%% Write basic article template \documentclass[12pt]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsthm} \usepackage{graphicx} \usepackage{hyperref} \usepackage{color} \usepackage{sagetex} \usepackage{minted} \usepackage{subcaption} \usepackage[]{breqn} \newcommand{\QQ}{\mathbb{Q}} \newcommand{\ZZ}{\mathbb{Z}} \newcommand{\RR}{\mathbb{R}} \newcommand{\NN}{\mathbb{N}} \newcommand{\chern}{\operatorname{ch}} \newcommand{\lcm}{\operatorname{lcm}} \newcommand{\firsttilt}[1]{\mathcal{B}^{#1}} \newcommand{\bddderived}{\mathcal{D}^{b}} \newcommand{\centralcharge}{\mathcal{Z}} \newcommand{\minorheading}[1]{{\noindent\normalfont\normalsize\bfseries #1}} \newtheorem{theorem}{Theorem}[section] \newtheorem{corrolary}{Corrolary}[section] \newtheorem{lemmadfn}{Lemma/Definition}[section] \newtheorem{dfn}{Definition}[section] \newtheorem{lemma}{Lemma}[section] \newtheorem{fact}{Fact}[section] \begin{document} \begin{sagesilent} # Requires extra package: #! sage -pip install "pseudowalls==0.0.3" --extra-index-url https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple from pseudowalls import * Δ = lambda v: v.Q_tilt() mu = stability.Mumford().slope \end{sagesilent} \title{Explicit Formulae for Bounds on the Ranks of Tilt Destabilizers and Practical Methods for Finding Pseudowalls} \author{Luke Naylor} \maketitle \tableofcontents \section{Introduction} \label{sec:intro} [ref] shows that for any rational $\beta_0$, the vertical line $\{\sigma_{\alpha,\beta_0} \colon \alpha \in \RR_{>0}\}$ only intersects finitely many walls. A consequence of this is that if $\beta_{-}$ is rational, then there can only be finitely many circular walls to the left of the vertical wall $\beta = \mu$. On the other hand, when $\beta_{-}$ is not rational, [ref] showed that there are infinitely many walls. This dichotomy does not only hold for real walls, realised by actual objects in $\bddderived(X)$, but also for pseudowalls. Here pseudowalls are defined as `potential' walls, induced by hypothetical Chern characters of destabilizers which satisfy certain numerical conditions which would be satisfied by any real destabilizer, regardless of whether they are realised by actual semistabilizers in $\bddderived(X)$. Since real walls are a subset of pseudowalls, the irrational $\beta_{-}$ case follows immediately from the corresponding case for real walls. However, the rational $\beta_{-}$ case involves showing that the following conditions only admit finitely many solutions (despite the fact that the same conditions admit infinitely many solutions when $\beta_{-}$ is irrational). For a destabilizing sequence $E \hookrightarrow F \twoheadrightarrow G$ in $\mathcal{B}^\beta$ we have the following conditions. There are some Bogomolov-Gieseker type inequalities: $0 \leq \Delta(E), \Delta(G)$ and $\Delta(E) + \Delta(G) \leq \Delta(F)$. We also have a condition relating to the tilt category $\firsttilt\beta$: $0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F)$. Finally, there is a condition ensuring that the radius of the circular wall is strictly positive: $\chern^{\beta_{-}}_2(E) > 0$. For any fixed $\chern_0(E)$, the inequality $0 \leq \chern^{\beta}_1(E) \leq \chern^{\beta}_1(F)$, allows us to bound $\chern_1(E)$. Then, the other inequalities allow us to bound $\chern_2(E)$. The final part to showing the finiteness of pseudowalls would be bounding $\chern_0(E)$. This has been hinted at in [ref] and done explicitly by Benjamin Schmidt within a computer program which computes pseudowalls. Here we discuss these bounds in more detail, along with the methods used, followed by refinements on them which give explicit formulae for tighter bounds on $\chern_0(E)$ of potential destabilizers $E$ of $F$. \section{Characteristic Curves of Stability Conditions Associated to Chern Characters} \begin{dfn}[Pseudo-semistabilizers] Given a Chern Character $v$, and a given stability condition $\sigma$, a pseudo-semistabilizing $u$ is a `potential' Chern character: \[ u = \left(r, c\ell, d \frac{1}{2} \ell^2\right) \] which has the same tilt slope as $v$: $\mu_{\sigma}(u) = \mu_{\sigma}(v)$. Note $u$ does not need to be a Chern character of an actual sub-object of some object in the stability condition's heart with Chern character $v$. \end{dfn} At this point, and in this document, we do not care about whether pseudo-semistabilizers are even Chern characters of actual elements of $\bddderived(X)$, some other sources may have this extra restriction too. Considering the stability conditions with two parameters $\alpha, \beta$ on Picard rank 1 surfaces. We can draw 2 characteristic curves for any given Chern character $v$ with $\Delta(v) \geq 0$ and positive rank. These are given by the equations $\chern_i^{\alpha,\beta}(v)=0$ for $i=1,2$, and are illustrated in Fig \ref{fig:charact_curves_vis} (dotted line for $i=1$, solid for $i=2$). \begin{dfn}[Characteristic Curves $V_v$ and $\Theta_v$] Given a Chern character $v$, with positive rank and $\Delta(v) \geq 0$, we define two characteristic curves on the $(\alpha, \beta)$-plane: \begin{align*} V_v &\colon \chern_1^{\alpha, \beta}(v) = 0 \\ \Theta_v &\colon \chern_2^{\alpha, \beta}(v) = 0 \end{align*} \end{dfn} \begin{fact}[Geometry of Characteristic Curves] The following facts can be deduced from the formulae for $\chern_i^{\alpha, \beta}(v)$ as well as the restrictions on $v$: \begin{itemize} \item $V_v$ is a vertical line at $\beta=\mu(v)$ \item $\Theta_v$ is a hyperbola with assymptotes angled at $\pm 45^\circ$ crossing where $V_v$ meets the $\beta$-axis: $(\mu(v),0)$ \item $\Theta_v$ is oriented with left-right branches (as opposed to up-down). The left branch shall be labelled $\Theta_v^-$ and the right $\Theta_v^+$. \item The gap along the $\beta$-axis between either branch of $\Theta_v$ and $V_v$ is $\sqrt{\Delta(v)}/\chern_0(v)$. \item When $\Delta(v)=0$, $\Theta_v$ degenerates into a pair of lines, but the labels $\Theta_v^\pm$ will still be used for convenience. \end{itemize} \end{fact} \minorheading{Relevance of the vertical line $V_v$} By definition of the first tilt $\firsttilt\beta$, objects