diff --git a/src/agora/io/cells.py b/src/agora/io/cells.py
index 095b59c4d15448ca30c5a9786fdddcfb9733f95b..d110869142a071d5d3f054b6a1e172b535e297b0 100644
--- a/src/agora/io/cells.py
+++ b/src/agora/io/cells.py
@@ -3,7 +3,7 @@ import typing as t
 from collections.abc import Iterable
 from itertools import groupby
 from pathlib import Path, PosixPath
-from functools import lru_cache
+from functools import lru_cache, cached_property
 
 import h5py
 import numpy as np
@@ -264,10 +264,11 @@ class Cells:
         rand = np.random.randint(mat.sum())
         return (traps[rand], tps[rand])
 
+    @lru_cache(20)
     def mothers_in_trap(self, trap_id: int):
         return self.mothers[trap_id]
 
-    @property
+    @cached_property
     def mothers(self):
         """
         Return nested list with final prediction of mother id for each cell
@@ -279,24 +280,29 @@ class Cells:
             self.ntraps,
         )
 
-    @property
-    def mothers_daughters(self):
+    @cached_property
+    def mothers_daughters(self) -> np.ndarray:
+        """
+        Return mothers and daugters as a single array with three columns:
+        trap, mothers and daughters
+        """
         nested_massign = self.mothers
 
         if sum([x for y in nested_massign for x in y]):
-            mothers, daughters = zip(
-                *[
-                    ((tid, m), (tid, d))
+            mothers_daughters = np.array(
+                [
+                    (tid, m, d)
                     for tid, trapcells in enumerate(nested_massign)
                     for d, m in enumerate(trapcells, 1)
                     if m
-                ]
+                ],
+                dtype=np.uint16,
             )
         else:
-            mothers, daughters = ([], [])
+            mothers_daughters = np.array([])
             # print("Warning:Cells: No mother-daughters assigned")
 
-        return mothers, daughters
+        return mothers_daughters
 
     @staticmethod
     def mother_assign_to_mb_matrix(ma: t.List[np.array]):
diff --git a/src/agora/io/signal.py b/src/agora/io/signal.py
index 604a7ef047c72a1fc9ff8229ac6a41a5db14dbad..539a71d15ab623c8df68e5867ba62e3df033f244 100644
--- a/src/agora/io/signal.py
+++ b/src/agora/io/signal.py
@@ -193,38 +193,39 @@ class Signal(BridgeH5):
                     merged = pd.DataFrame([], index=index)
         return merged
 
-    @cached_property
+    @property
     def datasets(self):
-        if not hasattr(self, "_siglist"):
-            self._siglist = []
+        if not hasattr(self, "_available"):
+            self._available = []
 
             with h5py.File(self.filename, "r") as f:
-                f.visititems(self.get_siglist)
+                f.visititems(self.store_signal_url)
 
         for sig in self.siglist:
             print(sig)
 
     @cached_property
-    def p_siglist(self):
+    def p_available(self):
         """Print signal list"""
         self.datasets
 
     @cached_property
-    def siglist(self):
-        """Return list of signals"""
+    def available(self):
+        """Return list of available signals"""
         try:
-            if not hasattr(self, "_siglist"):
-                self._siglist = []
-                with h5py.File(self.filename, "r") as f:
-                    f.visititems(self.get_siglist)
+            if not hasattr(self, "_available"):
+                self._available = []
+
+            with h5py.File(self.filename, "r") as f:
+                f.visititems(self.store_signal_url)
+
         except Exception as e:
             print("Error visiting h5: {}".format(e))
-            self._siglist = []
 
-        return self._siglist
+        return self._available
 
     def get_merged(self, dataset):
-        return self.apply_prepost(dataset, skip_picks=True)
+        return self.apply_prepost(dataset, picks=False)
 
     @cached_property
     def merges(self):
@@ -327,18 +328,21 @@ class Signal(BridgeH5):
     #         columns=f[path + "/timepoint"][()],
     #     )
 
-    def get_siglist(self, node):
-        fullname = node.name
+    def store_signal_url(
+        self, fullname: str, node: t.Union[h5py.Dataset, h5py.Group]
+    ):
+        """
+        Store the name of a signal it is a leaf node (a group with no more groups inside)
+        and starts with extraction
+        """
         if isinstance(node, h5py.Group) and np.all(
             [isinstance(x, h5py.Dataset) for x in node.values()]
         ):
-            self._if_ext_or_post(fullname, self._siglist)
+            self._if_ext_or_post(fullname, self._available)
 
