From be41600875889fa7cf712e703a78e238a383e1fb Mon Sep 17 00:00:00 2001 From: Peter Swain <peter.swain@ed.ac.uk> Date: Fri, 10 Feb 2023 16:09:02 +0000 Subject: [PATCH] Minor tweaks to documentation in extraction --- src/aliby/tile/tiler.py | 2 +- src/extraction/core/extractor.py | 129 +++++++++----------- src/extraction/core/functions/cell.py | 57 +++++---- src/extraction/core/functions/defaults.py | 40 +++--- src/extraction/core/functions/loaders.py | 32 ++--- src/extraction/core/functions/math_utils.py | 1 - src/extraction/core/functions/trap.py | 10 +- 7 files changed, 130 insertions(+), 141 deletions(-) diff --git a/src/aliby/tile/tiler.py b/src/aliby/tile/tiler.py index c91f412d..9c1c08ce 100644 --- a/src/aliby/tile/tiler.py +++ b/src/aliby/tile/tiler.py @@ -539,7 +539,7 @@ class Tiler(StepABC): Returns ------- res: array - Data arranged as (tiles, channels, timepoints, X, Y, Z) + Data arranged as (tiles, channels, time points, X, Y, Z) """ # FIXME add support for sub-tiling a tile # FIXME can we ignore z diff --git a/src/extraction/core/extractor.py b/src/extraction/core/extractor.py index eee3185a..f22898a8 100644 --- a/src/extraction/core/extractor.py +++ b/src/extraction/core/extractor.py @@ -18,7 +18,7 @@ from extraction.core.functions.loaders import ( load_redfuns, ) -# Define types +# define types reduction_method = t.Union[t.Callable, str, None] extraction_tree = t.Dict[ str, t.Dict[reduction_method, t.Dict[str, t.Collection]] @@ -27,7 +27,7 @@ extraction_result = t.Dict[ str, t.Dict[reduction_method, t.Dict[str, t.Dict[str, pd.Series]]] ] -# Global parameters used to load functions that either analyse cells or their background. These global parameters both allow the functions to be stored in a dictionary for access only on demand and to be defined simply in extraction/core/functions. +# Global variables used to load functions that either analyse cells or their background. These global variables both allow the functions to be stored in a dictionary for access only on demand and to be defined simply in extraction/core/functions. CELL_FUNS, TRAPFUNS, FUNS = load_funs() CUSTOM_FUNS, CUSTOM_ARGS = load_custom_args() RED_FUNS = load_redfuns() @@ -37,9 +37,7 @@ RED_FUNS = load_redfuns() class ExtractorParameters(ParametersABC): - """ - Base class to define parameters for extraction. - """ + """Base class to define parameters for extraction.""" def __init__( self, @@ -48,12 +46,14 @@ class ExtractorParameters(ParametersABC): multichannel_ops: t.Dict = {}, ): """ + Initialise. + Parameters ---------- tree: dict Nested dictionary indicating channels, reduction functions and metrics to be used. - str channel -> U(function,None) reduction -> str metric + str channel -> U(function, None) reduction -> str metric If not of depth three, tree will be filled with None. sub_bg: set multichannel_ops: dict @@ -65,7 +65,7 @@ class ExtractorParameters(ParametersABC): @staticmethod def guess_from_meta(store_name: str, suffix="fast"): """ - Find the microscope used from the h5 metadata. + Find the microscope name from the h5 metadata. Parameters ---------- @@ -98,17 +98,7 @@ class Extractor(StepABC): Usually the metric is applied to only a tile's masked area, but some metrics depend on the whole tile. - Extraction follows a three-level tree structure. Channels, such as GFP, are the root level; the reduction algorithm, such as maximum projection, is the second level; the specific metric, or operation, to apply to the masks is the third level. - - Parameters - ---------- - parameters: core.extractor Parameters - Parameters that include the channels, and reduction and - extraction functions. - store: str - Path to the h5 file, which must contain the cell masks. - tiler: pipeline-core.core.segmentation tiler - Class that contains or fetches the images used for segmentation. + Extraction follows a three-level tree structure. Channels, such as GFP, are the root