of Chern character $v$ can only be in $\firsttilt\beta$ on the left of $V_v$, where $\chern_1^{\alpha,\beta}(v)>0$, and objects of Chern character $-v$ can only be in $\firsttilt\beta$ on the right, where $\chern_1^{\alpha,\beta}(-v)>0$. In fact, if there is a Gieseker semistable coherent sheaf $E$ of Chern character $v$, then $E \in \firsttilt\beta$ if and only if $\beta<\mu(E)$ (left of the $V_v$), and $E[1] \in \firsttilt\beta$ if and only if $\beta\geq\mu(E)$. Because of this, when using these characteristic curves, only positive ranks are considered, as negative rank objects are implicitly considered on the right hand side of $V_v$. \begin{sagesilent} def charact_curves(v): alpha = stability.Tilt().alpha beta = stability.Tilt().beta coords_range = (beta, -4, 5), (alpha, 0, 4) text_args = {"fontsize":"xx-large", "clip":True} black_text_args = {"rgbcolor": "black", **text_args} p = ( implicit_plot(stability.Tilt().degree(v), *coords_range ) + line([(mu(v),0),(mu(v),5)], linestyle = "dashed") + text(r"$\Theta_v^+$",[3.5, 2], rotation=45, **text_args) + text(r"$V_v$", [0.43, 1.5], rotation=90, **text_args) + text(r"$\Theta_v^-$", [-2.2, 2], rotation=-45, **text_args) + text(r"$\nu_{\alpha, \beta}(v)>0$", [-3, 1], **black_text_args) + text(r"$\nu_{\alpha, \beta}(v)<0$", [-1, 3], **black_text_args) + text(r"$\nu_{\alpha, \beta}(-v)>0$", [2, 3], **black_text_args) + text(r"$\nu_{\alpha, \beta}(-v)<0$", [4, 1], **black_text_args) ) p.xmax(5) p.xmin(-4) p.ymax(4) p.axes_labels([r"$\beta$", r"$\alpha$"]) return p v1 = Chern_Char(3, 2, -2) v2 = Chern_Char(3, 2, 2/3) \end{sagesilent} \begin{figure} \centering \begin{subfigure}{.49\textwidth} \centering \sageplot[width=\textwidth]{charact_curves(v1)} \caption{$\Delta(v)>0$} \label{fig:charact_curves_vis_bgmvlPos} \end{subfigure}% \hfill \begin{subfigure}{.49\textwidth} \centering \sageplot[width=\textwidth]{charact_curves(v2)} \caption{ $\Delta(v)=0$: hyperbola collapses } \label{fig:charact_curves_vis_bgmlv0} \end{subfigure} \caption{ Characteristic curves ($\chern_i^{\alpha,\beta}(v)=0$) of stability conditions associated to Chern characters $v$ with $\Delta(v) \geq 0$ and positive rank. } \label{fig:charact_curves_vis} \end{figure} \minorheading{Relevance of the hyperbola $\Theta_v$} Since $\chern_2^{\alpha, \beta}$ is the numerator of the tilt slope $\nu_{\alpha, \beta}$. The curve $\Theta_v$, where this is 0, firstly divides the $(\alpha$-$\beta)$-half-plane into regions where the signs of tilt slopes of objects of Chern character $v$ (or $-v$) are fixed. Secondly, it gives more of a fixed target for some $u=(r,c\ell,d\frac{1}{2}\ell^2)$ to be a pseudo-semistabilizer of $v$, in the following sense: If $(\alpha,\beta)$, is on $\Theta_v$, then for any $u$, $u$ is a pseudo-semistabilizer of $v$ iff $\nu_{\alpha,\beta}(u)=0$, and hence $\chern_2^{\alpha, \beta}(u)=0$. In fact, this allows us to use the characteristic curves of some $v$ and $u$ (with $\Delta(v), \Delta(u)\geq 0$ and positive ranks) to determine the location of the pseudo-wall where $u$ pseudo-semistabilizes $v$. This is done by finding the intersection of $\Theta_v$ and $\Theta_u$. %TODO ref forwards \subsection{Bertram's nested wall theorem} Although Bertram's nested wall theorem can be proved more directly, it's also important for the content of this document to understand the connection with these characteristic curves. Emanuele Macri noticed in (TODO ref) that any circular wall of $v$ reaches a critical point on $\Theta_v$ (TODO ref). This is a consequence of $\frac{\delta}{\delta\beta} \chern_2^{\alpha,\beta} = -\chern_1^{\alpha,\beta}$. This fact, along with the hindsight knowledge that non-vertical walls are circles with centers on the $\beta$-axis, gives an alternative view to see that the circular walls must be nested and non-intersecting. \subsection{Characteristic curves for pseudo-semistabilizers} \begin{lemma}[Numerical tests for left-wall pseudo-semistabilizers] Let $v$ and $u$ be Chern characters with positive ranks and $\Delta(v), \Delta(u)\geq 0$. Let $P$ be a point on $\Theta_v^-$. \noindent Suppose that the following are satisfied: \bgroup \renewcommand{\labelenumi}{\alph{enumi}.} \begin{enumerate} \item $u$ gives rise to a pseudo-wall for $v$, left of the vertical line $V_v$ \item The pseudo-wall contains $P$ in it's interior ($P$ can be chosen to be the base of the left branch to target all left-walls) \item $u$ destabilizes $v$ going `inwards', that is, $\nu_{\alpha,\beta}(\pm u)<\nu_{\alpha,\beta}(v)$ outside the pseudo-wall, and $\nu_{\alpha,\beta}(\pm u)>\nu_{\alpha,\beta}(v)$ inside. Where we use $+u$ or $-u$ depending on whether $(\beta,\alpha)$ is on the left or right (resp.) of $V_u$. \end{enumerate} \egroup \noindent Then we have the following: \begin{enumerate} \item The pseudo-wall is left of $V_u$ (if this is a real wall then $v$ is being semistabilized by an object with Chern character $u$, not $-u$) \item $\beta(P)<\mu(u)<\mu(v)$, i.e., $V_u$ is strictly between $P$ and $V_v$. \item $\chern_2^{P}(u)>0$ \end{enumerate} Furthermore, only the last two of these consequences are sufficient to recover all of the suppositions above. \end{lemma} \begin{proof} Let $u,v$ be Chern characters with positive ranks and $\Delta(u),\Delta(v) \geq 0$. For the forwards implication, assume that the suppositions of the lemma are satisfied. The pseudo-wall intersects $\Theta_v^-$, at some point $Q$ further up the hyperbola branch than $P$ (to satisfy supposition b). At $Q$, we have $\nu_Q(v)=0$, and hence $\nu_Q(u)=0$ too. This means that $\Theta_u$ must intersect $\Theta_v^-$ at $Q$. Considering the shapes of the hyperbolae alone, there are 3 distinct ways that they can intersect, as illustrated in Fig \ref{fig:hyperbol-intersection}. These cases are distinguished by whether it is the left, or the right branch of $\Theta_u$ involved, as well as the positions of the base. However, considering supposition b, only case 3 (green in figure) is valid. This is because we need $\nu_{P}(u)>0$ (or $\nu_{P}(-u)>0$ in case 1 involving $\Theta_u^+$). Recalling how the sign of $\nu_{\alpha,\beta}(\pm