From fd5e8f3ad46b2beeac63cb7c3af8a90d8fa2db81 Mon Sep 17 00:00:00 2001 From: Luke Naylor <l.naylor@sms.ed.ac.uk> Date: Tue, 30 May 2023 16:12:20 +0100 Subject: [PATCH] Add statement to corrolary of 'bound on r 1' (real alternative to Schmidt's bound) --- main.tex | 27 +++++++++++++++++++++++++++ 1 file changed, 27 insertions(+) diff --git a/main.tex b/main.tex index 60aea11..4fb64de 100644 --- a/main.tex +++ b/main.tex @@ -24,6 +24,7 @@ \newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}} \newtheorem{theorem}{Theorem}[section] +\newtheorem{corrolary}{Corrolary}[section] \newtheorem{lemmadfn}{Lemma/Definition}[section] \newtheorem{dfn}{Definition}[section] @@ -1035,6 +1036,32 @@ This is equivalent to: \end{proof} +\begin{corrolary}[Bound on $r$ \#2] +\label{cor:direct_rmax_with_uniform_eps} + Let $v$ be a fixed Chern character and + $R:=\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2)\Delta(v)$. + Then the ranks of the pseudo-semistabilizers for $v$ + are bounded above by the following expression. + + \bgroup + \begin{equation} + \frac{1}{2} \lcm(m,2n^2) + \left( + \frac{\chern_1^{\beta}(v)}{2} + + \frac{R}{\chern_1^{\beta}(v)\lcm(m,2n^2)} + \right)^2 + \end{equation} + \egroup + \bgroup + \begin{equation} + \frac{1}{8} + \Delta(v) \lcm(m,2n^2) + + \frac{1}{2} R + + \frac{R^2}{ 2 \Delta(v) \lcm(m,2n^2) } + \end{equation} + \egroup +\end{corrolary} + %% TODO simplified expression for rmax by predicting which q gives rmax %% refinements using specific values of q and beta -- GitLab