level; the reduction algorithm, such as maximum projection, is the second level; the specific metric, or operation, to apply to the masks, such as mean, is the third level. """ # Alan: should this data be stored here or all such data in a separate file @@ -129,10 +119,13 @@ class Extractor(StepABC): Parameters ---------- - parameters: ExtractorParameters object + parameters: core.extractor Parameters + Parameters that include the channels, reduction and + extraction functions. store: str - Name of h5 file - tiler: Tiler object + Path to the h5 file containing the cell masks. + tiler: pipeline-core.core.segmentation tiler + Class that contains or fetches the images used for segmentation. """ self.params = parameters if store: @@ -179,14 +172,18 @@ class Extractor(StepABC): @property def group(self): - # returns path within h5 file + """Return path within the h5 file.""" if not hasattr(self, "_out_path"): self._group = "/extraction/" return self._group def load_custom_funs(self): """ - Define any custom functions to be functions of cell_masks and trap_image only. + Incorporate the extra arguments of custom functions into their definitions. + + Normal functions only have cell_masks and trap_image as their + arguments, and here custom functions are made the same by + setting the values of their extra arguments. Any other parameters are taken from the experiment's metadata and automatically applied. These parameters therefore must be loaded within an Extractor instance. """ @@ -206,12 +203,13 @@ class Extractor(StepABC): k: {k2: self.get_meta(k2) for k2 in v} for k, v in CUSTOM_ARGS.items() } - # define custom functions - those with extra arguments other than cell_masks and trap_image - as functions of two variables + # define custom functions self._custom_funs = {} for k, f in CUSTOM_FUNS.items(): def tmp(f): # pass extra arguments to custom function + # return a function of cell_masks and trap_image return lambda cell_masks, trap_image: trap_apply( f, cell_masks, @@ -222,6 +220,7 @@ class Extractor(StepABC): self._custom_funs[k] = tmp(f) def load_funs(self): + """Define all functions, including custum ones.""" self.load_custom_funs() self._all_cell_funs = set(self._custom_funs.keys()).union(CELL_FUNS) # merge the two dicts @@ -239,20 +238,18 @@ class Extractor(StepABC): **kwargs, ) -> t.Optional[np.ndarray]: """ - Find tiles for a given time point and given channels and z-stacks. - - Returns None if no tiles are found. + Find tiles for a given time point, channels, and z-stacks. Any additional keyword arguments are passed to tiler.get_tiles_timepoint Parameters ---------- tp: int - Time point of interest + Time point of interest. channels: list of strings (optional) - Channels of interest + Channels of interest. z: list of integers (optional) - Indices for the z-stacks of interest + Indices for the z-stacks of interest. """ if channels is None: # find channels from tiler @@ -265,16 +262,16 @@ class Extractor(StepABC): channel_ids = None if z is None: # gets the tiles data via tiler - z: t.List[int] = list(range(self.tiler.shape[-3])) - tiles = ( + z = list(range(self.tiler.shape[-3])) + res = ( self.tiler.get_tiles_timepoint( tp, channels=channel_ids, z=z, **kwargs ) if channel_ids else None ) - # data arranged as (traps, channels, timepoints, X, Y, Z) - return tiles + # data arranged as (tiles, channels, time points, X, Y, Z) + return res def extract_traps( self, @@ -302,11 +299,10 @@ class Extractor(StepABC): Returns ------- res_idx: a tuple of tuples - A two-tuple of a tuple of results and a tuple with the corresponding trap_id and cell labels + A two-tuple comprising a tuple of results and a tuple of the tile_id and cell labels """ if labels is None: self._log("No labels given. Sorting cells using index.") - cell_fun = True if metric in self._all_cell_funs else False idx = [] results = [] @@ -337,7 +333,9 @@ class Extractor(StepABC): **kwargs, ) -> t.Dict[str, pd.Series]: """ - Returns dict with metrics as key and metrics applied to data as values for data from one timepoint. + Return dict with metrics as key and metrics applied to data as values. + + Data from one time point is used. """ d = { metric: self.extract_traps( @@ -349,7 +347,7 @@ class Extractor(StepABC): def reduce_extract( self, - traps: np.ndarray, + tiles_data: np.ndarray, masks: t.List[np.ndarray], red_metrics: t.Dict[reduction_method, t.Collection[str]], **kwargs, @@ -359,8 +357,8 @@ class Extractor(StepABC): Parameters ---------- - traps: array - An array of image data arranged as (traps, X, Y, Z) + tiles_data: array + An array of image data arranged as (tiles, X, Y, Z) masks: list of arrays An array of masks for each trap: one per cell at the trap red_metrics: dict @@ -371,20 +369,20 @@ class Extractor(StepABC): Returns ------ - Dictionary of dataframes with the corresponding reductions and metrics nested. + Dict of dataframes with the corresponding reductions and metrics nested. """ # create dict with keys naming the reduction in the z-direction and the reduced data as values - reduced_traps = {} - if traps is not None: + reduced_tiles_data = {} + if tiles_data is not None: for red_fun in red_metrics.keys(): - reduced_traps[red_fun] = [ - self.reduce_dims(trap, method=RED_FUNS[red_fun]) - for trap in traps + reduced_tiles_data[red_fun] = [ + self.reduce_dims(tile_data, method=RED_FUNS[red_fun]) + for tile_data in tiles_data ] d = { red_fun: self.extract_funs( metrics=metrics, - traps=reduced_traps.get(red_fun, [None for _ in masks]), + traps=reduced_tiles_data.get(red_fun, [None for _ in masks]), masks=masks, **kwargs, ) @@ -403,9 +401,9 @@ class Extractor(StepABC): Parameters ---------- img: array - An array of the image data arranged as (X, Y, Z) + An array of the image data arranged as (X, Y, Z). method: function - The reduction function + The reduction function. """ reduced = img if method is not None: @@ -422,7 +420,7 @@ class Extractor(StepABC): **kwargs, ) -> t.Dict[str, t.Dict[str, t.Dict[str, tuple]]]: """ - Extract for an individual time-point. + Extract for an individual time point. Parameters ---------- @@ -452,7 +450,6 @@ class Extractor(StepABC): The first tuple is the result of applying the metrics to a particular cell or trap; the second tuple is either (trap_id, cell_label) for a metric applied to a cell or a trap_id for a metric applied to a trap. An example is d["GFP"]["np_max"]["mean"][0], which gives a tuple of the calculated mean GFP fluorescence for all cells. - """ # TODO Can we split the different extraction types into sub-methods to make this easier to read? if tree is None: @@ -464,7 +461,6 @@ class Extractor(StepABC): tree_chs = (*ch_tree,) # create a Cells object to extract information from the h5 file cells = Cells(self.local) - # find the cell labels and store as dict with trap_ids as keys if labels is None: raw_labels = cells.labels_at_time(tp) @@ -472,7 +468,6 @@ class Extractor(StepABC): trap_id: raw_labels.get(trap_id, []) for trap_id in range(cells.ntraps) } - # find the cell masks for a given trap as a dict with trap_ids as keys if masks is None: raw_masks = cells.at_time(tp, kind="mask") @@ -482,11 +477,9 @@ class Extractor(StepABC): masks[trap_id] = np.dstack(np.array(cells)).astype(bool) # convert to a list of masks masks = [np.array(v) for v in masks.values()] - # find image data at the time point - # stored as an array arranged as (traps, channels, timepoints, X, Y, Z) + # stored as an array arranged as (traps, channels, time points, X, Y, Z) tiles = self.get_tiles(tp, tile_shape=tile_size, channels=tree_chs) - # generate boolean masks for background as a list with one mask per trap bgs = [] if self.params.sub_bg: @@ -496,7 +489,6 @@ class Extractor(StepABC): else np.zeros((tile_size, tile_size)) for m in masks ] - # perform extraction by applying metrics d = {} self.img_bgsub = {} @@ -510,9 +502,9 @@ class Extractor(StepABC): img = None # apply metrics to image data d[ch] = self.reduce_extract( - red_metrics=red_metrics, - traps=img, + tiles_data=img, masks=masks, + red_metrics=red_metrics, labels=labels, **kwargs, ) @@ -537,8 +529,7 @@ class Extractor(StepABC): labels=labels, **kwargs, ) - - # apply any metrics that use multiple channels (eg pH calculations) + # apply any metrics using multiple channels, such as pH calculations for name, ( chs, merge_fun, @@ -560,10 +551,9 @@ class Extractor(StepABC): labels=labels, **kwargs, ) - return d - def get_imgs(self, channel: t.Optional[str], traps, channels=None): + def get_imgs(self, channel: t.Optional[str], tiles, channels=None): """ Return image from a correct source, either raw or bgsub. @@ -571,20 +561,20 @@ class Extractor(StepABC): ---------- channel: str Name of channel to get. - traps: ndarray - An array of the image data having dimensions of (trap_id, channel, tp, tile_size, tile_size, n_zstacks). + tiles: ndarray + An array of the image data having dimensions of (tile_id, channel, tp, tile_size, tile_size, n_zstacks). channels: list of str (optional) List of available channels. Returns ------- img: ndarray - An array of image data with dimensions (no traps, X, Y, no Z channels) + An array of image data with dimensions (no tiles, X, Y, no Z channels) """ if channels is None: channels = (*self.params.tree,) if channel in channels: # TODO start here to fetch channel using regex - return traps[:, channels.index(channel), 0] + return tiles[:, channels.index(channel), 0] elif channel in self.img_bgsub: return self.img_bgsub[channel] @@ -622,7 +612,6 @@ class Extractor(StepABC): tps = list(range(self.meta["time_settings/ntimepoints"][0])) elif isinstance(tps, int): tps = [tps] - # store results in dict d = {} for tp in tps: @@ -669,7 +658,7 @@ class Extractor(StepABC): self.writer.id_cache.clear() def get_meta(self, flds: t.Union[str, t.Collection]): - # Obtain metadata for one or multiple fields + """Obtain metadata for one or multiple fields.""" if isinstance(flds, str): flds = [flds] meta_short = {k.split("/")[-1]: v for k, v in self.meta.items()} @@ -692,7 +681,7 @@ def flatten_nesteddict( to: str (optional) Specifies the format of the output, either pd.Series (default) or a list tp: int - Timepoint used to name the pd.Series + Time point used to name the pd.Series Returns ------- diff --git a/src/extraction/core/functions/cell.py b/src/extraction/core/functions/cell.py index c3d99d27..0e7b9fe8 100644 --- a/src/extraction/core/functions/cell.py +++ b/src/extraction/core/functions/cell.py @@ -1,13 +1,15 @@ """ -Base functions to extract information from a single cell +Base functions to extract information from a single cell. -These functions are automatically read by extractor.py, and so can only have the cell_mask and trap_image as inputs and must return only one value. +These functions are automatically read by extractor.py, and +so can only have the cell_mask and trap_image as inputs. They +must return only one value. They assume that there are no NaNs in the image. - We use bottleneck when it performs faster than numpy: -- Median -- values containing NaNs (We make sure this does not happen) +We use the module bottleneck when it performs faster than numpy: +- Median +- values containing NaNs (but we make sure this does not happen) """ import math import typing as t @@ -19,24 +21,24 @@ from scipy import ndimage def area(cell_mask) -> int: """ - Find the area of a cell mask + Find the area of a cell mask. Parameters ---------- cell_mask: 2d array - Segmentation mask for the cell + Segmentation mask for the cell. """ return np.sum(cell_mask) def eccentricity(cell_mask) -> float: """ - Find the eccentricity using the approximate major and minor axes + Find the eccentricity using the approximate major and minor axes. Parameters ---------- cell_mask: 2d array - Segmentation mask for the cell + Segmentation mask for the cell. """ min_ax, maj_ax = min_maj_approximation(cell_mask) return np.sqrt(maj_ax**2 - min_ax**2) / maj_ax @@ -44,12 +46,12 @@ def eccentricity(cell_mask) -> float: def mean(cell_mask, trap_image) -> float: """ - Finds the mean of the pixels in the cell. + Find the mean of the pixels in the cell. Parameters ---------- cell_mask: 2d array - Segmentation mask for the cell + Segmentation mask for the cell. trap_image: 2d array """ return np.mean(trap_image[cell_mask]) @@ -57,12 +59,12 @@ def mean(cell_mask, trap_image) -> float: def median(cell_mask, trap_image) -> int: """ - Finds the median of the pixels in the cell. + Find the median of the pixels in the cell. Parameters ---------- cell_mask: 2d array - Segmentation mask for the cell + Segmentation mask for the cell. trap_image: 2d array """ return bn.median(trap_image[cell_mask]) @@ -70,12 +72,12 @@ def median(cell_mask, trap_image) -> int: def max2p5pc(cell_mask, trap_image) -> float: """ - Finds the mean of the brightest 2.5% of pixels in the cell. + Find the mean of the brightest 2.5% of pixels in the cell. Parameters ---------- cell_mask: 2d array - Segmentation mask for the cell + Segmentation mask for the cell. trap_image: 2d array """ # number of pixels in mask @@ -84,19 +86,18 @@ def max2p5pc(cell_mask, trap_image) -> float: # sort pixels in cell and find highest 2.5% pixels = trap_image[cell_mask] top_values = bn.partition(pixels, len(pixels) - n_top)[-n_top:] - # find mean of these highest pixels return np.mean(top_values) def max5px(cell_mask, trap_image) -> float: """ - Finds the mean of the five brightest pixels in the cell. + Find the mean of the five brightest pixels in the cell. Parameters ---------- cell_mask: 2d array - Segmentation mask for the cell + Segmentation mask for the cell. trap_image: 2d array """ # sort pixels in cell @@ -109,12 +110,12 @@ def max5px(cell_mask, trap_image) -> float: def std(cell_mask, trap_image): """ - Finds the standard deviation of the values of the pixels in the cell. + Find the standard deviation of the values of the pixels in the cell. Parameters ---------- cell_mask: 2d array - Segmentation mask for the cell + Segmentation mask for the cell. trap_image: 2d array """ return np.std(trap_image[cell_mask]) @@ -122,12 +123,15 @@ def std(cell_mask, trap_image): def volume(cell_mask) -> float: """ - Estimates the volume of the cell assuming it is an ellipsoid with the mask providing a cross-section through the median plane of the ellipsoid. + Estimate the volume of the cell. + + Assumes the cell is an ellipsoid with the mask providing + a cross-section through its median plane. Parameters ---------- cell_mask: 2d array - Segmentation mask for the cell + Segmentation mask for the cell. """ min_ax, maj_ax = min_maj_approximation(cell_mask) return (4 * np.pi * min_ax**2 * maj_ax) / 3 @@ -135,7 +139,7 @@ def volume(cell_mask) -> float: def conical_volume(cell_mask): """ - Estimates the volume of the cell + Estimate the volume of the cell. Parameters ---------- @@ -151,7 +155,10 @@ def conical_volume(cell_mask): def spherical_volume(cell_mask): """ - Estimates the volume of the cell assuming it is a sphere with the mask providing a cross-section through the median plane of the sphere. + Estimate the volume of the cell. + + Assumes the cell is a sphere with the mask providing + a cross-section through its median plane. Parameters ---------- @@ -165,7 +172,7 @@ def spherical_volume(cell_mask): def min_maj_approximation(cell_mask) -> t.Tuple[int]: """ - Finds the lengths of the minor and major axes of an ellipse from a cell mask. + Find the lengths of the minor and major axes of an ellipse from a cell mask. Parameters ---------- diff --git a/src/extraction/core/functions/defaults.py b/src/extraction/core/functions/defaults.py index 84798680..4fcb4094 100644 --- a/src/extraction/core/functions/defaults.py +++ b/src/extraction/core/functions/defaults.py @@ -2,23 +2,26 @@ import re import typing as t from pathlib import PosixPath - import h5py +# should we move these functions here? +from aliby.tile.tiler import find_channel_name + def exparams_from_meta( meta: t.Union[dict, PosixPath, str], extras: t.Collection[str] = ["ph"] ): """ - Obtain parameters from metadata of hdf5 file. - It compares a list of candidate channels using case-inspecific REGEX to identify valid channels. + Obtain parameters from metadata of the h5 file. + + Compares a list of candidate channels using case-insensitive + REGEX to identify valid channels. """ - meta = meta if isinstance(meta, dict) else load_attributes(meta) + meta = meta if isinstance(meta, dict) else load_metadata(meta) base = { "tree": {"general": {"None": ["area", "volume", "eccentricity"]}}, "multichannel_ops": {}, } - candidate_channels = { "Citrine", "GFP", @@ -30,7 +33,6 @@ def exparams_from_meta( "Cy5", "mKO2", } - default_reductions = {"max"} default_metrics = { "mean", @@ -40,33 +42,26 @@ def exparams_from_meta( "max5px", # "nuc_est_conv", } - - # Defined ratiometric combinations that can be used as ratio - # key is numerator and value is denominator; add more to support additional channel names + # define ratiometric combinations + # key is numerator and value is denominator + # add more to support additional channel names ratiometric_combinations = {"phluorin405": ("phluorin488", "gfpfast")} - default_reduction_metrics = { r: default_metrics for r in default_reductions } # default_rm["None"] = ["nuc_conv_3d"] # Uncomment this to add nuc_conv_3d (slow) - - from aliby.tile.tiler import find_channel_name - extant_fluorescence_ch = [] for av_channel in candidate_channels: - # Find channels in metadata whose names match + # find matching channels in metadata found_channel = find_channel_name(meta.get("channels", []), av_channel) if found_channel is not None: extant_fluorescence_ch.append(found_channel) - for ch in extant_fluorescence_ch: base["tree"][ch] = default_reduction_metrics - base["sub_bg"] = extant_fluorescence_ch - - # Additional extraction defaults when channels available + # additional extraction defaults if the channels are available if "ph" in extras: - # SWAINLAB-specific names + # SWAINLAB specific names # find first valid combination of ratiometric fluorescence channels numerator_channel, denominator_channel = (None, None) for ch1, chs2 in ratiometric_combinations.items(): @@ -80,8 +75,7 @@ def exparams_from_meta( if found_channel2: denominator_channel = found_channel2 break - - # If two compatible ratiometric channels are available + # if two compatible ratiometric channels are available if numerator_channel is not None and denominator_channel is not None: sets = { b + a: (x, y) @@ -102,11 +96,11 @@ def exparams_from_meta( *v, default_reduction_metrics, ] - return base -def load_attributes(file: t.Union[str, PosixPath], group="/"): +def load_metadata(file: t.Union[str, PosixPath], group="/"): + """Get meta data from an h5 file.""" with h5py.File(file, "r") as f: meta = dict(f[group].attrs.items()) return meta diff --git a/src/extraction/core/functions/loaders.py b/src/extraction/core/functions/loaders.py index 9d2e9c47..ff83b20c 100644 --- a/src/extraction/core/functions/loaders.py +++ b/src/extraction/core/functions/loaders.py @@ -11,14 +11,13 @@ from extraction.core.functions.math_utils import div0 """ Load functions for analysing cells and their background. -Note that inspect.getmembers returns a list of function names and functions, and inspect.getfullargspec returns a function's arguments. +Note that inspect.getmembers returns a list of function names and functions, +and inspect.getfullargspec returns a function's arguments. """ def load_cellfuns_core(): - """ - Load functions from the cell module and return as a dict. - """ + """Load functions from the cell module and return as