u)$ changes (illustrated in Fig \ref{fig:charact_curves_vis}), we can eliminate cases 1 and 2. In passing, note that this implies consequence 3. \begin{sagesilent} def hyperbola_intersection_plot(): var("alpha beta", domain="real") coords_range = (beta, -3, -1/2), (alpha, 0, 2.5) delta1 = -sqrt(2)+1/100 delta2 = 1/2 pbeta=-1.5 text_args = {"fontsize":"large", "clip":True} black_text_args = {"rgbcolor":"black", **text_args} p = ( implicit_plot( beta^2 - alpha^2 == 2, *coords_range , rgbcolor = "black", legend_label=r"a") + implicit_plot( (beta+4)^2 - (alpha)^2 == 2, *coords_range , rgbcolor = "red") + implicit_plot( (beta+delta1)^2 - alpha^2 == (delta1-2)^2-2, *coords_range , rgbcolor = "blue") + implicit_plot( (beta+delta2)^2 - alpha^2 == (delta2-2)^2-2, *coords_range , rgbcolor = "green") + point([-2, sqrt(2)], size=50, rgbcolor="black", zorder=50) + text("Q",[-2, sqrt(2)+0.1], **black_text_args) + point([pbeta, sqrt(pbeta^2-2)], size=50, rgbcolor="black", zorder=50) + text("P",[pbeta+0.1, sqrt(pbeta^2-2)], **black_text_args) + circle((-2,0),sqrt(2), linestyle="dashed", rgbcolor="purple") # dummy lines to add legends (circumvent bug in implicit_plot) + line([(2,0),(2,0)] , rgbcolor = "purple", linestyle="dotted", legend_label=r"pseudo-wall") + line([(2,0),(2,0)] , rgbcolor = "black", legend_label=r"$\Theta_v^-$") + line([(2,0),(2,0)] , rgbcolor = "red", legend_label=r"$\Theta_u$ case 1") + line([(2,0),(2,0)] , rgbcolor = "blue", legend_label=r"$\Theta_u$ case 2") + line([(2,0),(2,0)] , rgbcolor = "green", legend_label=r"$\Theta_u$ case 3") ) p.set_legend_options(loc="upper right", font_size="x-large", font_family="serif") p.xmax(coords_range[0][2]) p.xmin(coords_range[0][1]) p.ymax(coords_range[1][2]) p.ymin(coords_range[1][1]) p.axes_labels([r"$\beta$", r"$\alpha$"]) return p def correct_hyperbola_intersection_plot(): var("alpha beta", domain="real") coords_range = (beta, -2.5, 0.5), (alpha, 0, 3) delta2 = 1/2 pbeta=-1.5 text_args = {"fontsize":"large", "clip":True} black_text_args = {"rgbcolor":"black", **text_args} p = ( implicit_plot( beta^2 - alpha^2 == 2, *coords_range , rgbcolor = "black", legend_label=r"a") + implicit_plot((beta+delta2)^2 - alpha^2 == (delta2-2)^2-2, *coords_range , rgbcolor = "green") + point([-2, sqrt(2)], size=50, rgbcolor="black", zorder=50) + text("Q",[-2, sqrt(2)+0.1], **black_text_args) + point([pbeta, sqrt(pbeta^2-2)], size=50, rgbcolor="black", zorder=50) + text("P",[pbeta+0.1, sqrt(pbeta^2-2)], **black_text_args) + circle((-2,0),sqrt(2), linestyle="dashed", rgbcolor="purple") # dummy lines to add legends (circumvent bug in implicit_plot) + line([(2,0),(2,0)] , rgbcolor = "purple", linestyle="dotted", legend_label=r"pseudo-wall") + line([(2,0),(2,0)] , rgbcolor = "black", legend_label=r"$\Theta_v^-$") + line([(2,0),(2,0)] , rgbcolor = "green", legend_label=r"$\Theta_u^-$") # vertical characteristic lines + line([(0,0),(0,coords_range[1][2])], rgbcolor="black", linestyle="dashed", legend_label=r"$V_v$") + line([(-delta2,0),(-delta2,coords_range[1][2])], rgbcolor="green", linestyle="dashed", legend_label=r"$V_u$") + line([(-delta2,0),(-delta2-coords_range[1][2],coords_range[1][2])], rgbcolor="green", linestyle="dotted", legend_label=r"$\Theta_u^-$ assymptote") + line([(0,0),(-coords_range[1][2],coords_range[1][2])], rgbcolor="black", linestyle="dotted", legend_label=r"$\Theta_v^-$ assymptote") ) p.set_legend_options(loc="upper right", font_size="x-large", font_family="serif") p.xmax(coords_range[0][2]) p.xmin(coords_range[0][1]) p.ymax(coords_range[1][2]) p.ymin(coords_range[1][1]) p.axes_labels([r"$\beta$", r"$\alpha$"]) return p \end{sagesilent} \begin{figure} \begin{subfigure}[t]{0.48\textwidth} \centering \sageplot[width=\textwidth]{hyperbola_intersection_plot()} \caption{Three ways the characteristic hyperbola for $u$ can intersect the left branch of the characteristic hyperbola for $v$} \label{fig:hyperbol-intersection} \end{subfigure} \hfill \begin{subfigure}[t]{0.48\textwidth} \centering \sageplot[width=\textwidth]{correct_hyperbola_intersection_plot()} \caption{Closer look at characteristic curves for valid case} \label{fig:correct-hyperbol-intersection} \end{subfigure} \end{figure} Fixing attention on the only valid case (2), illustrated in Fig \ref{fig:correct-hyperbol-intersection}. We must have $\Theta_u^-$ taking a base-point to the right $\Theta_v$, but then, further up, crossing over to the left side. The latter fact implies that the assymptote for $\Theta_u^-$ must be to the left of the one for $\Theta_v^-$. Given that they are parallel and intersect the $\beta$-axis at $\beta=\mu(u)$ and $\beta=\mu(v)$ respectively. We must have $\mu(u)<\mu(v)$, that is, $V_u$ is strictly to the left of $V_v$. Finally, the fact that it is the left branch of the hyperbola for $u$ implies consequence 1 and $\beta(P)<\mu(u)$ (consequence 2). Conversely, suppose that the consequences 2 and 3 are satisfied. Consequence 2 implies that the assymptote for $\Theta_u^-$ is to the left of $\Theta_v^-$. Consequence 3, along with $\beta(P)<\mu(u)$, implies that $P$ must be in the region left of $\Theta_u^-$. These two facts imply that $\Theta_u^-$ is to the right of $\Theta_v^-$ at $\alpha=\alpha(P)$, but crosses to the left side as $\alpha \to +\infty$. This implies suppositions a and b, and that the characteristic curves for $u$ and $v$ must be in the configuration illustrated in Fig \ref{fig:correct-hyperbol-intersection}. Recalling consequence 3 finally confirms supposition c. \end{proof} \section{Loose Bounds on $\chern_0(E)$ for Semistabilizers Along Fixed $\beta\in\QQ$} \begin{dfn}[Twisted Chern Character] \label{sec:twisted-chern} For a given $\beta$, define the twisted Chern character as follows. \[\chern^\beta(E) = \chern(E) \cdot \exp(-\beta \ell)\] \noindent Component-wise, this is: \begin{align*} \chern^\beta_0(E) &= \chern_0(E) \\ \chern^\beta_1(E) &= \chern_1(E) - \beta \chern_0(E) \\ \chern^\beta_2(E) &= \chern_2(E) - \beta \chern_1(E) + \frac{\beta^2}{2} \chern_0(E) \end{align*} % TODO I think this^ needs adjusting for general Surface with $\ell$ \end{dfn} $\chern^\beta_1(E)$ is the imaginary component of the central charge $\centralcharge_{\alpha,\beta}(E)$ and any element of $\firsttilt\beta$ satisfies $\chern^\beta_1 \geq 0$. This, along with additivity gives us, for any destabilizing sequence [ref]: \begin{equation} \label{eqn-tilt-cat-cond} 0 \leq \chern^\beta_1(E) \leq \chern^\beta_1(F) \end{equation} When finding Chern characters of potential destabilizers $E$ for some fixed Chern character $\chern(F)$, this bounds $\chern_1(E)$. The Bogomolov form applied to the twisted Chern character is the same as the normal one. So $0 \leq \Delta(E)$ yields: \begin{equation} \label{eqn-bgmlv-on-E} 2\chern^\beta_0(E) \chern^\beta_2(E) \leq \chern^\beta_1(E)^2 \end{equation} \begin{theorem}[Bound on $r$ - Benjamin Schmidt] Given a Chern character $v$ such that $\beta_{-}(v)\in\QQ$, the rank $r$ of any semistabilizer $E$ of some $F \in \firsttilt\beta$ with $\chern(F)=v$ is bounded above by: \begin{equation*} r \leq \frac{mn^2 \chern^\beta_1(v)^2}{\gcd(m,2n^2)} \end{equation*} \end{theorem} \begin{proof} The restrictions on $\chern^\beta_0(E)$ and $\chern^\beta_2(E)$ is best seen with the following graph: % TODO: hyperbola restriction graph (shaded) \begin{sagesilent} var("m") # Initialize symbol for variety parameter \end{sagesilent} This is where the rationality of $\beta_{-}$ comes in. If $\beta_{-} = \frac{*}{n}$ for some $*,n \in \ZZ$. Then $\chern^\beta_2(E) \in \frac{1}{\lcm(m,2n^2)}\ZZ$ where $m$ is the integer which guarantees $\chern_2(E) \in \frac{1}{m}\ZZ$ (determined by the variety). In particular, since $\chern_2(E) > 0$ we must also have $\chern^\beta_2(E) \geq \frac{1}{\lcm(m,2n^2)}$, which then in turn gives a bound for the rank of $E$: \begin{align} \chern_0(E) &= \chern^\beta_0(E) \\ &\leq \frac{\lcm(m,2n^2) \chern^\beta_1(E)^2}{2} \\ &\leq \frac{mn^2 \chern^\beta_1(F)^2}{\gcd(m,2n^2)} \end{align} \end{proof} \section{B.Schmidt's Method} Goals: \begin{itemize} \item intro \item link repo \end{itemize} \subsection{Strategy} Goals: \begin{itemize} \item link repo \item Calc max destab rank \item Decrease mu(E) starting from mu(F) taking on all poss frac vals \item iterate over something else \item Stop when conditions fail \item method works same way for both rational beta_{-} but also for walls larger than certain amount \end{itemize} \subsection{Limitations} Goals: \begin{itemize} \item large rank forces mu to beta_{-}, so many vals of mu(E) checked needlessly \item noticeably slow (show benchmark) \end{itemize} \section{Refinement} \label{sec:refinement} To get tighter bounds on the rank of destabilizers $E$ of some $F$ with some fixed Chern character, we will need to consider each of the values which $\chern_1^{\beta}(E)$ can take. Doing this will allow us to eliminate possible values of $\chern_0(E)$ for which each $\chern_1^{\beta}(E)$ leads to the failure of at least one of the inequalities. As opposed to only eliminating possible values of $\chern_0(E)$ for which all corresponding $\chern_1^{\beta}(E)$ fail one of the inequalities (which is what was implicitly happening before). First, let us fix a Chern character for $F$, $\chern(F) = (R,C,D)$, and consider the possible Chern characters $\chern(E) = (r,c,d)$ of some semistabilizer $E$. \begin{sagesilent} # Requires extra package: #! sage -pip install "pseudowalls==0.0.3" --extra-index-url https://gitlab.com/api/v4/projects/43962374/packages/pypi/simple from pseudowalls import * v = Chern_Char(*var("R C D", domain="real")) u = Chern_Char(*var("r c d", domain="real")) Δ = lambda v: v.Q_tilt() \end{sagesilent} Recall [ref] that $\chern_1^{\beta}$ has fixed bounds in terms of $\chern(F)$, and so we can write: \begin{sagesilent} ts = stability.Tilt var("beta", domain="real") c_lower_bound = -( ts(beta=beta).rank(u) /ts().alpha ).expand() + c var("q", domain="real") c_in_terms_of_q = c_lower_bound + q \end{sagesilent} \begin{equation} \label{eqn-cintermsofm} c=\chern_1(E) = \sage{c_in_terms_of_q} \qquad 0 \leq q \leq \chern_1^{\beta}(F) \end{equation} Furthermore, $\chern_1 \in \ZZ$ so we only need to consider $q \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)]$. For the next subsections, we consider $q$ to be fixed with one of these values, and we shall be varying $\chern_0(E) = r$ to see when certain inequalities fail. \subsection{Numerical Inequalities} \subsubsection{ \texorpdfstring{ $\Delta(E) + \Delta(G) \leq \Delta(F)$ }{ Δ(E) + Δ(G) ≤ Δ(F) } } \label{subsect-d-bound-bgmlv1} This condition expressed in terms of $R,C,D,r,c,d$ looks as follows: \begin{sagesilent} # First Bogomolov-Gieseker form expression that must be non-negative: bgmlv1 = Δ(v) - Δ(u) - Δ(v-u) \end{sagesilent} \begin{equation} \sage{0 <= bgmlv1.expand() } \end{equation} \noindent Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) we get the following: \begin{sagesilent} bgmlv1_with_q = ( bgmlv1 .expand() .subs(c == c_in_terms_of_q) ) \end{sagesilent} \begin{equation} \sage{0 <= bgmlv1_with_q} \end{equation} \noindent This can be rearranged to express a bound on $d$ as follows: \begin{sagesilent} var("r_alt",domain="real") # r_alt = r - R/2 temporary substitution bgmlv1_with_q_reparam = (bgmlv1_with_q.subs(r == r_alt + R/2)/r_alt).expand() bgmlv1_d_ineq = ( ((0 >= -bgmlv1_with_q_reparam)/4 + d) # Rearrange for d .subs(r_alt == r - R/2) # Resubstitute r back in .expand() ) bgmlv1_d_lowerbound = bgmlv1_d_ineq.rhs() # Keep hold of lower bound for d \end{sagesilent} \begin{dmath} \label{eqn-bgmlv1_d_lowerbound} \sage{bgmlv1_d_ineq} \end{dmath} \begin{sagesilent} # Separate out the terms of the lower bound for d bgmlv1_d_lowerbound_without_hyp = bgmlv1_d_lowerbound.subs(1/(R-2*r) == 0) bgmlv1_d_lowerbound_exp_term = ( bgmlv1_d_lowerbound - bgmlv1_d_lowerbound_without_hyp ).expand() bgmlv1_d_lowerbound_const_term = bgmlv1_d_lowerbound_without_hyp.subs(r==0) bgmlv1_d_lowerbound_linear_term = ( bgmlv1_d_lowerbound_without_hyp - bgmlv1_d_lowerbound_const_term ).expand() # Verify the simplified forms of the terms that will be mentioned in text var("chbv",domain="real") # symbol to represent ch_1^\beta(v) assert