not rational, \cite{yanagida2014bridgeland} -showed that there are infinitely many walls. - -This dichotomy does not only hold for real walls, realised by actual objects in -$\bddderived(X)$, but also for pseudowalls. Here pseudowalls are defined as -`potential' walls, induced by hypothetical Chern characters of semistabilizers -which satisfy certain numerical conditions which would be satisfied by any real -destabilizer, regardless of whether they are realised by actual semistabilizers -in $\bddderived(X)$ (dfn \ref{dfn:pseudo-semistabilizer}). - -Since real walls are a subset of pseudowalls, the irrational $\beta_{-}$ case -follows immediately from the corresponding case for real walls. -However, the rational $\beta_{-}$ case involves showing that the following -conditions only admit finitely many solutions (despite the fact that the same -conditions admit infinitely many solutions when $\beta_{-}$ is irrational). - - -For a semistabilizing sequence -$E \hookrightarrow F \twoheadrightarrow G$ in $\mathcal{B}^\beta$ -we have the following conditions. -There are some Bogomolov-Gieseker inequalities: -$0 \leq \Delta(E), \Delta(G)$. -We also have a condition relating to the tilt category $\firsttilt\beta$: -$0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F)$. -Finally, there is a condition ensuring that the radius of the circular wall is -strictly positive: $\chern^{\beta_{-}}_2(E) > 0$. - -For any fixed $\chern_0(E)$, the inequality -$0 \leq \chern^{\beta}_1(E) \leq \chern^{\beta}_1(F)$, -allows us to bound $\chern_1(E)$. Then, the other inequalities allow us to -bound $\chern_2(E)$. The final part to showing the finiteness of pseudowalls -would be bounding $\chern_0(E)$. This has been hinted at in -\cite{SchmidtBenjamin2020Bsot} and done explicitly by Benjamin Schmidt within a -SageMath \cite{sagemath} library which computes pseudowalls -\cite{SchmidtGithub2020}. -Here we discuss these bounds in more detail, along with the methods used, -followed by refinements on them which give explicit formulae for tighter bounds -on $\chern_0(E)$ of potential destabilizers $E$ of $F$. - - -\section{Setting and Definitions: Clarifying `pseudo'} - -%\begin{definition}[Twisted Chern Character] -%\label{sec:twisted-chern} -%For a given $\beta$, define the twisted Chern character as follows. -%\[\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)\] -%\noindent -%Component-wise, this is: -%\begin{align*} -% \chern^\beta_0(E) &= \chern_0(E) -%\\ -% \chern^\beta_1(E) &= \chern_1(E) - \beta \chern_0(E) -%\\ -% \chern^\beta_2(E) &= \chern_2(E) - \beta \chern_1(E) + \frac{\beta^2}{2} \chern_0(E) -%\end{align*} -%where $\chern_i$ is the coefficient of $\ell^i$ in $\chern$. -% -%% TODO I think this^ needs adjusting for general Surface with $\ell$ -%\end{definition} -% -%$\chern^\beta_1(E)$ is the imaginary component of the central charge -%$\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$ -%satisfies $\chern^\beta_1 \geq 0$. - -Throughout this article, as noted in the introduction, we will be exclusively -working over surfaces $X$ with Picard rank 1, with a choice of ample line bundle -$L$ such that $\ell\coloneqq c_1(L)$ generates $NS(X)$. -We take $m\coloneqq \ell^2$ as this will be the main quantity which will -affect the results. - -\begin{definition}[Pseudo-semistabilizers] -\label{dfn:pseudo-semistabilizer} -% NOTE: SURFACE SPECIALIZATION - Given a Chern Character $v$, and a given stability - condition $\sigma_{\alpha,\beta}$, - a \textit{pseudo-semistabilizing} $u$ is a `potential' Chern character: - \[ - u = \left(r, c\ell, \frac{e}{\lcm(m,2)} \ell^2\right) - \qquad - r,c,e \in \ZZ - \] - which has the same tilt slope as $v$: - $\nu_{\alpha,\beta}(u) = \nu_{\alpha,\beta}(v)$. - - \noindent - Furthermore the following inequalities are satisfied: - \begin{itemize} - \item $\Delta(u) \geq 0$ - \item $\Delta(v-u) \geq 0$ - \item $0 \leq \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v)$ - \end{itemize} - - Note $u$ does not need to be a Chern character of an actual sub-object of some - object in the stability condition's heart with Chern character $v$. -\end{definition} - -At this point, and in this document, we do not care about whether -pseudo-semistabilizers are even Chern characters of actual elements of -$\bddderived(X)$, some other sources may have this extra restriction too. - -Later, Chern characters will be written $(r,c\ell,d\ell^2)$ because operations -(such as multiplication) are more easily defined in terms of the coefficients of -the $\ell^i$. However, at the end, it will become important again that -$d \in \frac{1}{\lcm(m,2)}\ZZ$. - -\begin{definition}[Pseudo-walls] -\label{dfn:pseudo-wall} - Let $u$ be a pseudo-semistabilizer of $v$, for some stability condition. - Then the \textit{pseudo-wall} associated to $u$ is the set of all stablity - conditions where $u$ is a pseudo-semistabilizer of $v$. -\end{definition} - -% TODO possibly reference forwards to Bertram's nested wall theorem section to -% cover that being a pseudo-semistabilizer somewhere implies also on whole circle - -\begin{lemma}[Sanity check for Pseudo-semistabilizers] - Given a stability - condition $\sigma_{\alpha,\beta}$, - if $E\hookrightarrow F\twoheadrightarrow G$ is a semistabilizing sequence in - $\firsttilt\beta$ for $F$. - Then $\chern(E)$ is a pseudo-semistabilizer of $\chern(F)$ -\end{lemma} - -\begin{proof} - Suppose $E\hookrightarrow F\twoheadrightarrow G$ is a semistabilizing - sequence with respect to a stability condition $\sigma_{\alpha,\beta}$. - \begin{equation*} - \chern(E) = -\chern(\homol^{-1}_{\coh}(E)) + \chern(\homol^{0}_{\coh}(E)) - \end{equation*} - Therefore, $\chern(E)$ is of the form - $(r,c\ell,\frac{e}{\lcm(m,2)}\ell^2)$ - provided that this is true for any coherent sheaf. - For any coherent sheaf $H$, we have the following: - \begin{equation*} - \chern(H) = \left(c_0(H), c_1(H), - c_2(H) + \frac{1}{2} {c_1(H)}^2\right) - \end{equation*} - Given that $\ell$ generates the Neron-Severi group, $c_1(H)$ can then be - written $c\ell$. - \begin{equation*} - \chern(H) = \left( - c_0(H), c\ell, - \left(- \frac{c_2(H)}{\ell^2} + \frac{c^2}{2} \right)\ell^2 - \right) - \end{equation*} - This fact along with $c_0$, $c_2$ being an integers on surfaces, and - $m\coloneqq \ell^2$ implies that $\chern(H)$ - (hence $\chern(E)$ too) is of the required form. - - - Since all the objects in the sequence are in $\firsttilt\beta$, we have - $\chern_1^{\beta} \geq 0$ for each of them. Due to additivity - ($\chern(F) = \chern(E) + \chern(G)$), we can deduce - $0 \leq \chern_1^{\beta}(E) \leq \chern_1^{\beta}(F)$. - - - $E \hookrightarrow F \twoheadrightarrow G$ being a semistabilizing sequence - means $\nu_{\alpha,\beta}(E) = \nu_{\alpha,\beta}(F) = \nu_{\alpha,\beta}(F)$. - % MAYBE: justify this harder - But also, that this is an instance of $F$ being semistable, so $E$ must also - be semistable - (otherwise the destabilizing subobject would also destabilize $F$). - Similarly $G$ must also be semistable too. - $E$ and $G$ being semistable implies they also satisfy the Bogomolov - inequalities: - % TODO ref Bogomolov inequalities for tilt stability - $\Delta(E), \Delta(G) \geq 0$. - Expressing this in terms of Chern characters for $E$ and $F$ gives: - $\Delta(\chern(E)) \geq 0$ and $\Delta(\chern(F)-\chern(E)) \geq 0$. - -\end{proof} - - -\section{Characteristic Curves of Stability Conditions Associated to Chern -Characters} - -% NOTE: SURFACE SPECIALIZATION -Considering the stability conditions with two parameters $\alpha, \beta$ on -Picard rank 1 surfaces. -We can draw 2 characteristic curves for any given Chern character $v$ with -$\Delta(v) \geq 0$ and positive rank. -These are given by the equations $\chern_i^{\alpha,\beta}(v)=0$ for $i=1,2$. - -\begin{definition}[Characteristic Curves $V_v$ and $\Theta_v$] -Given a Chern character $v$, with positive rank and $\Delta(v) \geq 0$, we -define two characteristic curves on the $(\alpha, \beta)$-plane: - -\begin{align*} - V_v &\colon \:\: \chern_1^{\alpha, \beta}(v) = 0 \\ - \Theta_v &\colon \:\: \chern_2^{\alpha, \beta}(v) = 0 -\end{align*} -\end{definition} - -\subsection{Geometry of the Characteristic Curves} - -These characteristic curves for a Chern character $v$ with $\Delta(v)\geq0$ are -not affected by flipping the sign of $v$ so it's only necessary to consider -non-negative rank. -As discussed in subsection \ref{subsect:relevance-of-V_v}, making this choice -has Gieseker stable coherent sheaves appearing in the heart of the stability -condition $\firsttilt{\beta}$ as we move `left' (decreasing $\beta$). - -\subsubsection{Positive Rank Case} -\label{subsect:positive-rank-case-charact-curves} - -\begin{fact}[Geometry of Characteristic Curves in Positive Rank Case] -The following facts can be deduced from the formulae for $\chern_i^{\alpha, \beta}(v)$ -as well as the restrictions on $v$, when $\chern_0(v)>0$: -\begin{itemize} - \item $V_v$ is a vertical line at $\beta=\mu(v)$ - \item $\Theta_v$ is a hyperbola with assymptotes angled at $\pm 45^\circ$ - crossing where $V_v$ meets the $\beta$-axis: $(\mu(v),0)$ - \item $\Theta_v$ is oriented with left-right branches (as opposed to up-down). - The left branch shall be labelled $\Theta_v^-$ and