from argparse import ArgumentParser import torch import argparse def pargs(): parser = argparse.ArgumentParser(description='') #model parser.add_argument("-base_model",default="bert-base-uncased",help="huggingface model to use." ) parser.add_argument("-esz",default=300,type=int,help="embedding size") parser.add_argument("-glove",action="store_true",help="use glove embeddings") parser.add_argument("-hsz",default=300,type=int,help="hidden state size") parser.add_argument("-drop",default=0.1,type=float,help="dropout rate") parser.add_argument("-ckpt", type=str,help="load from checkpoint") parser.add_argument("-model", default='crossencoder', help='choose model') parser.add_argument("-knowledge", default='none', type=str, help='knowledge source') # training and loss parser.add_argument("-bsz",default=64,type=int) parser.add_argument("-epochs",default=20,type=int) parser.add_argument("-clip",default=1,type=float,help='clip grads') parser.add_argument("-link_model",default='link', type=str) parser.add_argument("-loss",default="cross_entropy",type=str) parser.add_argument("-lr",default=0.1,type=float,help='learning rate') parser.add_argument("-lrhigh",default=0.5,type=float,help="high learning rate for cycling") parser.add_argument("-lrstep",default=4, type=int,help='steps in cycle') parser.add_argument("-lrwarm",action="store_true",help='use cycling learning rate') parser.add_argument("-lrdecay",default=0.1,type=float,help="use learning rate decay") parser.add_argument("-alpha", default=1.0,type=float,help="weight of forward heuristic") #data parser.add_argument("-nosave",action='store_false',help='dont save') parser.add_argument("-save",required=True,help="where to save model") parser.add_argument("-datadir",default="./data/") parser.add_argument("-data",default="preprocessed.train.tsv",help="preprocessed data") parser.add_argument("-traindata",default="preprocessed.train.tsv",help="preprocessed train data") parser.add_argument("-savevocab",default=None,type=str) parser.add_argument("-loadvocab",default=None,type=str) parser.add_argument("-n_classes", default=2, type=int) #eval parser.add_argument("-eval",action='store_true') #inference parser.add_argument("-test",action='store_true') parser.add_argument("-gpu",default=0,type=int) args = parser.parse_args() if args.gpu == -1: args.gpu = 'cpu' args.device = torch.device(args.gpu) return args