bgmlv1_d_lowerbound_const_term == ( ( # Keep hold of this alternative expression: bgmlv1_d_lowerbound_const_term_alt := ( chbv/2 + beta*q ) ) .subs(chbv == v.twist(beta).ch[2]) .expand() ) assert bgmlv1_d_lowerbound_exp_term == ( ( # Keep hold of this alternative expression: bgmlv1_d_lowerbound_exp_term_alt := ( - R*chbv/2 - R*beta*q + C*q - q^2 )/(R-2*r) ) .subs(chbv == v.twist(beta).ch[2]) .expand() ) \end{sagesilent} \noindent Viewing equation \ref{eqn-bgmlv1_d_lowerbound} as a lower bound for $d$ given as a function of $r$, the terms can be rewritten as follows. The constant term in $r$ is $\chern^{\beta}_2(F)/2 + \beta q$. The linear term in $r$ is $\sage{bgmlv1_d_lowerbound_linear_term}$. Finally, there is an hyperbolic term in $r$ which tends to 0 as $r \to \infty$, and can be written: $\frac{R\chern^{\beta}_2(F)/2 + R\beta q - Cq + q^2 }{2r-R}$. In the case $\beta = \beta_{-}$ (or $\beta_{+}$) we have $\chern^{\beta}_2(F) = 0$, so some of these expressions simplify. \subsubsection{ \texorpdfstring{ $\Delta(E) \geq 0$ }{ Δ(E) ≥ 0 } } This condition expressed in terms of $R,C,D,r,c,d$ looks as follows: \begin{sagesilent} # First Bogomolov-Gieseker form expression that must be non-negative: bgmlv2 = Δ(u) \end{sagesilent} \begin{equation} \sage{0 <= bgmlv2.expand() } \end{equation} \noindent Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) we get the following: \begin{sagesilent} bgmlv2_with_q = ( bgmlv2 .expand() .subs(c == c_in_terms_of_q) ) \end{sagesilent} \begin{equation} \sage{0 <= bgmlv2_with_q} \end{equation} \noindent This can be rearranged to express a bound on $d$ as follows: \begin{sagesilent} bgmlv2_d_ineq = ( (0 <= bgmlv2_with_q)/2/r # rescale assuming r > 0 + d # Rearrange for d ).expand() # Keep hold of lower bound for d bgmlv2_d_upperbound = bgmlv2_d_ineq.rhs() \end{sagesilent} \begin{equation} \label{eqn-bgmlv2_d_upperbound} \sage{bgmlv2_d_ineq} \end{equation} \begin{sagesilent} # Seperate out the terms of the lower bound for d bgmlv2_d_upperbound_without_hyp = ( bgmlv2_d_upperbound .subs(1/r == 0) ) bgmlv2_d_upperbound_const_term = ( bgmlv2_d_upperbound_without_hyp .subs(r==0) ) bgmlv2_d_upperbound_linear_term = ( bgmlv2_d_upperbound_without_hyp - bgmlv2_d_upperbound_const_term ).expand() bgmlv2_d_upperbound_exp_term = ( bgmlv2_d_upperbound - bgmlv2_d_upperbound_without_hyp ).expand() \end{sagesilent} Viewing equation \ref{eqn-bgmlv2_d_upperbound} as a lower bound for $d$ in term of $r$ again, there is a constant term $\sage{bgmlv2_d_upperbound_const_term}$, a linear term $\sage{bgmlv2_d_upperbound_linear_term}$, and a hyperbolic term $\sage{bgmlv2_d_upperbound_exp_term}$. Notice that for $\beta = \beta_{-}$ (or $\beta_{+}$), that is when $\chern^{\beta}_2(F)=0$, the constant and linear terms match up with the ones for the bound found for $d$ in subsection \ref{subsect-d-bound-bgmlv1}. \subsubsection{ \texorpdfstring{ $\Delta(G) \geq 0$ }{ Δ(G) ≥ 0 } } \label{subsect-d-bound-bgmlv3} This condition expressed in terms of $R,C,D,r,c,d$ looks as follows: \begin{sagesilent} # Third Bogomolov-Gieseker form expression that must be non-negative: bgmlv3 = Δ(v-u) \end{sagesilent} \begin{equation} \sage{0 <= bgmlv3.expand() } \end{equation} \noindent Expressing $c$ in terms of $q$ as defined in (eqn \ref{eqn-cintermsofm}) we get the following: \begin{sagesilent} bgmlv3_with_q = ( bgmlv3 .expand() .subs(c == c_in_terms_of_q) ) \end{sagesilent} \begin{equation} \sage{0 <= bgmlv3_with_q} \end{equation} \noindent This can be rearranged to express a bound on $d$ as follows: \begin{sagesilent} var("r_alt",domain="real") # r_alt = r - R temporary substitution bgmlv3_with_q_reparam = ( bgmlv3_with_q .subs(r == r_alt + R) /r_alt # This operation assumes r_alt > 0 ).expand() bgmlv3_d_ineq = ( ((0 <= bgmlv3_with_q_reparam)/2 + d) # Rearrange for d .subs(r_alt == r - R) # Resubstitute r back in .expand() ) # Check that this equation represents a bound for d assert bgmlv3_d_ineq.lhs() == d bgmlv3_d_upperbound = bgmlv3_d_ineq.rhs() # Keep hold of lower bound for d \end{sagesilent} \begin{sagesilent} # Seperate out the terms of the lower bound for d bgmlv3_d_upperbound_without_hyp = ( bgmlv3_d_upperbound .subs(1/(R-r) == 0) ) bgmlv3_d_upperbound_const_term = ( bgmlv3_d_upperbound_without_hyp .subs(r==0) ) bgmlv3_d_upperbound_linear_term = ( bgmlv3_d_upperbound_without_hyp - bgmlv3_d_upperbound_const_term ).expand() bgmlv3_d_upperbound_exp_term = ( bgmlv3_d_upperbound - bgmlv3_d_upperbound_without_hyp ).expand() # Verify the simplified forms of the terms that will be mentioned in text var("chb1v chb2v",domain="real") # symbol to represent ch_1^\beta(v) var("psi phi", domain="real") # symbol to represent ch_1^\beta(v) and # ch_2^\beta(v) assert bgmlv3_d_upperbound_const_term == ( ( # keep hold of this alternative expression: bgmlv3_d_upperbound_const_term_alt := ( phi + beta*q ) ) .subs(phi == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v) .expand() ) assert bgmlv3_d_upperbound_exp_term == ( ( # Keep hold of this alternative expression: bgmlv3_d_upperbound_exp_term_alt := ( R*phi + (C - q)^2/2 + R*beta*q - D*R )/(r-R) ) .subs(phi == v.twist(beta).ch[2]) # subs real val of ch_1^\beta(v) .expand() ) assert bgmlv3_d_upperbound_exp_term == ( ( # Keep hold of this alternative expression: bgmlv3_d_upperbound_exp_term_alt2 := ( (psi - q)^2/2/(r-R) ) ) .subs(psi == v.twist(beta).ch[1]) # subs real val of ch_1^\beta(v) .expand() ) \end{sagesilent} \bgroup \def\psi{\chern_1^{\beta}(F)} \def\phi{\chern_2^{\beta}(F)} \begin{dmath} \label{eqn-bgmlv3_d_upperbound} d \leq \sage{bgmlv3_d_upperbound_linear_term} + \sage{bgmlv3_d_upperbound_const_term_alt} + \sage{bgmlv3_d_upperbound_exp_term_alt2} \end{dmath} \egroup \noindent Viewing equation \ref{eqn-bgmlv3_d_upperbound} as an upper bound for $d$ give: as a function of $r$, the terms can be rewritten as follows. The constant term in $r$ is $\chern^{\beta}_2(F) + \beta q$. The linear term in $r$ is $\sage{bgmlv3_d_upperbound_linear_term}$. Finally, there is an hyperbolic term in $r$ which tends to 0 as $r \to \infty$, and can be written: \bgroup \def\psi{\chern_1^{\beta}(F)} $\sage{bgmlv3_d_upperbound_exp_term_alt2}$. \egroup In the case $\beta = \beta_{-}$ (or $\beta_{+}$) we have $\chern^{\beta}_2(F) = 0$, so some of these expressions simplify, and in particular, the constant and linear terms match those of the other bounds in the previous subsections. \subsubsection{All Bounds on $d$ together} %% RECAP ON INEQUALITIES TOGETHER %%%% RATIONAL BETA MINUS \minorheading{Special Case: Rational $\beta_{-}$} Suppose we take $\beta = \beta_{-}$ (so that $\chern^{\beta}_2(F)=0$) in the previous subsections, to find all circular walls to the left of the vertical wall (TODO as discussed in ref). % redefine \beta (especially coming from rendered SageMath expressions) % to be \beta_{-} for the rest of this subsubsection \bgroup \let\originalbeta\beta \renewcommand\beta{{\originalbeta_{-}}} \bgroup % redefine \psi in sage expressions (placeholder for ch_1^\beta(F) \def\psi{\chern_1^{\beta}(F)} \begin{align} d &\geq& \sage{bgmlv1_d_lowerbound_linear_term} &+ \sage{bgmlv1_d_lowerbound_const_term_alt.subs(chbv == 0)} +& \sage{bgmlv1_d_lowerbound_exp_term_alt.subs(chbv == 0)}, &\qquad\text{when\:} r > \frac{R}{2} \label{eqn:bgmlv1_d_bound_betamin} \\ d &\leq& \sage{bgmlv2_d_upperbound_linear_term} &+ \sage{bgmlv2_d_upperbound_const_term} +& \sage{bgmlv2_d_upperbound_exp_term}, &\qquad\text{when\:} r > 0 \label{eqn:bgmlv2_d_bound_betamin} \\ d &\leq& \sage{bgmlv3_d_upperbound_linear_term} &+ \sage{bgmlv3_d_upperbound_const_term_alt.subs(phi == 0)} % ^ ch_2^\beta(F)=0 for beta_{-} +& \sage{bgmlv3_d_upperbound_exp_term_alt2}, &\qquad\text{when\:} r > R \label{eqn:bgmlv3_d_bound_betamin} \end{align} \egroup Furthermore, we get an extra bound for $d$ resulting from the condition that the radius of the circular wall must be positive. As discussed in (TODO ref), this is equivalent to $\chern^{\beta}_2(E) > 0$, which yields: \begin{sagesilent} positive_radius_condition = ( ( (0 > - u.twist(beta).ch[2]) + d # rearrange for d ) .subs(solve(q == u.twist(beta).ch[1], c)[0]) # express c in term of q .expand() ) \end{sagesilent} \begin{equation} \label{eqn:positive_rad_d_bound_betamin} \sage{positive_radius_condition} \end{equation} \begin{sagesilent} def beta_min(chern): ts = stability.Tilt() return min( map( lambda soln: soln.rhs(), solve( (ts.degree(chern)) .expand() .subs(ts.alpha == 0), beta ) ) ) v_example = Chern_Char(3,2,-2) q_example = 7/3 def plot_d_bound( v_example, q_example, ymax=5, ymin=-2, xmax=20, aspect_ratio=None ): # Equations to plot imminently representing the bounds on d: eq1 = ( bgmlv1_d_lowerbound .subs(R == v_example.ch[0]) .subs(C == v_example.ch[1]) .subs(D == v_example.ch[2]) .subs(beta = beta_min(v_example)) .subs(q == q_example) ) eq2 = ( bgmlv2_d_upperbound .subs(R == v_example.ch[0]) .subs(C == v_example.ch[1]) .subs(D == v_example.ch[2]) .subs(beta = beta_min(v_example)) .subs(q == q_example) ) eq3 = ( bgmlv3_d_upperbound .subs(R == v_example.ch[0]) .subs(C == v_example.ch[1]) .subs(D == v_example.ch[2]) .subs(beta = beta_min(v_example)) .subs(q == q_example) ) eq4 = ( positive_radius_condition.rhs() .subs(q == q_example) .subs(beta = beta_min(v_example)) ) example_bounds_on_d_plot = ( plot( eq3, (r,v_example.ch[0],xmax), color='green', linestyle = "dashed", legend_label=r"upper bound: $\Delta(G) \geq 0$", ) + plot( eq2, (r,0,xmax), color='blue', linestyle = "dashed", legend_label=r"upper bound: $\Delta(E) \geq 0$" ) + plot( eq4, (r,0,xmax), color='orange', linestyle = "dotted", legend_label=r"lower bound: $\mathrm{ch}_2^{\beta_{-}}(E)>0$" ) + plot( eq1, (r,v_example.ch[0]/2,xmax), color='red', linestyle = "dotted", legend_label=r"lower bound: $\Delta(E) + \Delta(G) \leq \Delta(F)$" ) ) example_bounds_on_d_plot.ymin(ymin) example_bounds_on_d_plot.ymax(ymax) example_bounds_on_d_plot.axes_labels(['$r$', '$d$']) if aspect_ratio: example_bounds_on_d_plot.set_aspect_ratio(aspect_ratio) return example_bounds_on_d_plot \end{sagesilent} \begin{figure} \centering \begin{subfigure}{.45\textwidth} \centering \sageplot[width=\linewidth]{plot_d_bound(v_example, 0)} \caption{$q = 0$ (all bounds other than green coincide on line)} \label{fig:d_bounds_xmpl_min_q} \end{subfigure}% \hfill \begin{subfigure}{.45\textwidth} \centering \sageplot[width=\linewidth]{plot_d_bound(v_example, 4)} \caption{$q = \chern^{\beta}(F)$ (all bounds other than blue coincide on line)} \label{fig:d_bounds_xmpl_max_q} \end{subfigure} \caption{ Bounds on $d:=\chern_2(E)$ in terms of $r:=\chern_0(E)$ for fixed, extreme, values of $q:=\chern_1^{\beta}(E)$. Where $\chern(F) = (3,2,-2)$. } \label{fig:d_bounds_xmpl_extrm_q} \end{figure} Recalling that $q := \chern^{\beta}_1(E) \in [0, \chern^{\beta}_1(F)]$, it is worth noting that the extreme values of $q$ in this range lead to the tightest bounds on $d$, as illustrated in figure (\ref{fig:d_bounds_xmpl_extrm_q}). In fact, in each case, one of the weak upper bounds coincides with one of the weak lower bounds, (implying no possible destabilizers $E$ with $\chern_0(E)=:r>R:=\chern_0(F)$ for these $q$-values). This indeed happens in general since the right hand sides of (eqn \ref{eqn:bgmlv2_d_bound_betamin}) and (eqn \ref{eqn:positive_rad_d_bound_betamin}) match when $q=0$. In the other case, $q=\chern^{\beta}_1(F)$, it is the right hand sides of (eqn \ref{eqn:bgmlv3_d_bound_betamin}) and (eqn \ref{eqn:positive_rad_d_bound_betamin}) which match. The more generic case, when $0 < q:=\chern_1^{\beta}(E) < \chern_1^{\beta}(F)$ for the bounds on $d$ in terms of $r$ is illustrated in figure (\ref{fig:d_bounds_xmpl_gnrc_q}). The question of whether there are pseudo-destabilizers of arbitrarily large rank, in the context of the graph, comes down to whether there are points $(r,d) \in \ZZ \oplus \frac{1}{m} \ZZ$ (with large $r$) % TODO have a proper definition for pseudo-destabilizers/walls that fit above the yellow line (ensuring positive radius of wall) but below the blue and green (ensuring $\Delta(E), \Delta(G) > 0$). These lines have the same assymptote at $r \to \infty$ (eqns \ref{eqn:bgmlv2_d_bound_betamin}, \ref{eqn:bgmlv3_d_bound_betamin}, \ref{eqn:positive_rad_d_bound_betamin}). As