the right $\Theta_v^+$. - \item The gap along the $\beta$-axis between either branch of $\Theta_v$ - and $V_v$ is $\sqrt{\Delta(v)}/\chern_0(v)$. - \item When $\Delta(v)=0$, $\Theta_v$ degenerates into a pair of lines, but the - labels $\Theta_v^\pm$ will still be used for convenience. -\end{itemize} -\end{fact} - -These are illustrated in Fig \ref{fig:charact_curves_vis} -(dotted line for $i=1$, solid for $i=2$). - -\begin{sagesilent} -from characteristic_curves import \ -typical_characteristic_curves, \ -degenerate_characteristic_curves -\end{sagesilent} - - -\begin{figure} -\centering -\begin{subfigure}{.49\textwidth} - \centering - \sageplot[width=\textwidth]{typical_characteristic_curves} - \caption{$\Delta(v)>0$} - \label{fig:charact_curves_vis_bgmvlPos} -\end{subfigure}% -\hfill -\begin{subfigure}{.49\textwidth} - \centering - \sageplot[width=\textwidth]{degenerate_characteristic_curves} - \caption{ - $\Delta(v)=0$: hyperbola collapses - } - \label{fig:charact_curves_vis_bgmlv0} -\end{subfigure} -\caption{ - Characteristic curves ($\chern_i^{\alpha,\beta}(v)=0$) of stability conditions - associated to Chern characters $v$ with $\Delta(v) \geq 0$ and positive rank. -} -\label{fig:charact_curves_vis} -\end{figure} - -\begin{definition}[$\beta_{\pm}$] - \label{dfn:beta_pm} - Given a formal Chern character $v$ with positive rank, we define $\beta_{\pm}(v)$ to be - the $\beta$-coordinate of where $\Theta_v^{\pm}$ meets the $\beta$-axis: - \[ - \beta_\pm(R,C\ell,D\ell^2) = \frac{C \pm \sqrt{C^2-2RD}}{R} - \] - \noindent - In particular, this means $\beta_\pm(v)$ are the two roots of the quadratic - equation $\chern_2^{\beta}(v)=0$. - - This definition will be extended to the rank 0 case in definition \ref{dfn:beta_-_rank0}. -\end{definition} - - -\subsubsection{Rank Zero Case} -\label{subsubsect:rank-zero-case-charact-curves} - -\begin{sagesilent} -from rank_zero_case import Theta_v_plot -\end{sagesilent} - -\begin{fact}[Geometry of Characteristic Curves in Rank 0 Case] -The following facts can be deduced from the formulae for $\chern_i^{\alpha, \beta}(v)$ -as well as the restrictions on $v$, when $\chern_0(v)=0$ and $\chern_1(v)>0$: - - -\begin{minipage}{0.5\textwidth} -\begin{itemize} - \item $V_v = \emptyset$ - \item $\Theta_v$ is a vertical line at $\beta=\frac{D}{C}$ - where $v=\left(0,C\ell,D\ell^2\right)$ -\end{itemize} -\end{minipage} -\hfill -\begin{minipage}{0.49\textwidth} - \sageplot[width=\textwidth]{Theta_v_plot} - %\caption{$\Delta(v)>0$} - %\label{fig:charact_curves_rank0} -\end{minipage} -\end{fact} - -We can view the characteristic curves for $\left(0,C\ell, D\ell^2\right)$ with $C>0$ as -the limiting behaviour of those of $\left(\varepsilon, C\ell, D\ell^2\right)$. -Indeed: -\begin{align*} - \mu\left(\varepsilon, C\ell, D\ell^2\right) = \frac{C}{\varepsilon} &\longrightarrow +\infty - \\ - \text{as} \:\: 0<\varepsilon &\longrightarrow 0 -\end{align*} -So we can view $V_v$ as moving off infinitely to the right, with $\Theta_v^+$ even further. -But also, considering the base point of $\Theta_v^-$: -\begin{align*} - \beta_{-}\left(\varepsilon, C\ell, D\ell^2\right) = \frac{C - \sqrt{C^2-2D\varepsilon}}{\varepsilon} - &\longrightarrow \frac{D}{C} - \\ - \text{as} \:\: 0<\varepsilon &\longrightarrow 0 - &\text{(via L'H\^opital)} -\end{align*} - -So we can view $\Theta_v^-$ as approaching the vertical line that $\Theta_v$ becomes. -For this reason, I will refer to the whole of $\Theta_v$ in the rank zero case -as $\Theta_v^-$ to be able to use the same terminology in both positive rank -and rank zero cases. - -\begin{definition}[Extending $\beta_-$ to rank 0 case] - \label{dfn:beta_-_rank0} - Given a formal Chern character $v$ with rank 0 and $\chern_1(v)>0$, we define - $\beta_-(v)$ to be the $\beta$-coordinate of point where $\Theta_v$ meets the - $\beta$-axis: - \[ - \beta_-(0,C\ell,D\ell^2) = \frac{D}{C} - \] - \noindent - If $\beta_+$ were also to be generalised to the rank 0 case, we would consider - its value to be $+\infty$ due to the discussion above. -\end{definition} - - -\subsection{Relevance of \texorpdfstring{$V_v$}{V_v}} -\label{subsect:relevance-of-V_v} - -For the positive rank case, by definition of the first tilt $\firsttilt\beta$, objects of Chern character -$v$ can only be in $\firsttilt\beta$ on the left of $V_v$, where -$\chern_1^{\alpha,\beta}(v)>0$, and objects of Chern character $-v$ can only be -in $\firsttilt\beta$ on the right, where $\chern_1^{\alpha,\beta}(-v)>0$. In -fact, if there is a Gieseker semistable coherent sheaf $E$ of Chern character -$v$, then $E \in \firsttilt\beta$ if and only if $\beta<\mu(E)$ (left of the -$V_v$), and $E[1] \in \firsttilt\beta$ if and only if $\beta\geq\mu(E)$. -Because of this, when using these characteristic curves, only positive ranks are -considered, as negative rank objects are implicitly considered on the right hand -side of $V_v$. - -In the rank zero case, this still applies if we consider $V_v$ to be -`infinitely to the right' ($\mu(v) = +\infty$). Precisely, Gieseker semistable -coherent sheaves $E$ of Chern character $v$ are contained in -$\firsttilt{\beta}$ for all $\beta$ - - - -\subsection{Relevance of \texorpdfstring{$\Theta_v$}{Θ_v}} - -Since $\chern_2^{\alpha, \beta}$ is the numerator of the tilt slope -$\nu_{\alpha, \beta}$. The curve $\Theta_v$, where this is 0, firstly divides the -$(\alpha$-$\beta)$-half-plane into regions where the signs of tilt slopes of -objects of Chern character $v$ (or $-v$) are fixed. Secondly, it gives more of a -fixed target for some $u=(r,c\ell,d\frac{1}{2}\ell^2)$ to be a -pseudo-semistabilizer of $v$, in the following sense: If $(\alpha,\beta)$, is on -$\Theta_v$, then for any $u$, $u$ can only be a pseudo-semistabilizer of $v$ if -$\nu_{\alpha,\beta}(u)=0$, and hence $\chern_2^{\alpha, \beta}(u)=0$. In fact, -this allows us to use the characteristic curves of some $v$ and $u$ (with -$\Delta(v), \Delta(u)\geq 0$ and positive ranks) to determine the location of -the pseudo-wall where $u$ pseudo-semistabilizes $v$. This is done by finding the -intersection of $\Theta_v$ and $\Theta_u$, the point $(\beta,\alpha)$ where -$\nu_{\alpha,\beta}(u)=\nu_{\alpha,\beta}(v)=0$, and a pseudo-wall point on -$\Theta_v$, and hence the apex of the circular pseudo-wall with centre $(\beta,0)$ -(as per subsection \ref{subsect:bertrams-nested-walls}). - - -\subsection{Bertram's Nested Wall Theorem} -\label{subsect:bertrams-nested-walls} - -Although Bertram's nested wall theorem can be proved more directly, it's also -important for the content of this document to understand the connection with -these characteristic curves. -Emanuele Macri noticed in (TODO ref) that any circular wall of $v$ reaches a critical -point on $\Theta_v$ (TODO ref). This is a consequence of -$\frac{\delta}{\delta\beta} \chern_2^{\alpha,\beta} = -\chern_1^{\alpha,\beta}$. -This fact, along with the hindsight knowledge that non-vertical walls are -circles with centers on the $\beta$-axis, gives an alternative view to see that -the circular walls must be nested and non-intersecting. - -\subsection{Characteristic Curves for Pseudo-semistabilizers} - -These characteristic curves introduced are convenient tools to think about the -numerical conditions that can be used to test for pseudo-semistabilizers, and -for solutions to the problems -(\ref{problem:problem-statement-1},\ref{problem:problem-statement-2}) -tackled in this article (to be introduced later). -In particular, problem (\ref{problem:problem-statement-1}) will be translated to -a list of numerical inequalities on it's solutions $u$. -% ref to appropriate lemma when it's written - -The next lemma is a key to making this translation and revolves around the -geometry and configuration of the characteristic curves involved in a -semistabilizing sequence. - -\begin{lemma}[Numerical tests for left-wall pseudo-semistabilizers] -\label{lem:pseudo_wall_numerical_tests} -Let $v$ and $u$ be Chern characters with $\Delta(v), -\Delta(u)\geq 0$, and $v$ has non-negative rank (and $\chern_1(v)>0$ if rank 0). -Let $P$ be a point on $\Theta_v^-$. - -\noindent -The following conditions: -\begin{enumerate} -\item $u$ is a pseudo-semistabilizer of $v$ at some point on $\Theta_v^-$ above - $P$ -\item $u$ destabilizes $v$ going `inwards', that is, - $\nu_{\alpha,\beta}(u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and - $\nu_{\alpha,\beta}(u)>\nu_{\alpha,\beta}(v)$ inside. -\end{enumerate} - -\noindent -are equivalent to the following more numerical conditions: -\begin{enumerate} - \item $u$ has positive rank - \item $\beta(P)<\mu(u)<\mu(v)$, i.e. $V_u$ is strictly between $P$ and $V_v$. - \item $\chern_1^{\beta(P)}(u) \leq \chern_1^{\beta(P)}(v)$, $\Delta(v-u) \geq 0$ - \item $\chern_2^{P}(u)>0$ -\end{enumerate} -\end{lemma} - -\begin{proof} -Let $u,v$ be Chern characters with -$\Delta(u),\Delta(v) \geq 0$, and $v$ has positive rank. - - -For the forwards implication, assume that the suppositions of the lemma are -satisfied. Let $Q$ be the point on $\Theta_v^-$ (above $P$) where $u$ is a -pseudo-semistabilizer of $v$. -Firstly, consequence 3 is part of the definition for $u$ being a -pseudo-semistabilizer at a point with same $\beta$ value of $P$ (since the -pseudo-wall