     @staticmethod
     def _if_ext_or_post(name: str, siglist: list):
-        if name.startswith("/extraction") or name.startswith(
-            "/postprocessing"
-        ):
+        if name.startswith("extraction") or name.startswith("postprocessing"):
             siglist.append(name)
 
     @staticmethod
diff --git a/src/agora/utils/association.py b/src/agora/utils/association.py
new file mode 100644
index 0000000000000000000000000000000000000000..13b9cbe408e608b346a1fa91d7704f7739d4e846
--- /dev/null
+++ b/src/agora/utils/association.py
@@ -0,0 +1,102 @@
+#!/usr/bin/env jupyter
+"""
+Utilities based on association are used to efficiently acquire indices of tracklets with some kind of relationship.
+This can be:
+    - Cells that are to be merged
+    - Cells that have a linear relationship
+"""
+
+import numpy as np
+import typing as t
+
+
+def validate_association(
+    association: np.ndarray,
+    indices: np.ndarray,
+    match_column: t.Optional[int] = None,
+) -> t.Tuple[np.ndarray, np.ndarray]:
+
+    """Select rows from the first array that are present in both.
+        We use casting for fast multiindexing, generalising for lineage dynamics
+
+
+        Parameters
+        ----------
+        association : np.ndarray
+            2-D array where columns are (trap, mother, daughter) or 3-D array where
+            dimensions are (X, (trap,mother), (trap,daughter))
+        indices : np.ndarray
+            2-D array where each column is a different level.
+        match_column: int
+            int indicating a specific column is required to match (i.e.
+            0-1 for target-source when trying to merge tracklets or mother-bud for lineage)
+            must be present in indices. If it is false one match suffices for the resultant indices
+            vector to be True.
+
+        Returns
+        -------
+        np.ndarray
+            1-D boolean array indicating valid merge events.
+        np.ndarray
+            1-D boolean array indicating indices with an association relationship.
+
+        Examples
+        --------
+
+        >>> import numpy as np
+        >>> from agora.utils.association import validate_association
+        >>> merges = np.array(range(12)).reshape(3,2,2)
+        >>> indices = np.array(range(6)).reshape(3,2)
+
+        >>> print(merges, indices)
+        >>> print(merges); print(indices)
+        [[[ 0  1]
+          [ 2  3]]
+
+         [[ 4  5]
+          [ 6  7]]
+
+         [[ 8  9]
+          [10 11]]]
+
+        [[0 1]
+         [2 3]
+         [4 5]]
+
+        >>> valid_associations, valid_indices  = validate_association(merges, indices)
+        >>> print(valid_associations, valid_indices)
+    [ True False False] [ True  True False]
+
+    """
+    if association.ndim < 3:
+        # Reshape into 3-D array for broadcasting if neded
+        association = np.stack(
+            (association[:, [0, 1]], association[:, [0, 2]]), axis=2
+        )
+
+    # Compare existing association with available indices
+    # Swap trap and label axes for the association array to correctly cast
+    valid_ndassociation = association[..., None] == indices.T[None, ...]
+
+    # Broadcasting is confusing (but efficient):
+    # First we check the dimension across trap and cell id, to ensure both match
+    valid_cell_ids = valid_ndassociation.all(axis=2)
+
+    if match_column is None:
+        # Then we check the merge tuples to check which cases have both target and source
+        valid_association = valid_cell_ids.any(axis=2).all(axis=1)
+
+        # Finally we check the dimension that crosses all indices, to ensure the pair
+        # is present in a valid merge event.
+        valid_indices = (
+            valid_ndassociation[valid_association].all(axis=2).any(axis=(0, 1))
+        )
+    else:  # We fetch specific indices if we aim for the ones with one present
+        valid_indices = valid_cell_ids[:, match_column].any(axis=0)
+        # Valid association then becomes a boolean array, true means that there is a
+        # match (match_column) between that cell and the index
+        valid_association = (
+            valid_cell_ids[:, match_column] & valid_indices
+        ).any(axis=1)
+
+    return valid_association, valid_indices
diff --git a/src/agora/utils/merge.py b/src/agora/utils/merge.py
index 9a28fd598d6a67fa1c71c28092720f87a016b907..4e4abdb8c2277067c495a69fbcdb3201a39c4aa5 100644
--- a/src/agora/utils/merge.py
+++ b/src/agora/utils/merge.py
@@ -9,6 +9,8 @@ import numpy as np
 import pandas as pd
 from utils_find_1st import cmp_larger, find_1st
 