mentioned in the introduction (sec \ref{sec:intro}), the finiteness of these solutions is entirely determined by whether $\beta$ is rational or irrational. Some of the details around the associated numerics are explored next. \begin{figure} \centering \sageplot[ width=\linewidth ]{plot_d_bound(v_example, 2, ymax=6, ymin=-0.5, aspect_ratio=1)} \caption{ Bounds on $d:=\chern_2(E)$ in terms of $r:=\chern_0(E)$ for a fixed value $\chern_1^{\beta}(F)/2$ of $q:=\chern_1^{\beta}(E)$. Where $\chern(F) = (3,2,-2)$. } \label{fig:d_bounds_xmpl_gnrc_q} \end{figure} \subsection{Bounds on Semistabilizer Rank \texorpdfstring{$r$}{r}} Now, the inequalities from the above (TODO REF) will be used to find, for each given $q=\chern^{\beta}_1(E)$, how large $r$ needs to be in order to leave no possible solutions for $d$. At that point, there are no Chern characters $(r,c,d)$ that satisfy all inequalities to give a pseudowall. \subsubsection{All Semistabilizers Left of Vertical Wall for Rational Beta min} The strategy here is similar to what was shown in (sect \ref{sec:twisted-chern}), % ref to Schmidt? \begin{sagesilent} var("a_v b_q n") # Define symbols introduce for values of beta and q beta_value_expr = (beta == a_v/n) q_value_expr = (q == b_q/n) \end{sagesilent} \renewcommand{\aa}{{a_v}} \newcommand{\bb}{{b_q}} Suppose $\beta = \frac{\aa}{n}$ for some coprime $n \in \NN,\aa \in \ZZ$. Then fix a value of $q$: \begin{equation} q:=\chern_1^{\beta}(E) =\frac{\bb}{n} \in \frac{1}{n} \ZZ \cap [0, \chern_1^{\beta}(F)] \end{equation} as noted at the beginning of this section (\ref{sec:refinement}). Substituting the current values of $q$ and $\beta$ into the condition for the radius of the pseudo-wall being positive (eqn \ref{eqn:positive_rad_d_bound_betamin}) we get: \begin{equation} \label{eqn:positive_rad_condition_in_terms_of_q_beta} \frac{1}{m}\ZZ \ni \qquad \sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()} \qquad \in \frac{1}{2n^2}\ZZ \end{equation} \begin{sagesilent} var("nu", domain="real") # placeholder for the specific values of 1/epsilon assymptote_gap_condition1 = (1/nu < bgmlv2_d_upperbound_exp_term) assymptote_gap_condition2 = (1/nu < bgmlv3_d_upperbound_exp_term_alt2) r_upper_bound1 = ( assymptote_gap_condition1 * r * nu ) assert r_upper_bound1.lhs() == r r_upper_bound2 = ( assymptote_gap_condition2 * (r-R) * nu + R ) assert r_upper_bound2.lhs() == r \end{sagesilent} \begin{theorem}[Bound on $r$ \#1] \label{thm:rmax_with_uniform_eps} Let $v = (R,C,D)$ be a fixed Chern character. Then the ranks of the pseudo-semistabilizers for $v$ with $\chern_1^\beta = q$ are bounded above by the following expression. \bgroup \def\nu{\lcm(m,2n^2)} \def\psi{\chern_1^{\beta}(F)} \begin{align*} \min \left( \sage{r_upper_bound1.rhs()}, \:\: \sage{r_upper_bound2.rhs()} \right) \end{align*} \egroup Taking the maximum of this expression over $q \in [0, \chern_1^{\beta}(F)]\cap \frac{1}{n}\ZZ$ would give an upper bound for the ranks of pseudo-semistabilizers for $v$. \end{theorem} \begin{proof} \noindent Both $d$ and the lower bound in (eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}) are elements of $\frac{1}{\lcm(m,2n^2)}\ZZ$. So, if any of the two upper bounds on $d$ come to within $\frac{1}{\lcm(m,2n^2)}$ of this lower bound, then there are no solutions for $d$. Hence any corresponding $r$ cannot be a rank of a pseudo-semistabilizer for $v$. To avoid this, we must have, considering equations \ref{eqn:bgmlv2_d_bound_betamin}, \ref{eqn:bgmlv3_d_bound_betamin}, \ref{eqn:positive_rad_d_bound_betamin}. \bgroup \let\originalepsilon\epsilon \renewcommand\epsilon{{\originalepsilon_{F}}} \begin{sagesilent} var("epsilon") # Tightness conditions: bounds_too_tight_condition1 = ( bgmlv2_d_upperbound_exp_term < epsilon ) bounds_too_tight_condition2 = ( bgmlv3_d_upperbound_exp_term_alt.subs(chbv==0) < epsilon ) \end{sagesilent} \bgroup \def\psi{\chern_1^{\beta}(F)} \begin{equation} \min\left( \sage{bgmlv2_d_upperbound_exp_term}, \sage{bgmlv3_d_upperbound_exp_term_alt2} \right) \geq \epsilon := \frac{1}{\lcm(m,2n^2)} \end{equation} \egroup \noindent This is equivalent to: \bgroup \def\psi{\chern_1^{\beta}(F)} \def\nu{\lcm(m,2n^2)} \begin{equation} \label{eqn:thm-bound-for-r-impossible-cond-for-r} r \leq \min\left( \sage{ r_upper_bound1.rhs() } , \sage{ r_upper_bound2.rhs() } \right) \end{equation} \egroup \egroup % end scope where epsilon redefined \end{proof} \begin{sagesilent} var("Delta", domain="real") q_sol = solve(r_upper_bound1.rhs() == r_upper_bound2.rhs(), q)[0].rhs() r_upper_bound_all_q = ( r_upper_bound1.rhs() .expand() .subs(q==q_sol) .subs(psi**2 == Delta) .subs(1/psi**2 == 1/Delta) ) \end{sagesilent} \begin{corrolary}[Bound on $r$ \#2] \label{cor:direct_rmax_with_uniform_eps} Let $v$ be a fixed Chern character and $R:=\chern_0(v) \leq \frac{1}{2}\lcm(m,2n^2)\Delta(v)$. Then the ranks of the pseudo-semistabilizers for $v$ are bounded above by the following expression. \bgroup \let\originalDelta\Delta \def\nu{\lcm(m,2n^2)} \renewcommand\Delta{{\originalDelta(v)}} \begin{equation*} \sage{r_upper_bound_all_q.expand()} \end{equation*} \egroup \end{corrolary} \begin{proof} \bgroup \def\psi{\chern_1^{\beta}(F)} \def\nu{\lcm(m,2n^2)} \let\originalDelta\Delta \renewcommand\Delta{{\psi^2}} The ranks of the pseudo-semistabilizers for $v$ are bounded above by the maximum over $q\in [0, \chern_1^{\beta}(F)]$ of the expression in theorem \ref{thm:rmax_with_uniform_eps}. Noticing that the expression is a maximum of two quadratic functions in $q$: \begin{equation*} f_1(q):=\sage{r_upper_bound1.rhs()} \qquad f_2(q):=\sage{r_upper_bound2.rhs()} \end{equation*} These have their minimums at $q=0$ and $q=\chern_1^{\beta}(F)$ respectively. It suffices to find their intersection in $q\in [0, \chern_1^{\beta}(F)]$, if it exists, and evaluating on of the $f_i$ there. The intersection exists, provided that $f_1(\chern_1^{\beta}(F))>f_2(\chern_1^{\beta}(F))=R$, or equivalently, $R \leq \frac{1}{2}\lcm(m,2n^2){\chern_1^{\beta}(F)}^2$. Setting $f_1(q)=f_2(q)$ yields $q=\sage{q_sol.expand()}$. And evaluating $f_1$ at this $q$-value gives: $\sage{r_upper_bound_all_q.expand()}$. Finally, noting that $\originalDelta(v)=\psi^2$, we get the bound as stated in the corollary. \egroup \end{proof} %% refinements using specific values of q and beta These bound can be refined a bit more by considering restrictions from the possible values that $r$ take. Furthermore, the proof of theorem \ref{thm:rmax_with_uniform_eps} uses the fact that, given an element of $\frac{1}{2n^2}\ZZ$, the closest non-equal element of $\frac{1}{m}\ZZ$ is at least $\frac{1}{\lcm(m,2n^2)}$ away. However this a conservative estimate, and a larger gap can sometimes be guaranteed if we know this value of $\frac{1}{2n^2}\ZZ$ explicitly. The expressions that will follow will be a bit more complicated and have more parts which depend on the values of $q$ and $\beta$, even their numerators $\aa,\bb$ specifically. The upcoming theorem (TODO ref) is less useful as a `clean' formula for a bound on the ranks of the pseudo-semistabilizers, but has a purpose in the context of writing a computer program to find pseudo-semistabilizers. Such a program would iterate through possible values of $q$, then iterate through values of $r$ within the bounds (dependent on $q$), which would then determine $c$, and then find the corresponding possible values for $d$. Firstly, we only need to consider $r$-values for which $c:=\chern_1(E)$ is integral: \begin{equation} c = \sage{c_in_terms_of_q.subs([q_value_expr,beta_value_expr])} \in \ZZ \end{equation} \noindent That is, $r \equiv -\aa^{-1}\bb$ mod $n$ ($\aa$ is coprime to $n$, and so invertible mod $n$). \begin{sagesilent} rhs_numerator = ( positive_radius_condition .rhs() .subs([q_value_expr,beta_value_expr]) .factor() .numerator() ) \end{sagesilent} \noindent Let $\aa^{'}$ be an integer representative of $\aa^{-1}$ in $\ZZ/n\ZZ$. Next, we seek to find a larger $\epsilon$ to use in place of $\epsilon_F$ in the proof of theorem \ref{thm:rmax_with_uniform_eps}: \begin{lemmadfn}[ Finding better alternatives to $\epsilon_F$: $\epsilon_{q,1}$ and $\epsilon_{q,2}$ ] \label{lemdfn:epsilon_q} Suppose $d \in \frac{1}{m}\ZZ$ satisfies the condition in eqn \ref{eqn:positive_rad_condition_in_terms_of_q_beta}. That is: \begin{equation*} \sage{positive_radius_condition.subs([q_value_expr,beta_value_expr]).factor()} \end{equation*} \noindent Then we have: \begin{equation*} d - \frac{(\aa r + 2\bb)\aa}{2n^2} \geq \epsilon_{q,2} \geq \epsilon_{q,1} > 0 \end{equation*} Where $\epsilon_{q,1}$ and $\epsilon_{q,2}$ are defined as follows: \begin{equation*} \epsilon_{q,1} := \frac{k_{q,1}}{2mn^2} \qquad \epsilon_{q,2} := \frac{k_{q,2}}{2mn^2} \end{equation*} \begin{align*} \text{where } &k_{q,1} \text{ is the least } k\in\ZZ_{>0}\: s.t.:\: k \equiv -\aa\bb m \mod n \\ &k_{q,2} \text{ is the least } k\in\ZZ_{>0}\: s.t.:\: k \equiv \aa\bb m (\aa\aa^{'}-2) \mod n\gcd(2n,\aa^2 m) \end{align*} \end{lemmadfn} It is worth noting that $\epsilon_{q,2}$ is potentially larger than $\epsilon_{q,2}$ but calculating it involves a $\gcd$, a modulo reduction, and a modulo $n$ inverse, for each $q$ considered. \begin{proof} Consider the following: \begin{align} \frac{ x }{ m } - \frac{ (\aa r+2\bb)\aa }{ 2n^2 } = \frac{ k }{ 2mn^2 } \quad \text{for some } x \in \ZZ \span \span \span \span \span \label{eqn:finding_better_eps_problem} \\ &\Longleftrightarrow& - (\aa r+2\bb)\aa m &\equiv k && \mod 2n^2 \\ &\Longleftrightarrow& - \aa^2 m r - 2\aa\bb m &\equiv k && \mod 2n^2 \\ &\Longrightarrow& \aa^2 \aa^{'}\bb m - 2\aa\bb m &\equiv k && \mod \gcd(2n^2, \aa^2 mn) \label{eqn:better_eps_problem_k_mod_gcd2n2_a2mn} \\ &\Longrightarrow& -\aa\bb m &\equiv k && \mod n \label{eqn:better_eps_problem_k_mod_n} \end{align} In our situation, we want to find the least $k$ satisfying eqn \ref{eqn:finding_better_eps_problem}. Since such a $k$ must also satisfy eqn \ref{eqn:better_eps_problem_k_mod_n}, we can pick the smallest $k_{q,1} \in \ZZ_{>0}$ which satisfies this new condition (a computation only depending on $q$ and $\beta$, but not $r$). We are then guaranteed that the gap $\frac{k}{2mn^2}$ is at least $\epsilon_{q,1}$. Furthermore, $k$ also satisfies eqn \ref{eqn:better_eps_problem_k_mod_gcd2n2_a2mn} so we can also pick the smallest $k_{q,2} \in \ZZ_{>0}$ satisfying this condition, which also guarantees that the gap $\frac{k}{2mn^2}$ is at least $\epsilon_{q,2}$. \end{proof} \begin{theorem}[Bound on $r$ \#3] \label{thm:rmax_with_eps1} Let $v$ be a fixed Chern character, with $\frac{a_F}{n}=\beta:=\beta(v)$ rational and expressed in lowest terms. Then the ranks $r$ of the pseudo-semistabilizers $u$ for $v$ with $\chern_1^\beta(u) = q = \frac{b_q}{n}$ are bounded above by the following expression (with $i=1$ or $2$). \begin{sagesilent} var("delta", domain="real") # placeholder symbol to be replaced by k_{q,i} eps_k_i_subs = nu == (2*m*n^2)/delta \end{sagesilent} \bgroup \def\delta{k_{q,i}} \def\psi{\chern_1^{\beta}(F)} \begin{align*} \min \left( \sage{r_upper_bound1.rhs().subs(eps_k_i_subs)}, \:\: \sage{r_upper_bound2.rhs().subs(eps_k_i_subs)} \right) \end{align*} \egroup Where $k_{q,i}$ is defined as in definition/lemma \ref{lemdfn:epsilon_q}, and $R = \chern_0(v)$ Furthermore, if $\aa \not= 0$ then $r \equiv \aa^{-1}b_q (\mod n)$. \end{theorem} \minorheading{Irrational $\beta$} \egroup % end scope where beta redefined to beta_{-} \subsubsection{All Semistabilizers Giving Sufficiently Large Circular Walls Left of Vertical Wall} Goals: \begin{itemize} \item refresher on strategy \item point out no need for rational beta \item calculate intersection of bounds? \end{itemize} \subsection{Irrational $\beta_{-}$} Goals: \begin{itemize} \item Point out if only looking for sufficiently large wall, look at above subsubsection \item Relate to Pell's equation through coordinate change? \item Relate to numerical condition described by Yanagida/Yoshioka \end{itemize} \newpage \section{Appendix - SageMath code} \usemintedstyle{tango} \begin{footnotesize} \inputminted[ obeytabs=true, tabsize=2, breaklines=true, breakbefore=./ ]{python}{filtered_sage.txt} \end{footnotesize} \end{document}