surrounds $P$). -If $u$ were to have 0 rank, it's tilt slope would be decreasing as $\beta$ -increases, contradicting supposition b. So $u$ must have strictly non-zero rank, -and we can consider it's characteristic curves (or that of $-u$ in case of -negative rank). -$\nu_Q(v)=0$, and hence $\nu_Q(u)=0$ too. This means that $\Theta_{\pm u}$ must -intersect $\Theta_v^-$ at $Q$. Considering the shapes of the hyperbolae alone, -there are 3 distinct ways that they can intersect, as illustrated in Fig -\ref{fig:hyperbol-intersection}. These cases are distinguished by whether it is -the left, or the right branch of $\Theta_u$ involved, as well as the positions -of the base. However, considering supposition b, only case 3 (green in -figure) is possible. This is because we need $\nu_{P}(u)>0$ (or $\nu_{P}(-u)>0$ in -case 1 involving $\Theta_u^+$), to satisfy supposition b. -Recalling how the sign of $\nu_{\alpha,\beta}(\pm u)$ changes (illustrated in -Fig \ref{fig:charact_curves_vis}), we can eliminate cases 1 and 2. - -\begin{sagesilent} -from characteristic_curves import \ -hyperbola_intersection_plot, \ -correct_hyperbola_intersection_plot -\end{sagesilent} - -\begin{figure} -\begin{subfigure}[t]{0.48\textwidth} - \centering - \sageplot[width=\textwidth]{hyperbola_intersection_plot()} - \caption{Three ways the characteristic hyperbola for $u$ can intersect the left - branch of the characteristic hyperbola for $v$} - \label{fig:hyperbol-intersection} -\end{subfigure} -\hfill -\begin{subfigure}[t]{0.48\textwidth} - \centering - \sageplot[width=\textwidth]{correct_hyperbola_intersection_plot()} - \caption{Closer look at characteristic curves for valid case} - \label{fig:correct-hyperbol-intersection} -\end{subfigure} -\end{figure} - -Fixing attention on the only possible case (2), illustrated in Fig -\ref{fig:correct-hyperbol-intersection}. -$P$ is on the left of $V_{\pm u}$ (first part of consequence 2), so $u$ must -have positive rank (consequence 1) -to ensure that $\chern_1^{\beta(P)} \geq 0$ (since the pseudo-wall passed over -$P$). -Furthermore, $P$ being on the left of $V_u$ implies -$\chern_1^{\beta{P}}(u) \geq 0$, -and therefore $\chern_2^{P}(u) > 0$ (consequence 4) to satisfy supposition b. -Next considering the way the hyperbolae intersect, we must have $\Theta_u^-$ taking a -base-point to the right $\Theta_v$, but then, further up, crossing over to the -left side. The latter fact implies that the assymptote for $\Theta_u^-$ must be -to the left of the one for $\Theta_v^-$. Given that they are parallel and -intersect the $\beta$-axis at $\beta=\mu(u)$ and $\beta=\mu(v)$ respectively. We -must have $\mu(u)<\mu(v)$ (second part of consequence 2), -that is, $V_u$ is strictly to the left of $V_v$. - - -Conversely, suppose that the consequences 1-4 are satisfied. Consequence 2 -implies that the assymptote for $\Theta_u^-$ is to the left of $\Theta_v^-$. -Consequence 4, along with $\beta(P)<\mu(u)$, implies that $P$ must be in the -region left of $\Theta_u^-$. These two facts imply that $\Theta_u^-$ is to the -right of $\Theta_v^-$ at $\alpha=\alpha(P)$, but crosses to the left side as -$\alpha \to +\infty$, intersection at some point $Q$ above $P$. -This implies that the characteristic curves for $u$ and $v$ are in the -configuration illustrated in Fig \ref{fig:correct-hyperbol-intersection}. -We then have $\nu(u)=\nu(v)$ along a circle to the left of $V_u$ reaching it's -apex at $Q$, and encircling $P$. This along with consequence 3 implies that $u$ -is a pseudo-semistabilizer at the point on the circle with $\beta=\beta(P)$. -Therefore, it's also a pseudo-semistabilizer further along the circle at $Q$ -(supposition a). -Finally, consequence 4 along with $P$ being to the left of $V_u$ implies -$\nu_P(u) > 0$ giving supposition b. - -The case with rank 0 can be handled the same way. - -\end{proof} - -\section{The Problem: Finding Pseudo-walls} - -As hinted in the introduction (\ref{sec:intro}), the main motivation of the -results in this article are not only the bounds on pseudo-semistabilizer -ranks; -but also applications for finding a list (comprehensive or subset) of -pseudo-walls. - -After introducing the characteristic curves of stability conditions associated -to a fixed Chern character $v$, we can now formally state the problems that we -are trying to solve for. - -\subsection{Problem statements} - -\begin{problem}[sufficiently large `left' pseudo-walls] -\label{problem:problem-statement-1} - -Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0), -and $\Delta(v) \geq 0$. -The goal is to find all pseudo-semistabilizers $u$ -which give circular pseudo-walls containing some fixed point -$P\in\Theta_v^-$. -With the added restriction that $u$ `destabilizes' $v$ moving `inwards', that is, -$\nu(u)>\nu(v)$ inside the circular pseudo-wall. -\end{problem} -This will give all pseudo-walls between the chamber corresponding to Gieseker -stability and the stability condition corresponding to $P$. -The purpose of the final `direction' condition is because, up to that condition, -semistabilizers are not distinguished from their corresponding quotients: -Suppose $E\hookrightarrow F\twoheadrightarrow G$, then the tilt slopes -$\nu_{\alpha,\beta}$ -are strictly increasing, strictly decreasing, or equal across the short exact -sequence (consequence of the see-saw principle). -In this case, $\chern(E)$ is a pseudo-semistabilizer of $\chern(F)$, if and -only if $\chern(G)$ is a pseudo-semistabilizer of $\chern(F)$. -The numerical inequalities in the definition for pseudo-semistabilizer cannot -tell which of $E$ or $G$ is the subobject. -However, what can be distinguished is the direction across the wall that -$\chern(E)$ or $\chern(G)$ destabilizes $\chern(F)$ -(they will each destabilize in the opposite direction to the other). -The `inwards' semistabilizers are preferred because we are moving from a -typically more familiar chamber -(the stable objects of Chern character $v$ in the outside chamber will only be -Gieseker stable sheaves). - -Also note that this last restriction does not remove any pseudo-walls found, -and if we do want to recover `outwards' semistabilizers, we can simply take -$v-u$ for each solution $u$ of the problem. - - -\begin{problem}[all `left' pseudo-walls] -\label{problem:problem-statement-2} - -Fix a Chern character $v$ with non-negative rank (and $\chern_1(v)>0$ if rank 0), -$\Delta(v) \geq 0$, and $\beta_{-}(v) \in \QQ$. -The goal is to find all pseudo-semistabilizers $u$ which give circular -pseudo-walls on the left side of $V_v$. -\end{problem} - -This is a specialization of problem (\ref{problem:problem-statement-1}) -with the choice $P=(\beta_{-},0)$, the point where $\Theta_v^-$ meets the -$\beta$-axis. -This is because all circular walls left of $V_v$ intersect $\Theta_v^-$ (once). -The $\beta_{-}(v) \in \QQ$ condition is to ensure that there are finitely many -solutions. As mentioned in the introduction (\ref{sec:intro}), this is known, -however this will also be proved again implicitly in section -\ref{sect:prob2-algorithm}, where an algorithm is produced to find all -solutions. - -This description still holds for the case of rank 0 case if we consider $V_v$ to -be infinitely far to the right -(see section \ref{subsubsect:rank-zero-case-charact-curves}). -Note also that the condition on $\beta_-(v)$ always holds for $v$ rank 0. - -\subsection{Numerical Formulations of the Problems} - -The problems introduced in this section are phrased in the context of stability -conditions. However, these can be reduced down completely to purely numerical -problem with the help of lemma \ref{lem:pseudo_wall_numerical_tests}. - -\begin{lemma}[Numerical Tests for Sufficiently Large `left' Pseudo-walls] - \label{lem:num_test_prob1} - Given a Chern character $v$ with non-negative rank - (and $\chern_1(v)>0$ if rank 0), - and $\Delta(v) \geq 0$, - and a choice of point $P$ on $\Theta_v^-$. - Solutions $u=(r,c\ell,d\ell^2)$ - to problem \ref{problem:problem-statement-1}. - Are precisely given by $r,c \in \ZZ$, $d \in \frac{1}{\lcm(m,2)}$ - satisfying the following conditions: - \begin{enumerate} - \item $r > 0$ - \label{item:rankpos:lem:num_test_prob1} - \item $\Delta(u) \geq 0$ - \label{item:bgmlvu:lem:num_test_prob1} - \item $\Delta(v-u) \geq 0$ - \label{item:bgmlvv-u:lem:num_test_prob1} - \item $\mu(u)<\mu(v)$ - \item $0\leq\chern_1^{\beta(P)}(u)\leq\chern_1^{\beta(P)}(v)$ - \label{item:chern1bound:lem:num_test_prob1} - \item $\chern_2^{P}(u)>0$ - \label{item:radiuscond:lem:num_test_prob1} - \end{enumerate} -\end{lemma} - -\begin{proof} - Consider the context of $v$ being a Chern character with non-negative rank - (and $\chern_1(v)>0$ if rank 0) - and - $\Delta \geq 0$, and $u$ being a Chern character with $\Delta(u) \geq 0$. - Lemma \ref{lem:pseudo_wall_numerical_tests} gives that the remaining - conditions for $u$ being a solution to problem - \ref{problem:problem-statement-1} are precisely equivalent to the - remaining conditions in this lemma. - % TODO maybe make this more explicit - % (the conditions are not exactly the same) - -\end{proof} - -\begin{corollary}[Numerical Tests for All `left' Pseudo-walls] -\label{cor:num_test_prob2} - Given a Chern character $v$ with