a dict.""" return { f[0]: f[1] for f in getmembers(cell) @@ -31,7 +30,10 @@ def load_custom_args() -> t.Tuple[ (t.Dict[str, t.Callable], t.Dict[str, t.List[str]]) ]: """ - Load custom functions from the localisation module and return the functions and any additional arguments, other than cell_mask and trap_image, as dictionaries. + Load custom functions from the localisation module. + + Return the functions and any additional arguments other + than cell_mask and trap_image as dictionaries. """ # load functions from module funs = { @@ -57,7 +59,8 @@ def load_custom_args() -> t.Tuple[ def load_cellfuns(): """ - Creates a dict of core functions that can be used on an array of cell_masks. + Create a dict of core functions for use on cell_masks. + The core functions only work on a single mask. """ # create dict of the core functions from cell.py - these functions apply to a single mask @@ -81,9 +84,7 @@ def load_cellfuns(): def load_trapfuns(): - """ - Load functions that are applied to an entire trap or tile or subsection of an image rather than to single cells. - """ + """Load functions that are applied to an entire tile.""" TRAPFUNS = { f[0]: f[1] for f in getmembers(trap) @@ -94,9 +95,7 @@ def load_trapfuns(): def load_funs(): - """ - Combine all automatically loaded functions - """ + """Combine all automatically loaded functions.""" CELLFUNS = load_cellfuns() TRAPFUNS = load_trapfuns() # return dict of cell funs, dict of trap funs, and dict of both @@ -111,7 +110,10 @@ def load_redfuns( """ Load functions to reduce a multidimensional image by one dimension. - It can take custom functions as arguments. + Parameters + ---------- + additional_reducers: function or a dict of functions (optional) + Functions to perform the reduction. """ RED_FUNS = { "max": bn.nanmax, @@ -121,12 +123,10 @@ def load_redfuns( "add": bn.nansum, "None": None, } - if additional_reducers is not None: if isinstance(additional_reducers, FunctionType): additional_reducers = [ (additional_reducers.__name__, additional_reducers) ] - RED_FUNS.update(name, fun) - + RED_FUNS.update(additional_reducers) return RED_FUNS diff --git a/src/extraction/core/functions/math_utils.py b/src/extraction/core/functions/math_utils.py index eeae8e0c..a6216ea9 100644 --- a/src/extraction/core/functions/math_utils.py +++ b/src/extraction/core/functions/math_utils.py @@ -20,7 +20,6 @@ def div0(array, fill=0, axis=-1): slices_0, slices_1 = [[slice(None)] * len(array.shape)] * 2 slices_0[axis] = 0 slices_1[axis] = 1 - with np.errstate(divide="ignore", invalid="ignore"): c = np.true_divide( array[tuple(slices_0)], diff --git a/src/extraction/core/functions/trap.py b/src/extraction/core/functions/trap.py index b3cd7d13..f1f491e0 100644 --- a/src/extraction/core/functions/trap.py +++ b/src/extraction/core/functions/trap.py @@ -5,14 +5,14 @@ import numpy as np def imBackground(cell_masks, trap_image): """ - Finds the median background (pixels not comprising cells) from trap_image + Find the median background (pixels not comprising cells) from trap_image. Parameters ---------- cell_masks: 3d array Segmentation masks for cells trap_image: - The image (all channels) for the tile containing the cell + The image (all channels) for the tile containing the cell. """ if not len(cell_masks): # create cell_masks if none are given @@ -25,14 +25,14 @@ def imBackground(cell_masks, trap_image): def background_max5(cell_masks, trap_image): """ - Finds the mean of the maximum five pixels of the background (pixels not comprising cells) from trap_image + Finds the mean of the maximum five pixels of the background. Parameters ---------- cell_masks: 3d array - Segmentation masks for cells + Segmentation masks for cells. trap_image: - The image (all channels) for the tile containing the cell + The image (all channels) for the tile containing the cell. """ if not len(cell_masks): # create cell_masks if none are given -- GitLab