+from agora.utils.association import validate_association
+
 
 def apply_merges(data: pd.DataFrame, merges: np.ndarray):
     """Split data in two, one subset for rows relevant for merging and one
@@ -29,7 +31,9 @@ def apply_merges(data: pd.DataFrame, merges: np.ndarray):
 
     """
 
-    valid_merges, indices = validate_merges(merges, np.array(list(data.index)))
+    valid_merges, indices = validate_association(
+        merges, np.array(list(data.index))
+    )
 
     # Assign non-merged
     merged = data.loc[~indices]
@@ -49,59 +53,6 @@ def apply_merges(data: pd.DataFrame, merges: np.ndarray):
     return merged
 
 
-def validate_merges(
-    merges: np.ndarray, indices: np.ndarray
-) -> t.Tuple[np.ndarray, np.ndarray]:
-
-    """Select rows from the first array that are present in both.
-    We use casting for fast multiindexing.
-
-
-
-
-    Parameters
-    ----------
-    merges : np.ndarray
-        2-D array where columns are (trap, mother, daughter) or 3-D array where
-        dimensions are (X, (trap,mother), (trap,daughter))
-    indices : np.ndarray
-        2-D array where each column is a different level.
-
-    Returns
-    -------
-    np.ndarray
-        1-D boolean array indicating valid merge events.
-    np.ndarray
-        1-D boolean array indicating indices involved in merging.
-
-    Examples
-    --------
-    FIXME: Add docs.
-
-    """
-    if merges.ndim < 3:
-        # Reshape into 3-D array for broadcasting if neded
-        merges = np.stack((merges[:, [0, 1]], merges[:, [0, 2]]), axis=1)
-
-    # Compare existing merges with available indices
-    # Swap trap and label axes for the merges array to correctly cast
-    # valid_ndmerges = merges.swapaxes(1, 2)[..., None] == indices.T[:, None, :]
-    valid_ndmerges = merges[..., None] == indices.T[None, ...]
-
-    # Broadcasting is confusing (but efficient):
-    # First we check the dimension across trap and cell id, to ensure both match
-    valid_cell_ids = valid_ndmerges.all(axis=2)
-
-    # Then we check the merge tuples to check which cases have both target and source
-    valid_merges = valid_cell_ids.any(axis=2).all(axis=1)
-
-    # Finalle we check the dimension that crosses all indices, to ensure the pair
-    # is present in a valid merge event.
-    valid_indices = valid_ndmerges[valid_merges].all(axis=2).any(axis=(0, 1))
-
-    return valid_merges, valid_indices
-
-
 def join_tracks_pair(target: np.ndarray, source: np.ndarray) -> np.ndarray:
     """
     Join two tracks and return the new value of the target.
diff --git a/src/postprocessor/core/reshapers/picker.py b/src/postprocessor/core/reshapers/picker.py
index 2fc1ece75e5d078dbe05a309bf3a8e30aed06f07..117b5d4b1159e85bddfd8710bfc7fa28a58059c8 100644
--- a/src/postprocessor/core/reshapers/picker.py
+++ b/src/postprocessor/core/reshapers/picker.py
@@ -11,8 +11,9 @@ from agora.abc import ParametersABC
 from agora.io.cells import Cells
 from utils_find_1st import cmp_equal, find_1st
 
-from postprocessor.core.abc import PostProcessABC
+from postprocessor.core.lineageprocess import LineageProcess
 from postprocessor.core.functions.tracks import max_nonstop_ntps, max_ntps
+from agora.utils.association import validate_association
 
 
 class pickerParameters(ParametersABC):
@@ -28,7 +29,7 @@ class pickerParameters(ParametersABC):
     }
 