positive rank and $\Delta(v) \geq 0$, - such that $\beta_{-}\coloneqq\beta_{-}(v) \in \QQ$. - Solutions $u=(r,c\ell,d\ell^2)$ - to problem \ref{problem:problem-statement-2}. - Are precisely given by $r,c \in \ZZ$, $d\in\frac{1}{\lcm(m,2)}\ZZ$ satisfying - the following conditions: - \begin{enumerate} - \item $r > 0$ - \label{item:rankpos:lem:num_test_prob2} - \item $\Delta(u) \geq 0$ - \label{item:bgmlvu:lem:num_test_prob2} - \item $\Delta(v-u) \geq 0$ - \label{item:bgmlvv-u:lem:num_test_prob2} - \item $\mu(u)<\mu(v)$ - \label{item:mubound:lem:num_test_prob2} - \item $0\leq\chern_1^{\beta_{-}}(u)\leq\chern_1^{\beta_{-}}(v)$ - \label{item:chern1bound:lem:num_test_prob2} - \item $\chern_2^{\beta_{-}}(u)>0$ - \label{item:radiuscond:lem:num_test_prob2} - \end{enumerate} -\end{corollary} - -\begin{proof} - This is a specialization of the previous lemma, using $P=(\beta_{-},0)$. - -\end{proof} - - -\section{B.Schmidt's Solutions to the Problems} - -\subsection{Bound on \texorpdfstring{$\chern_0(u)$}{ch0(u)} for Semistabilizers} -\label{subsect:loose-bound-on-r} - -The proof for the following theorem \ref{thm:loose-bound-on-r} was hinted at in -\cite{SchmidtBenjamin2020Bsot}, but the value appears explicitly in -\cite{SchmidtGithub2020}. The latter reference is a SageMath \cite{sagemath} -library for computing certain quantities related to Bridgeland stabilities on -Picard rank 1 varieties. It also includes functions to compute pseudo-walls and -pseudo-semistabilizers for tilt stability. - - -\begin{theorem}[Bound on $r$ - Benjamin Schmidt] -\label{thm:loose-bound-on-r} -Given a Chern character $v$ such that $\beta_-\coloneqq\beta_{-}(v)\in\QQ$, the rank $r$ of -any semistabilizer $E$ of some $F \in \firsttilt{\beta_-}$ with $\chern(F)=v$ is -bounded above by: - -\begin{equation*} - r \leq \frac{mn^2 \chern^{\beta_-}_1(v)^2}{\gcd(m,2n^2)} -\end{equation*} -\end{theorem} - -\begin{proof} -The Bogomolov form applied to the twisted Chern character is the same as the -normal one. So $0 \leq \Delta(E)$ yields: - -\begin{equation} - \label{eqn-bgmlv-on-E} - 2\chern^\beta_0(E) \chern^\beta_2(E) \leq \chern^\beta_1(E)^2 -\end{equation} - -\noindent -Furthermore, $E \hookrightarrow F$ in $\firsttilt{\beta_{-}}$ gives: -\begin{equation} - \label{eqn-tilt-cat-cond} - 0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F) -\end{equation} -% FUTURE maybe ref this back to some definition of first tilt - -\noindent -The restrictions on $\chern^{\beta_-}_0(E)$ and $\chern^{\beta_-}_2(E)$ -is best seen with the following graph: - -% TODO: hyperbola restriction graph (shaded) - - -This is where the rationality of $\beta_{-}$ comes in. If -$\beta_{-} = \frac{a_v}{n}$ for some $a_v,n \in \ZZ$. -Then $\chern^{\beta_-}_2(E) \in \frac{1}{\lcm(m,2n^2)}\ZZ$. -In particular, since $\chern_2^{\beta_-}(E) > 0$ (by using $P=(\beta_-,0)$ in -lemma \ref{lem:pseudo_wall_numerical_tests}) we must also have -$\chern^{\beta_-}_2(E) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a -bound for the rank of $E$: - -\begin{align} - \chern_0(E) &= \chern^{\beta_-}_0(E) \\ - &\leq \frac{\lcm(m,2n^2) \chern^{\beta_-}_1(E)^2}{2} \\ - &= \frac{mn^2 \chern^{\beta_-}_1(F)^2}{\gcd(m,2n^2)} -\end{align} - -\end{proof} - -\begin{sagesilent} -from examples import recurring -\end{sagesilent} - -\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] -\label{exmpl:recurring-first} -Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so -that $m=1$, $\beta_-=\sage{recurring.betaminus}$, -giving $n=\sage{recurring.n}$ and -$\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. - -Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of -tilt semistabilizers for $v$ are bounded above by $\sage{recurring.loose_bound}$. -However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum -rank that appears turns out to be 25. This will be a recurring example to -illustrate the performance of later theorems about rank bounds -\end{example} - -\begin{sagesilent} -from examples import extravagant -\end{sagesilent} - -\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] -\label{exmpl:extravagant-first} -Taking $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so -that $m=1$, $\beta_-=\sage{extravagant.betaminus}$, -giving $n=\sage{extravagant.n}$ and -$\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. - -Using the above theorem \ref{thm:loose-bound-on-r}, we get that the ranks of -tilt semistabilizers for $v$ are bounded above by $\sage{extravagant.loose_bound}$. -However, when computing all tilt semistabilizers for $v$ on $\PP^2$, the maximum -rank that appears turns out to be $\sage{extravagant.actual_rmax}$. -\end{example} - -\subsection{Pseudo-Wall Finding Method} - -The SageMath Library \cite{SchmidtGithub2020} provides a function which -calculates all solutions to problems \ref{problem:problem-statement-1} -or \ref{problem:problem-statement-2}. -Here is an outline of the algorithm involved to do this. Simplifications will be -made in the presentation to concentrate on the case we are interested in: -problem \ref{problem:problem-statement-2}, finding all pseudo-walls when $\beta_{-}\in\QQ$. -% FUTURE add reference to section explaining new alg -In section [ref], a different -algorithm will be presented making use of the later theorems in this article, -with the goal of cutting down the run time. - -\subsubsection{Finding possible \texorpdfstring{$r$}{r} and -\texorpdfstring{$c$}{c}} -To do this, first calculate the upper bound $r_{max}$ on the ranks of tilt -semistabilizers, as given by theorem \ref{thm:loose-bound-on-r}. - -Recalling consequence 2 of lemma \ref{lem:pseudo_wall_numerical_tests}, we can -iterate through the possible values of $\mu(u)=\frac{c}{r}$ taking a decreasing -sequence of all fractions between $\mu(v)$ and $\beta_{-}$, who's denominators -are no large than $r_{max}$ (giving a finite sequence). This can be done with -Farey sequences \cite[chapter 6]{alma994504533502466}, for which there exist -formulae to generate. - -These $\mu(u)$ values determine pairs $r,c$ up to multiples, we can then take -all multiples which satisy $0<r\leq r_{max}$. - -We now have a finite sequence of pairs $r,c$ for which there might be a solution -$(r,c\ell,d\ell^2)$ to our problem. In particular, any $(r,c\ell,d\ell^2)$ -satisfies consequence 2 of lemma \ref{lem:pseudo_wall_numerical_tests}, and the -positive rank condition. What remains is to find the $d$ values which satisfy -the Bogomolov inequalities and consequence 3 of lemma -\ref{lem:pseudo_wall_numerical_tests} -($\chern_2^{\beta_{-}}(u)>0$). - -\subsubsection{Finding \texorpdfstring{$d$}{d} for fixed \texorpdfstring{$r$}{r} -and \texorpdfstring{$c$}{c}} - -$\Delta(u) \geq 0$ induces an upper bound $\frac{c^2}{2r}$ on $d$, and the -$\chern_2^{\beta_{-}}(u)>0$ condition induces a lower bound on $d$. -The values in the range can be tested individually, to check that -the rest of the conditions are satisfied. - -\subsection{Limitations} - -The main downside of this algorithm is that many $r$,$c$ pairs which are tested -end up not yielding any solutions for the problem. -In fact, solutions $u$ to our problem with high rank must have $\mu(u)$ close to -$\beta_{-}$: -\begin{align*} - 0 &\leq \chern_1^{\beta_{-}}(u) \leq \chern_1^{\beta_{-}}(u) \\ - 0 &\leq \mu(u) - \beta_{-} \leq \frac{\chern_1^{\beta_{-}}(v)}{r} -\end{align*} -In particular, it's the $\chern_1^{\beta_{-}}(v-u) \geq 0$ conditions which -fails for $r$,$c$ pairs with large $r$ and $\frac{c}{r}$ too far from $\beta_{-}$. -This condition is only checked within the internal loop. -This, along with a conservative estimate for a bound on the $r$ values (as -illustrated in example \ref{exmpl:recurring-first}) occasionally leads to slow -computations. - -Here are some benchmarks to illustrate the performance benefits of the -alternative algorithm which will later be described in this article [ref]. - -\begin{center} -\begin{tabular}{ |r|l|l| } - \hline - Choice of $v$ on $\mathbb{P}^2$ - & $(3, 2\ell, -2)$ - & $(3, 2\ell, -\frac{15}{2})$ \\ - \hline - \cite[\texttt{tilt.walls_left}]{SchmidtGithub2020} exec time & \sim 20s & >1hr \\ - \cite{NaylorRust2023} exec time & \sim 50ms & \sim 50ms \\ - \hline -\end{tabular} -\end{center} - -\section{Tighter Bounds} -\label{sec:refinement} - -To get tighter bounds on the rank of destabilizers $E$ of some $F$ with some -fixed Chern character, we will need to consider each of the values which -$\chern_1^{\beta}(E)$ can take. -Doing this will allow us to eliminate possible values of $\chern_0(E)$ for which -each $\chern_1^{\beta}(E)$ leads to the failure of at least one of the inequalities. -As opposed to only eliminating possible values of $\chern_0(E)$ for which all -corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what -was implicitly happening before). - - -First, let us fix a Chern character for $F$, and some pseudo-semistabilizer -$u$ which is a solution to problem -\ref{problem:problem-statement-1} or -\ref{problem:problem-statement-2}. -Take $\beta = \beta(P)$ where $P\in\Theta_v^-$ is the choice made in problem -\ref{problem:problem-statement-1} -(or $\beta = \beta_{-}$ for problem \ref{problem:problem-statement-2}). - -\begin{align} - \chern(F) =\vcentcolon\: v \:=& \:(R,C\ell,D\ell^2) - && \text{where $R,C\in \ZZ$ and $D\in \frac{1}{\lcm(m,2)}\ZZ$} - \\ - u \coloneqq& \:(r,c\ell,d\ell^2) - && \text{where $r,c\in \ZZ$ and $d\in \frac{1}{\lcm(m,2)}\ZZ$} -\end{align} - - - -Recall from condition \ref{item:chern1bound:lem:num_test_prob1} in -lemma \ref{lem:num_test_prob1} -(or corollary \ref{cor:num_test_prob2}) -that $\chern_1^{\beta}(u)$ has fixed bounds in terms of $\chern_1^{\beta}(v)$, -and so we can write: - - - -\begin{sagesilent} -from plots_and_expressions import c_in_terms_of_q -\end{sagesilent} - -\begin{equation} - \label{eqn-cintermsofm} - c=\chern_1(u) = \sage{c_in_terms_of_q} - \qquad 0 \leq q \coloneqq \chern_1^{\beta}(u) \leq \chern_1^{\beta}(v) -\end{equation} - -Furthermore, $\chern_1 \in \ZZ$ so we only need to consider -$q \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)]$, -where $n$ is the denominator of $\beta$. -For the next subsections, we consider $q$ to be fixed with one of these values, -and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. - - -\subsection{Numerical Inequalities} - -This section studies the numerical conditions that $u$ must satisfy as per -lemma \ref{lem:num_test_prob1} -(or corollary \ref{cor:num_test_prob2}) - -\subsubsection{Size of pseudo-wall\texorpdfstring{: $\chern_2^P(u)>0$}{}} -\label{subsect-d-bound-radiuscond} - -This condition refers to condition -\ref{item:radiuscond:lem:num_test_prob1} -from lemma \ref{lem:num_test_prob1} -(or corollary \ref{cor:num_test_prob2}). - -In the case where we are tackling problem \ref{problem:problem-statement-2} -(with $\beta = \beta_{-}$), this condition, when expressed as a bound on $d$, -amounts to: - -\begin{align} -\label{eqn:radius-cond-betamin} - \chern_2^{\beta_{-}}(u) &> 0 \\ - d &> \beta_{-}q + \frac{1}{2} \beta_{-}^2r -\end{align} - -\begin{sagesilent} -import other_P_choice as problem1 -\end{sagesilent} - -In the case where we are tackling problem \ref{problem:problem-statement-1}, -with some Chern character $v$ with positive rank, and some choice of point -$P=(A,B) \in \Theta_v^-$. -Then $\sage{problem1.A2_subs}$ follows from $\chern_2^P(v)=0$. Using this substitution into the -condition $\chern_2^P(u)>0$ yields: - -\begin{equation} - \sage{problem1.radius_condition} -\end{equation} - -\noindent -Expressing this as a bound on $d$, then yields: - -\begin{equation} - \sage{problem1.radius_condition_d_bound} -\end{equation} - - -\subsubsection{Semistability of the Semistabilizer: - \texorpdfstring{ - $\Delta(u) \geq 0$ - }{ - Δ(u) ≥ 0 - } -} -This condition refers to condition -\ref{item:bgmlvu:lem:num_test_prob1} -from lemma \ref{lem:num_test_prob1} -(or corollary \ref{cor:num_test_prob2}). - - -\noindent -Expressing $\Delta(u)\geq 0$ in terms of $q$ as defined in eqn \ref{eqn-cintermsofm} -we get the following: - - -\begin{sagesilent} -from plots_and_expressions import bgmlv2_with_q -\end{sagesilent} - -\begin{equation} - \sage{bgmlv2_with_q} -\end{equation} - - -\noindent -This can be rearranged to express a bound on $d$ as follows -(recall from condition \ref{item:rankpos:lem:num_test_prob1} -in lemma \ref{lem:num_test_prob1} or corollary -\ref{cor:num_test_prob2} that $r>0$): - - -\begin{sagesilent} -from plots_and_expressions import bgmlv2_d_ineq -\end{sagesilent} -\begin{equation} - \label{eqn-bgmlv2_d_upperbound} - \sage{bgmlv2_d_ineq} -\end{equation} - -\begin{sagesilent} -from plots_and_expressions import bgmlv2_d_upperbound_terms -\end{sagesilent} -Viewing equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term -of $r$ again, there is a constant term -$\sage{bgmlv2_d_upperbound_terms.const}$, -a linear term -$\sage{bgmlv2_d_upperbound_terms.linear}$, -and a hyperbolic term -$\sage{bgmlv2_d_upperbound_terms.hyperbolic}$. -Notice that in the context of problem \ref{problem:problem-statement-2} -($\beta = \beta_{-}$), -the constant and linear terms match up with the ones -for the bound found for $d$ in subsubsection \ref{subsect-d-bound-radiuscond}. - -\subsubsection{Semistability of the Quotient: - \texorpdfstring{ - $\Delta(v-u) \geq 0$ - }{ - Δ(v-u) ≥ 0 - } -} -\label{subsect-d-bound-bgmlv3} - -This condition refers to condition -\ref{item:bgmlvv-u:lem:num_test_prob1} -from lemma \ref{lem:num_test_prob1} -(or corollary \ref{cor:num_test_prob2}). - -Expressing $\Delta(v-u)\geq 0$ in term of $q$ and rearranging as a bound on -$d$ yields: - - -\begin{sagesilent} -from plots_and_expressions import bgmlv3_d_upperbound_terms -\end{sagesilent} - -\begin{equation*} - \label{eqn-bgmlv3_d_upperbound} - d \leq - \sage{bgmlv3_d_upperbound_terms.linear} - + \sage{bgmlv3_d_upperbound_terms.const} - + \sage{bgmlv3_d_upperbound_terms.hyperbolic} - \qquad - \text{where }r>R -\end{equation*} - - -\noindent -For $r=R$, $\Delta(v-u)\geq 0$ is always true, and for $r<R$ it gives a lower -bound on $d$, but it is weaker than the one given by the lower bound in -subsubsection \ref{subsect-d-bound-radiuscond}. -Viewing the right hand side of equation \ref{eqn-bgmlv3_d_upperbound} -as a function of $r$, the linear and constant terms almost match up with the -ones in the previous section, up to the -$\chern_2^{\beta}(v)$ term. - - -However, when specializing to problem \ref{problem:problem-statement-2} again -(with $\beta = \beta_{-}$), then we have $\chern^{\beta}_2(v) = 0$. -And so in this context, the linear and constant terms do match up with the -previous subsubsections. - -\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem -\texorpdfstring{\ref{problem:problem-statement-2}}{2}} -\label{subsubsect:all-bounds-on-d-prob2} -%% RECAP ON INEQUALITIES TOGETHER - -%%%% RATIONAL BETA MINUS -As mentioned in passing, when specializing to solutions $u$ of problem -\ref{problem:problem-statement-2}, the bounds on -$d=\chern_2(u)$ induced by conditions -\ref{item:bgmlvu:lem:num_test_prob2}, -\ref{item:bgmlvv-u:lem:num_test_prob2}, and -\ref{item:radiuscond:lem:num_test_prob1} -from corollary \ref{cor:num_test_prob2} have the same constant and linear -terms in $r$, but different hyperbolic terms. -These give bounds with the same assymptotes when we take $r\to\infty$ -(for any fixed $q=\chern_1^{\beta_{-}}(u)$). - -% redefine \beta (especially coming from rendered SageMath expressions) -% to be \beta_{-} for the rest of this subsubsection -\bgroup - -\let\originalbeta\beta -\renewcommand\beta{{\originalbeta_{-}}} - -\begin{align} - d &>& - \frac{1}{2}\beta^2 r - &+ \beta q, - \phantom{+}& % to keep terms aligned - &\qquad\text{when\:} r > 0 - \label{eqn:radiuscond_d_bound_betamin} -\\ - d &\leq& - \sage{bgmlv2_d_upperbound_terms.problem2.linear} - &+ \sage{bgmlv2_d_upperbound_terms.problem2.const} - +& \sage{bgmlv2_d_upperbound_terms.problem2.hyperbolic}, - &\qquad\text{when\:} r > 0 - \label{eqn:bgmlv2_d_bound_betamin} -\\ - d &\leq& - \sage{bgmlv3_d_upperbound_terms.problem2.linear} - &+ \sage{bgmlv3_d_upperbound_terms.problem2.const} - % ^ ch_2^\beta(F)=0 for beta_{-} - +& \sage{bgmlv3_d_upperbound_terms.problem2.hyperbolic}, - &\qquad\text{when\:} r > R - \label{eqn:bgmlv3_d_bound_betamin} -\end{align} - - -\begin{sagesilent} -from plots_and_expressions import \ -bounds_on_d_qmin, \ -bounds_on_d_qmax -\end{sagesilent} - -\begin{figure} -\centering -\begin{subfigure}{.45\textwidth} - \centering - \sageplot[width=\linewidth]{bounds_on_d_qmin} - \caption{$q = 0$ (all bounds other than green coincide on line)} - \label{fig:d_bounds_xmpl_min_q} -\end{subfigure}% -\hfill -\begin{subfigure}{.45\textwidth} - \centering - \sageplot[width=\linewidth]{bounds_on_d_qmax} - \caption{$q = \chern^{\beta}(F)$ (all bounds other than blue coincide on line)} - \label{fig:d_bounds_xmpl_max_q} -\end{subfigure} -\caption{ - Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq\chern_0(E)$ for fixed, extreme, - values of $q\coloneqq\chern_1^{\beta}(E)$. - Where $\chern(F) = (3,2,-2)$. -} -\label{fig:d_bounds_xmpl_extrm_q} -\end{figure} - -Recalling that $q \coloneqq \chern^{\beta}_1(E) \in [0, \chern^{\beta}_1(F)]$, -it is worth noting that the extreme values of $q$ in this range lead to the -tightest bounds on $d$, as illustrated in figure -(\ref{fig:d_bounds_xmpl_extrm_q}). -In fact, in each case, one of the weak upper bounds coincides with one of the -weak lower bounds, (implying no possible destabilizers $E$ with -$\chern_0(E)=\vcentcolon r>R\coloneqq\chern_0(F)$ for these $q$-values). -This indeed happens in general since the right hand sides of -(eqn \ref{eqn:bgmlv2_d_bound_betamin}) and -(eqn \ref{eqn:radiuscond_d_bound_betamin}) match when $q=0$. -In the other case, $q=\chern^{\beta}_1(F)$, it is the right hand sides of -(eqn \ref{eqn:bgmlv3_d_bound_betamin}) and -(eqn \ref{eqn:radiuscond_d_bound_betamin}) which match. - - -The more generic case, when $0 < q\coloneqq\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$ -for the bounds on $d$ in terms of $r$ is illustrated in figure -(\ref{fig:d_bounds_xmpl_gnrc_q}). -The question of whether there are pseudo-destabilizers of arbitrarily large -rank, in the context of the graph, comes down to whether there are points -$(r,d) \in \ZZ \oplus \frac{1}{\lcm(m,2)} \ZZ$ (with large $r$) -% TODO have a proper definition for pseudo-destabilizers/walls -that fit above the yellow line (ensuring positive radius of wall) but below the -blue and green (ensuring $\Delta(u), \Delta(v-u) > 0$). -These lines have the same assymptote at $r \to \infty$ -(eqns \ref{eqn:bgmlv2_d_bound_betamin}, -\ref{eqn:bgmlv3_d_bound_betamin}, -\ref{eqn:radiuscond_d_bound_betamin}). -As mentioned in the introduction (sec \ref{sec:intro}), the finiteness of these -solutions is entirely determined by whether $\beta$ is rational or irrational. -Some of the details around the associated numerics are explored next. - -\begin{sagesilent} -from plots_and_expressions import typical_bounds_on_d -\end{sagesilent} - -\begin{figure} -\centering -\sageplot[width=\linewidth]{typical_bounds_on_d} -\caption{ - Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed - value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$. - Where $\chern(F) = (3,2,-2)$. -} -\label{fig:d_bounds_xmpl_gnrc_q} -\end{figure} - -\subsubsection{All Bounds on \texorpdfstring{$d$}{d} Together for Problem -\texorpdfstring{\ref{problem:problem-statement-1}}{1}} -\label{subsubsect:all-bounds-on-d-prob1} - -Unlike for problem \ref{problem:problem-statement-2}, -the bounds on $d=\chern_2(u)$ induced by conditions -\ref{item:bgmlvu:lem:num_test_prob2}, -\ref{item:bgmlvv-u:lem:num_test_prob2}, and -\ref{item:radiuscond:lem:num_test_prob1} -from corollary \ref{cor:num_test_prob2} have different -constant and linear terms, so that the graphs for upper -bounds do not share the same assymptote as the lower bound -(and they will turn out to intersect). - -\begin{align} - \sage{problem1.radius_condition_d_bound.lhs()} - &> - \sage{problem1.radius_condition_d_bound.rhs()} - &\text{where }r>0 - \label{eqn:prob1:radiuscond} - \\ - d &\leq - \sage{problem1.bgmlv2_d_upperbound_terms.linear} - + \sage{problem1.bgmlv2_d_upperbound_terms.const} - + \sage{problem1.bgmlv2_d_upperbound_terms.hyperbolic} - &\text{where }r>R - \label{eqn:prob1:bgmlv2} - \\ - d &\leq - \sage{problem1.bgmlv3_d_upperbound_terms.linear} - + \sage{problem1.bgmlv3_d_upperbound_terms.const} - + \sage{problem1.bgmlv3_d_upperbound_terms.hyperbolic} - &\text{where }r>R - \label{eqn:prob1:bgmlv3} -\end{align} - -Notice that as a function in $r$, the linear term in -equation \ref{eqn:prob1:radiuscond} is strictly greater than -those in equations \ref{eqn:prob1:bgmlv2} -and \ref{eqn:prob1:bgmlv3}. This is because $r$, $R$ -and $\chern_2^B(v)$ are all strictly positive: -\begin{itemize} - \item $R > 0$ from the setting of problem - \ref{problem:problem-statement-1} - \item $r > 0$ from lemma \ref{lem:num_test_prob1} - \item $\chern_2^B(v)>0$ because $B < \originalbeta_{-}$ due to the choice of $P$ being - a point on $\Theta_v^{-}$ -\end{itemize} - -This means that the lower bound for $d$ will be large than either of the two -upper bounds for sufficiently large $r$, and hence those values of $r$ would yield no -solution to problem \ref{problem:problem-statement-1}. - -A generic example of this is plotted in figure -\ref{fig:problem1:d_bounds_xmpl_gnrc_q}. - -\begin{figure} -\centering -\sageplot[width=\linewidth]{problem1.example_plot} -\caption{ - Bounds on $d\coloneqq\chern_2(E)$ in terms of $r\coloneqq \chern_0(E)$ for a fixed - value $\chern_1^{\beta}(F)/2$ of $q\coloneqq\chern_1^{\beta}(E)$. - Where $\chern(F) = (3,2,-2)$ and $P$ chosen as the point on $\Theta_v$ - with $B\coloneqq-2/3-1/99$ in the context of problem - \ref{problem:problem-statement-1}. -} -\label{fig:problem1:d_bounds_xmpl_gnrc_q} -\end{figure} - -\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem -\ref{problem:problem-statement-1}} - -As discussed at the end of subsection \ref{subsubsect:all-bounds-on-d-prob1} -(and illustrated in figure \ref{fig:problem1:d_bounds_xmpl_gnrc_q}), -there are no solutions $u$ to problem \ref{problem:problem-statement-1} -with large $r=\chern_0(u)$, since the lower bound on $d=\chern_2(u)$ is larger -than the upper bounds. -Therefore, we can calculate upper bounds on $r$ by calculating for which values, -the lower bound on $d$ is equal to one of the upper bounds on $d$ -(i.e. finding certain intersection points of the graph in figure -\ref{fig:problem1:d_bounds_xmpl_gnrc_q}). - -\begin{lemma}[Problem \ref{problem:problem-statement-1} upper Bound on $r$] -\label{lem:prob1:r_bound} - Let $u$ be a solution to problem \ref{problem:problem-statement-1} - and $q\coloneqq\chern_1^{B}(u)$. - Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression: - \begin{equation} - \sage{problem1.r_bound_expression} - \end{equation} -\end{lemma} - -\begin{proof} - Recall that $d\coloneqq\chern_2(u)$ has two upper bounds in terms of $r$: in - equations \ref{eqn:prob1:bgmlv2} and \ref{eqn:prob1:bgmlv3}; - and one lower bound: in equation \ref{eqn:prob1:radiuscond}. - - Solving for the lower bound in equation \ref{eqn:prob1:radiuscond} being - less than the upper bound in equation \ref{eqn:prob1:bgmlv2} yields: - \begin{equation} - r<\sage{problem1.positive_intersection_bgmlv2} - \end{equation} - - Similarly, but with the upper bound in equation \ref{eqn:prob1:bgmlv3}, gives: - \begin{equation} - r<\sage{problem1.positive_intersection_bgmlv3} - \end{equation} - - Therefore, $r$ is bounded above by the minimum of these two expressions which - can then be factored into the expression given in the lemma. - -\end{proof} - -The above lemma \ref{lem:prob1:r_bound} gives an upper bound on $r$ in terms of $q$. -But given that $0 \leq q \leq \chern_1^{B}(v)$, we can take the maximum of this -bound, over $q$ in this range, to get a simpler (but weaker) bound in the -following lemma \ref{lem:prob1:convenient_r_bound}. - -\begin{lemma} -\label{lem:prob1:convenient_r_bound} - Let $u$ be a solution to problem \ref{problem:problem-statement-1}. - Then $r\coloneqq\chern_0(u)$ is bounded above by the following expression: - \begin{equation} - \sage{problem1.r_max} - \end{equation} -\end{lemma} - -\begin{proof} - The first term of the minimum in lemma \ref{lem:prob1:r_bound} - increases linearly in $q$, and the second - decreases linearly. So the maximum is achieved with the value of - $q=q_{\mathrm{max}}$ where they are equal. - Solving for the two terms in the minimum to be equal yields: - $q_{\mathrm{max}}=\sage{problem1.maximising_q}$. - Substituting $q=q_{\mathrm{max}}$ into the bound in lemma - \ref{lem:prob1:r_bound} gives the bound as stated in the current lemma. - -\end{proof} - -\begin{note} - $q_{\mathrm{max}} > 0$ is immediate from the expression, but - $q_{\mathrm{max}} \leq \chern_1^{B}(v)$ is equivalent to $\Delta(v) \geq 0$, - which is true by assumption in this setting. -\end{note} - - -\subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{} in Problem -\ref{problem:problem-statement-2}} - -Now, the inequalities from the above subsubsection -\ref{subsubsect:all-bounds-on-d-prob2} will be used to find, for -each given $q=\chern^{\beta}_1(E)$, how large $r$ needs to be in order to leave -no possible solutions for $d$. At that point, there are no solutions -$u=(r,c\ell,d\ell^2)$ to problem \ref{problem:problem-statement-2}. -The strategy here is similar to what was shown in theorem -\ref{thm:loose-bound-on-r}. - - -\renewcommand{\aa}{{a_v}} -\newcommand{\bb}{{b_q}} -Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$. -Then fix a value of $q$: -\begin{equation} - q\coloneqq \chern_1^{\beta}(E) - =\frac{\bb}{n} - \in - \frac{1}{n} \ZZ - \cap [0, \chern_1^{\beta}(F)] -\end{equation} -as noted at the beginning of this section \ref{sec:refinement} so that we are -considering $u$ which satisfy \ref{item:chern1bound:lem:num_test_prob2} -in corollary \ref{cor:num_test_prob2}. - -Substituting the current values of $q$ and $\beta$ into the condition for the -radius of the pseudo-wall being positive -(eqn \ref{eqn:radiuscond_d_bound_betamin}) we get: - -\begin{sagesilent} -from plots_and_expressions import \ -positive_radius_condition_with_q, \ -q_value_expr, \ -beta_value_expr -\end{sagesilent} -\begin{equation} -\label{eqn:positive_rad_condition_in_terms_of_q_beta} - \frac{1}{\lcm(m,2)}\ZZ - \ni - \qquad - \sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()} - \qquad - \in - \frac{1}{2n^2}\ZZ -\end{equation} - - -\begin{sagesilent} -from plots_and_expressions import main_theorem1 -\end{sagesilent} -\begin{theorem}[Bound on $r$ \#1] -\label{thm:rmax_with_uniform_eps} - Let $v = (R,C\ell,D\ell^2)$ be a fixed Chern character. Then the ranks of the - pseudo-semistabilizers for $v$, - which are solutions to problem \ref{problem:problem-statement-2}, - with $\chern_1^\beta = q$ - are bounded above by the following expression. - - \begin{align*} - \min - \left( - \sage{main_theorem1.r_upper_bound1}, \:\: - \sage{main_theorem1.r_upper_bound2} - \right) - \end{align*} - - Taking the maximum of this expression over - $q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ - would give an upper bound for the ranks of all solutions to problem - \ref{problem:problem-statement-2}. -\end{theorem} - -\begin{proof} - -\noindent -Both $d$ and the lower bound in -(eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) -are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. -So, if any of the two upper bounds on $d$ come to within -$\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for -$d$. -Hence any corresponding $r$ cannot be a rank of a -pseudo-semistabilizer for $v$. - -To avoid this, we must have, -considering equations -\ref{eqn:bgmlv2_d_bound_betamin}, -\ref{eqn:bgmlv3_d_bound_betamin}, -\ref{eqn:radiuscond_d_bound_betamin}. - -\begin{sagesilent} -from plots_and_expressions import \ -assymptote_gap_condition1, assymptote_gap_condition2, k -\end{sagesilent} - - -\begin{align} - &\sage{assymptote_gap_condition1.subs(k==1)} \\ - &\sage{assymptote_gap_condition2.subs(k==1)} -\end{align} - -\noindent -This is equivalent to: - -\begin{equation} - \label{eqn:thm-bound-for-r-impossible-cond-for-r} - r \leq - \min\left( - \sage{ - main_theorem1.r_upper_bound1 - } , - \sage{ - main_theorem1.r_upper_bound2 - } - \right) -\end{equation} - -\end{proof} - - -\begin{sagesilent} -from plots_and_expressions import q_sol, bgmlv_v, psi -\end{sagesilent} - -\begin{corollary}[Bound on $r$ \#2] -\label{cor:direct_rmax_with_uniform_eps} - Let $v$ be a fixed Chern character and - $R\coloneqq\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$. - Then the ranks of the pseudo-semistabilizers for $v$, - which are solutions to problem \ref{problem:problem-statement-2}, - are bounded above by the following expression. - - \begin{equation*} - \sage{main_theorem1.corollary_r_bound} - \end{equation*} -\end{corollary} - -\begin{proof} -The ranks of the pseudo-semistabilizers for $v$ are bounded above by the -maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem -\ref{thm:rmax_with_uniform_eps}. -Noticing that the expression is a maximum of two quadratic functions in $q$: -\begin{equation*} - f_1(q)\coloneqq\sage{main_theorem1.r_upper_bound1} \qquad - f_2(q)\coloneqq\sage{main_theorem1.r_upper_bound2} -\end{equation*} -These have their minimums at $q=0$ and $q=\chern_1^{\beta}(F)$ respectively. -It suffices to find their intersection in -$q\in [0, \chern_1^{\beta}(F)]$, if it exists, -and evaluating on of the $f_i$ there. -The intersection exists, provided that -$f_1(\chern_1^{\beta}(F)) \geq f_2(\chern_1^{\beta}(F))=R$, -or equivalently, -$R \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$. -Solving for $f_1(q)=f_2(q)$ yields -\begin{equation*} - q=\sage{q_sol.expand()} -\end{equation*} -And evaluating $f_1$ at this $q$-value gives: -\begin{equation*} - \sage{main_theorem1.corollary_intermediate} -\end{equation*} -Finally, noting that $\Delta(v)=\psi^2\ell^2$, we get the bound as -stated in the corollary. - -\end{proof} - -\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] -\label{exmpl:recurring-second} -Just like in example \ref{exmpl:recurring-first}, take -$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so -that $m=2$, $\beta=\sage{recurring.betaminus}$, -giving $n=\sage{recurring.n}$. - -Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that -the ranks of tilt semistabilizers for $v$ are bounded above by -$\sage{recurring.corrolary_bound} \approx \sage{float(recurring.corrolary_bound)}$, -which is much closer to real maximum 25 than the original bound 144. -\end{example} - -\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] -\label{exmpl:extravagant-second} -Just like in example \ref{exmpl:extravagant-first}, take -$\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so -that $m=2$, $\beta=\sage{extravagant.betaminus}$, -giving $n=\sage{extravagant.n}$. - -Using the above corollary \ref{cor:direct_rmax_with_uniform_eps}, we get that -the ranks of tilt semistabilizers for $v$ are bounded above by -$\sage{extravagant.corrolary_bound} \approx \sage{float(extravagant.corrolary_bound)}$, -which is much closer to real maximum $\sage{extravagant.actual_rmax}$ than the -original bound 215296. -\end{example} -%% refinements using specific values of q and beta - -These bound can be refined a bit more by considering restrictions from the -possible values that $r$ take. -Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact -that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of -$\frac{1}{2}\ZZ$ is at least $\frac{1}{2n^2}$ away. However this a -conservative estimate, and a larger gap can sometimes be guaranteed if we know -this value of $\frac{1}{2n^2}\ZZ$ explicitly. - -The expressions that will follow will be a bit more complicated and have more -parts which depend on the values of $q$ and $\beta$, even their numerators -$\aa,\bb$ specifically. The upcoming theorem (TODO ref) is less useful as a -`clean' formula for a bound on the ranks of the pseudo-semistabilizers, but has a -purpose in the context of writing a computer program to find -pseudo-semistabilizers. Such a program would iterate through possible values of -$q$, then iterate through values of $r$ within the bounds (dependent on $q$), -which would then determine $c$, and then find the corresponding possible values -for $d$. - - -Firstly, we only need to consider $r$-values for which $c\coloneqq\chern_1(E)$ is -integral: - -\begin{equation} - c = - \sage{c_in_terms_of_q.subs([q_value_expr,beta_value_expr])} - \in \ZZ -\end{equation} - -\noindent -That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to -$n$, and so invertible mod $n$). - - -\noindent -Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$. - -Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_F$ in the -proof of theorem \ref{thm:rmax_with_uniform_eps}: - -\begin{lemmadfn}[ - Finding a better alternative to $\epsilon_v$: - $\epsilon_{v,q}$ - ] - \label{lemdfn:epsilon_q} - Suppose $d \in \frac{1}{\lcm(m,2n^2)}\ZZ$ satisfies the condition in - eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. - That is: - - \begin{equation*} - \sage{positive_radius_condition_with_q.subs([q_value_expr,beta_value_expr]).factor()} - \end{equation*} - - \noindent - Then we have: - - \begin{equation} - \label{eqn:epsilon_q_lemma_prop} - d - \frac{(\aa r + 2\bb)\aa}{2n^2} - \geq \epsilon_{v,q} \geq \epsilon_v > 0 - \end{equation} - - \noindent - Where $\epsilon_{v,q}$ is defined as follows: - - \begin{equation*} - \epsilon_{v,q} \coloneqq - \frac{k_{q}}{\lcm(m,2n^2)} - \end{equation*} - with $k_{v,q}$ being the least $k\in\ZZ_{>0}$ satisfying - \begin{equation*} - k \equiv -\aa\bb \frac{m}{\gcd(m,2n^2)} - \mod{\gcd\left( - \frac{n^2\gcd(m,2)}{\gcd(m,2n^2)}, - \frac{mn\aa}{\gcd(m,2n^2)} - \right)} - \end{equation*} - -\end{lemmadfn} - -\vspace{10pt} - -\begin{proof} - -Consider the following sequence of logical implications. -The one-way implication follows from -$\aa r + \bb \equiv 0 \pmod{n}$, -and the final logical equivalence is just a simplification of the expressions. - -\begin{align} - \frac{ x }{ \lcm(m,2) } - - \frac{ - (\aa r+2\bb)\aa - }{ - 2n^2 - } - = \frac{ k }{ \lcm(m,2n^2) } - \quad \text{for some } x \in \ZZ - \span \span \span \span \span - \label{eqn:finding_better_eps_problem} -\\ \nonumber -\\ \Leftrightarrow& & - - (\aa r+2\bb)\aa - \frac{\lcm(m,2n^2)}{2n^2} - &\equiv k && - \nonumber -\\ &&& - \mod \frac{\lcm(m,2n^2)}{\lcm(m,2)} - \span \span \span - \nonumber -\\ \Rightarrow& & - - \bb\aa - \frac{\lcm(m,2n^2)}{2n^2} - &\equiv k && - \nonumber -\\ &&& - \mod \gcd\left( - \frac{\lcm(m,2n^2)}{\lcm(m,2)}, - \frac{n \aa \lcm(m,2n^2)}{2n^2} - \right) - \span \span \span - \nonumber -\\ \Leftrightarrow& & - - \bb\aa - \frac{m}{\gcd(m,2n^2)} - &\equiv k && - \label{eqn:better_eps_problem_k_mod_n} -\\ &&& - \mod \gcd\left( - \frac{n^2\gcd(m,2)}{\gcd(m,2n^2)}, - \frac{mn \aa}{\gcd(m,2n^2)} - \right) - \span \span \span - \nonumber -\end{align} - -In our situation, we want to find the least $k>0$ satisfying -eqn \ref{eqn:finding_better_eps_problem}. -Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n}, -we can pick the smallest $k_{q,v} \in \ZZ_{>0}$ which satisfies this new condition -(a computation only depending on $q$ and $\beta$, but not $r$). -We are then guaranteed that $k_{v,q}$ is less than any $k$ satisfying eqn -\ref{eqn:finding_better_eps_problem}, giving the first inequality in eqn -\ref{eqn:epsilon_q_lemma_prop}. -Furthermore, $k_{v,q}\geq 1$ gives the second part of the inequality: -$\epsilon_{v,q}\geq\epsilon_v$, with equality when $k_{v,q}=1$. - -\end{proof} - -\begin{sagesilent} -from plots_and_expressions import main_theorem2 -\end{sagesilent} -\begin{theorem}[Bound on $r$ \#3] -\label{thm:rmax_with_eps1} - Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$ - rational and expressed in lowest terms. - Then the ranks $r$ of the pseudo-semistabilizers $u$ for $v$ with, - which are solutions to problem \ref{problem:problem-statement-2}, - $\chern_1^\beta(u) = q = \frac{b_q}{n}$ - are bounded above by the following expression: - - \begin{align*} - \min - \left( - \sage{main_theorem2.r_upper_bound1}, \:\: - \sage{main_theorem2.r_upper_bound2} - \right) - \end{align*} - Where $k_{v,q}$ is defined as in definition/lemma \ref{lemdfn:epsilon_q}, - and $R = \chern_0(v)$ - - Furthermore, if $\aa \not= 0$ then - $r \equiv \aa^{-1}b_q \pmod{n}$. -\end{theorem} - -Although the general form of this bound is quite complicated, it does simplify a -lot when $m$ is small. - -\begin{sagesilent} -from plots_and_expressions import main_theorem2_corollary -\end{sagesilent} -\begin{corollary}[Bound on $r$ \#3 on $\PP^2$ and Principally polarized abelian surfaces] -\label{cor:rmax_with_eps1} - Suppose we are working over $\PP^2$ or a principally polarized abelian surface - (or any other surfaces with $m=1$ or $2$). - Let $v$ be a fixed Chern character, with $\frac{a_v}{n}=\beta\coloneqq\beta(v)$ - rational and expressed in lowest terms. - Then the ranks $r$ of the pseudo-semistabilizers $u$ for $v$ with, - which are solutions to problem \ref{problem:problem-statement-2}, - $\chern_1^\beta(u) = q = \frac{b_q}{n}$ - are bounded above by the following expression: - - \begin{align*} - \min - \left( - \sage{main_theorem2_corollary.r_upper_bound1}, \:\: - \sage{main_theorem2_corollary.r_upper_bound2} - \right) - \end{align*} - Where $R = \chern_0(v)$ and $k_{v,q}$ is the least - $k\in\ZZ_{>0}$ satisfying - \begin{equation*} - k \equiv -\aa\bb - \pmod{n} - \end{equation*} - - \noindent - Furthermore, if $\aa \not= 0$ then - $r \equiv \aa^{-1}b_q \pmod{n}$. -\end{corollary} - -\begin{proof} -This is a specialisation of theorem \ref{thm:rmax_with_eps1}, where we can -drastically simplify the $\lcm$ and $\gcd$ terms by noting that $m$ divides both -$2$ and $2n^2$, and that $a_v$ is coprime to $n$. -\end{proof} - -\begin{example}[$v=(3, 2\ell, -2)$ on $\PP^2$] -\label{exmpl:recurring-third} -Just like in examples \ref{exmpl:recurring-first} and -\ref{exmpl:recurring-second}, -take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that -$\beta=\sage{recurring.betaminus}$, giving $n=\sage{recurring.n}$ -and $\chern_1^{\sage{recurring.betaminus}}(F) = \sage{recurring.twisted.ch[1]}$. -%% TODO transcode notebook code -The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ -in terms of the possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: - -\begin{sagesilent} -from examples import bound_comparisons -qs, theorem2_bounds, theorem3_bounds = bound_comparisons(recurring) -\end{sagesilent} - -\vspace{1em} -\noindent -\directlua{ table_width = 3*4+1 } -\begin{tabular}{l\directlua{for i=0,table_width-1 do tex.sprint([[|c]]) end}} - $q=\chern_1^\beta(u)$ -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" - tex.sprint(cell) -end} - \\ \hline - Thm \ref{thm:rmax_with_uniform_eps} -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" - tex.sprint(cell) -end} - \\ - Thm \ref{thm:rmax_with_eps1} -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" - tex.sprint(cell) -end} -\end{tabular} -\vspace{1em} - -\noindent -It's worth noting that the bounds given by theorem \ref{thm:rmax_with_eps1} -reach, but do not exceed the actual maximum rank 25 of the -pseudo-semistabilizers of $v$ in this case. -As a reminder, the original loose bound from theorem \ref{thm:loose-bound-on-r} -was 144. - -\end{example} - -\begin{example}[extravagant example: $v=(29, 13\ell, -3/2)$ on $\PP^2$] -\label{exmpl:extravagant-third} -Just like in examples \ref{exmpl:extravagant-first} and -\ref{exmpl:extravagant-second}, -take $\ell=c_1(\mathcal{O}(1))$ as the standard polarization on $\PP^2$, so that -$\beta=\sage{extravagant.betaminus}$, giving $n=\sage{n:=extravagant.n}$ -and $\chern_1^{\sage{extravagant.betaminus}}(F) = \sage{extravagant.twisted.ch[1]}$. -This example was chosen because the $n$ value is moderatly large, giving more -possible values for $k_{v,q}$, in dfn/lemma \ref{lemdfn:epsilon_q}. This allows -for a larger possible difference between the bounds given by theorems -\ref{thm:rmax_with_uniform_eps} and \ref{thm:rmax_with_eps1}, with the bound -from the second being up to $\sage{n}$ times smaller, for any given $q$ value. -The (non-exclusive) upper bounds for $r\coloneqq\chern_0(u)$ of a tilt semistabilizer $u$ of $v$ -in terms of the first few smallest possible values for $q\coloneqq\chern_1^{\beta}(u)$ are as follows: - -\begin{sagesilent} -qs, theorem2_bounds, theorem3_bounds = bound_comparisons(extravagant) -\end{sagesilent} - - -\vspace{1em} -\noindent -\directlua{ table_width = 12 } -\begin{tabular}{l\directlua{for i=0,table_width do tex.sprint([[|c]]) end}} - $q=\chern_1^\beta(u)$ -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{qs[]] .. i .. "]}$" - tex.sprint(cell) -end} - &$\cdots$ - \\ \hline - Thm \ref{thm:rmax_with_uniform_eps} -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{theorem2_bounds[]] .. i .. "]}$" - tex.sprint(cell) -end} - &$\cdots$ - \\ - Thm \ref{thm:rmax_with_eps1} -\directlua{for i=0,table_width-1 do - local cell = [[&$\noexpand\sage{theorem3_bounds[]] .. i .. "]}$" - tex.sprint(cell) -end} - &$\cdots$ -\end{tabular} -\vspace{1em} - - -\noindent -However the reduction in the overall bound on $r$ is not as drastic, since all -possible values for $k_{v,q}$ in $\{1,2,\ldots,\sage{n}\}$ are iterated through -cyclically as we consider successive possible values for $q$. -And for each $q$ where $k_{v,q}=1$, both theorems give the same bound. -Calculating the maximums over all values of $q$ yields -$\sage{max(theorem2_bounds)}$ for theorem \ref{thm:rmax_with_uniform_eps}, and -$\sage{max(theorem3_bounds)}$ for theorem \ref{thm:rmax_with_eps1}. -\end{example} - -\egroup % end scope where beta redefined to beta_{-} - -\subsubsection{All Semistabilizers Giving Sufficiently Large Circular Walls Left -of Vertical Wall} - - -Goals: -\begin{itemize} - \item refresher on strategy - \item point out no need for rational beta - \item calculate intersection of bounds? -\end{itemize} - -\subsection{Irrational \texorpdfstring{$\beta_{-}$}{ꞵ_}} - -Goals: -\begin{itemize} - \item Point out if only looking for sufficiently large wall, look at above - subsubsection - \item Relate to Pell's equation through coordinate change? - \item Relate to numerical condition described by Yanagida/Yoshioka -\end{itemize} - -\section{Computing solutions to Problem \ref{problem:problem-statement-2}} -\label{sect:prob2-algorithm} - -Alongside this article, there is a library \cite{NaylorRust2023} to compute -the solutions to problem \ref{problem:problem-statement-2}, using the theorems -above. - -The way it works, is by yielding solutions to the problem -$u=(r,c\ell,\frac{e}{2}\ell^2)$ as follows. - -\subsection{Iterating Over Possible -\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q}} - -Given a Chern character $v$, the domain of the problem are first verified: that -$v$ has positive rank, that it satisfies $\Delta(v) \geq 0$, and that -$\beta_{-}(v)$ is rational. - -Take $\beta_{-}(v)=\frac{a_v}{n}$ in simplest terms. -Iterate over $q \in [0,\chern_1^{\beta_{-}}(v)]\cap\frac{1}{n}\ZZ$. - -For any $u = (r,c\ell,\frac{e}{2}\ell^2)$, satisfying -$\chern_1^{\beta_{-}}(u)=q$ for one of the $q$ considered is equivalent to -satisfying condition \ref{item:chern1bound:lem:num_test_prob2} -in corollary \ref{cor:num_test_prob2}. - -\subsection{Iterating Over Possible -\texorpdfstring{$r=\chern_0(u)$}{r} -for Fixed -\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} -} - -Let $q=\frac{b_q}{n}$ be one of the values of $\chern_1^{\beta_{-}}(u)$ that we -have fixed. As mentioned before, the only values of $r$ which can -give $\chern_1^{\beta_{-}}(u)=q$ are precisely the ones which satisfy -$a_v r \equiv b_q \pmod{n}$. -This is true for all integers when $\beta_{-}=0$ (and so $n=1$), but otherwise, -this is equivalent to -$r \equiv {a_v}^{-1}b_q \pmod{n}$, since $a_v$ and $n$ are coprime. - -Note that expressing $\mu(u)$ in term of $q$ and $r$ gives: -\begin{align*} - \mu(u) & = \frac{c}{r} = \frac{q+r\beta_{-}}{r} - \\ - &= \beta_{-} + \frac{q}{r} -\end{align*} - -So condition \ref{item:mubound:lem:num_test_prob2} in corollary -\ref{cor:num_test_prob2} is satisfied at this point precisely when: - -\begin{equation*} - r > \frac{q}{\mu(u) - \beta_{-}} -\end{equation*} - -Note that the right hand-side is greater than, or equal, to 0, so such $r$ also -satisfies \ref{item:rankpos:lem:num_test_prob2}. - -Then theorem \ref{thm:rmax_with_eps1} gives an upper on possible $r$ values -for which it is possible to satisfy conditions -\ref{item:bgmlvu:lem:num_test_prob2}, -\ref{item:bgmlvv-u:lem:num_test_prob2}, and -\ref{item:radiuscond:lem:num_test_prob2}. - -Iterate over such $r$ so that we are guarenteed to satisfy conditions -\ref{item:mubound:lem:num_test_prob2}, and -\ref{item:radiuscond:lem:num_test_prob2} -in corollary -\ref{cor:num_test_prob2}, and have a chance at satisfying the rest. - -\subsection{Iterating Over Possible -\texorpdfstring{$d=\chern_2(u)$}{d} -for Fixed -\texorpdfstring{$r=\chern_0(u)$}{r} -and -\texorpdfstring{$q=\chern^{\beta_{-}}(u)$}{q} -} - -At this point we have fixed $\chern_0(u)=r$ and -$\chern_1(u)=c=q+r\beta_{-}$. -And the cases considered are precisely the ones which satisfy conditions -\ref{item:chern1bound:lem:num_test_prob2}, -\ref{item:mubound:lem:num_test_prob2}, and -\ref{item:radiuscond:lem:num_test_prob2} -in corollary \ref{cor:num_test_prob2}. - -It remains to find $\chern_2(u)=d=\frac{e}{2}$ -which satisfy the remaining conditions -\ref{item:bgmlvu:lem:num_test_prob2}, -\ref{item:bgmlvv-u:lem:num_test_prob2}, and -\ref{item:radiuscond:lem:num_test_prob2}. -These conditions induce upper and lower bounds on $d$, and it then remains to -just pick the integers $e$ that give $d$ values within the bounds. - -Thus, through this process yielding all solutions $u=(r,c\ell,\frac{e}{2}\ell^2)$ -to the problem for this choice of $v$. - +\input{content.tex} -\onlyifstandalone{ \newpage \printbibliography -} -\end{document} -% comment +\end{document} \ No newline at end of file