 
-class picker(PostProcessABC):
+class picker(LineageProcess):
     """
     :cells: Cell object passed to the constructor
     :condition: Tuple with condition and associated parameter(s), conditions can be
@@ -44,124 +45,45 @@ class picker(PostProcessABC):
     ):
         super().__init__(parameters=parameters)
 
-        self._cells = cells
+        self.cells = cells
 
-    def pick_by_lineage(self, signals, how):
-        self.orig_signals = signals
+    def pick_by_lineage(self, signal, how):
+        self.orig_signals = signal
 
-        idx = signals.index
-
-        if how:
-            mothers = set(self.mothers)
-            daughters = set(self.daughters)
-            # daughters, mothers = np.where(mother_bud_mat)
-
-            def search(a, b):
-                return np.where(
-                    np.in1d(
-                        np.ravel_multi_index(
-                            np.array(a).T, np.array(a).max(0) + 1
-                        ),
-                        np.ravel_multi_index(
-                            np.array(b).T, np.array(a).max(0) + 1
-                        ),
-                    )
-                )
-
-            if how == "mothers":
-                idx = mothers
-            elif how == "daughters":
-                idx = daughters
-            elif how == "daughters_w_mothers":
-                present_mothers = idx.intersection(mothers)
-                idx = set(
-                    [
-                        tuple(x)
-                        for m in present_mothers
-                        for x in np.array(self.daughters)[
-                            search(self.mothers, m)
-                        ]
-                    ]
-                )
-
-                print("associated daughters: ", idx)
-            elif how == "mothers_w_daughters":
-                present_daughters = idx.intersection(daughters)
-                idx = set(
-                    [
-                        tuple(x)
-                        for d in present_daughters
-                        for x in np.array(self.mothers)[
-                            search(self.daughters, d)
-                        ]
-                    ]
-                )
-            elif how == "full_families":
-                present_mothers = idx.intersection(mothers)
-                dwm_idx = set(
-                    [
-                        tuple(x)
-                        for m in present_mothers
-                        for x in np.array(self.daughters)[
-                            search(np.array(self.mothers), m)
-                        ]
-                    ]
-                )
-                present_daughters = idx.intersection(daughters)
-                mwd_idx = set(
-                    [
-                        tuple(x)
-                        for d in present_daughters
-                        for x in np.array(self.mothers)[
-                            search(np.array(self.daughters), d)
-                        ]
-                    ]
-                )
-                idx = mwd_idx.union(dwm_idx)
-            elif how == "families" or how == "orphans":
-                families = mothers.union(daughters)
-                if how == "families":
-                    idx = families
-                elif how == "orphans":
-                    idx = idx.diference(families)
-
-            idx = idx.intersection(signals.index)
+        idx = np.array(signal.index.to_list())
+        mothers_daughters = self.cells.mothers_daughters
+        valid_indices, valid_lineage = [slice(None)] * 2
 
-        return idx
+        if how == "mothers":
+            valid_lineage, valid_indices = validate_association(
+                mothers_daughters, idx, match_column=0
+            )
+        elif how == "daughters":
+            valid_lineage, valid_indices = validate_association(
+                mothers_daughters, idx, match_column=0
+            )
+        elif how == "families":  # Mothers and daughters that are still present
+            valid_lineage, valid_indices = validate_association(
+                mothers_daughters, idx, match_column=0
+            )
+
+        idx = idx[valid_indices]
+        mothers_daughters = mothers_daughters[valid_lineage]
+
+        return mothers_daughters, idx
+
+    def loc_lineage(self, signals: pd.DataFrame, how: str):
+        _, valid_indices = self.pick_by_lineage(signals, how)
+        return signals.loc[valid_indices]
 
     def pick_by_condition(self, signals, condition, thresh):
         idx = self.switch_case(signals, condition, thresh)
         return idx
 
-    def get_mothers_daughters(self):
-        ma = self._cells["mother_assign_dynamic"]
-        trap = self._cells["trap"]
-        label = self._cells["cell_label"]
-        nested_massign = self._cells.mother_assign_from_dynamic(
-            ma, label, trap, self._cells.ntraps
-        )
-        # mother_bud_mat = self.mother_assign_to_mb_matrix(nested_massign)
-
-        if sum([x for y in nested_massign for x in y]):
-
-            mothers, daughters = zip(
-                *[
-                    ((tid, m), (tid, d))
-                    for tid, trapcells in enumerate(nested_massign)
-                    for d, m in enumerate(trapcells, 1)
-                    if m
-                ]
-            )
-        else:
-            mothers, daughters = ([], [])
-            print("Warning:Picker: No mother-daughters assigned")
-
-        return mothers, daughters
-
     def run(self, signals):
         self.orig_signals = signals
         indices = set(signals.index)
-        self.mothers, self.daughters = self.get_mothers_daughters()
+        self.mothers, self.daughters = self.cells.mothers_daughters
         for alg, op, *params in self.sequence:
             new_indices = tuple()
             if indices:
diff --git a/src/postprocessor/grouper.py b/src/postprocessor/grouper.py
index 1531c052362246ffd4e8231102cb0288f43a20f6..c31e1095384288ad03a6e2f4ba49ffe885de6247 100644
--- a/src/postprocessor/grouper.py
+++ b/src/postprocessor/grouper.py
@@ -53,17 +53,17 @@ class Grouper(ABC):
         return max(tintervals)
 
     @property
-    def siglist(self) -> None:
-        return self.fsignal.siglist
+    def available(self) -> None:
+        return self.fsignal.available
 
     @property
-    def siglist_grouped(self) -> None:
-        if not hasattr(self, "_siglist_grouped"):
-            self._siglist_grouped = Counter(
-                [x for s in self.signals.values() for x in s.siglist]
+    def available_grouped(self) -> None:
+        if not hasattr(self, "_available_grouped"):
+            self._available_grouped = Counter(
+                [x for s in self.signals.values() for x in s.available]
             )
 
-        for s, n in self._siglist_grouped.items():
+        for s, n in self._available_grouped.items():
             print(f"{s} - {n}")
 
     @property
@@ -107,7 +107,7 @@ class Grouper(ABC):
             path = "/" + path
 
         # Check the path is in a given signal
-        sitems = {k: v for k, v in self.signals.items() if path in v.siglist}
+        sitems = {k: v for k, v in self.signals.items() if path in v.available}
         nsignals_dif = len(self.signals) - len(sitems)
         if nsignals_dif:
             print(
@@ -180,7 +180,7 @@ class Grouper(ABC):
         return tuple(sorted(set(self.positions_groups.keys())))
 
     def ncells(
-        self, path="/extraction/general/None/area", mode="retained", **kwargs
+        self, path="extraction/general/None/area", mode="retained", **kwargs
     ) -> t.Dict[str, int]:
         """
         Returns number of cells retained per position in base channel
@@ -388,9 +388,9 @@ class MultiGrouper:
             group.load_signals()
 
     @property
-    def siglist(self) -> None:
+    def available(self) -> None:
         for gpr in self.groupers:
-            print(gpr.siglist_grouped)
+            print(gpr.available_grouped)
 
     @property
     def sigtable(self) -> pd.DataFrame:
@@ -398,31 +398,31 @@ class MultiGrouper:
         and experiment."""
 
         def regex_cleanup(x):
-            x = re.sub(r"\/extraction\/", "", x)
-            x = re.sub(r"\/postprocessing\/", "", x)
-            x = re.sub(r"\/np_max", "", x)
+            x = re.sub(r"extraction\/", "", x)
+            x = re.sub(r"postprocessing\/", "", x)
+            x = re.sub(r"\/max", "", x)
 
             return x
 
         if not hasattr(self, "_sigtable"):
             raw_mat = [
-                [s.siglist for s in gpr.signals.values()]
+                [s.available for s in gpr.signals.values()]
                 for gpr in self.groupers
             ]
-            siglist_grouped = [
+            available_grouped = [
                 Counter([x for y in grp for x in y]) for grp in raw_mat
             ]
 
-            nexps = len(siglist_grouped)
+            nexps = len(available_grouped)
             sigs_idx = list(
-                set([y for x in siglist_grouped for y in x.keys()])
+                set([y for x in available_grouped for y in x.keys()])
             )
             sigs_idx = [regex_cleanup(x) for x in sigs_idx]
 
             nsigs = len(sigs_idx)
 
             sig_matrix = np.zeros((nsigs, nexps))
-            for i, c in enumerate(siglist_grouped):
+            for i, c in enumerate(available_grouped):
                 for k, v in c.items():
                     sig_matrix[sigs_idx.index(regex_cleanup(k)), i] = v