diff --git a/core/functions/tracks.py b/core/functions/tracks.py
index 928fc2b177c63857d0ff4149771b5f04b581478c..e47e60231da31e2c23acf5e97f5b721edbffdfee 100644
--- a/core/functions/tracks.py
+++ b/core/functions/tracks.py
@@ -388,6 +388,7 @@ def get_contiguous_pairs(tracks: pd.DataFrame) -> list:
 
     mins_d = mins.groupby(mins).apply(lambda x: x.index.tolist())
     mins_d.index = mins_d.index - 1  # make indices equal
+    # TODO add support for skipping time points
     maxes_d = maxes.groupby(maxes).apply(lambda x: x.index.tolist())
 
     common = sorted(set(mins_d.index).intersection(maxes_d.index), reverse=True)
diff --git a/core/processes/picker.py b/core/processes/picker.py
index 7649ab5995683a5e1ad14b3980e78504403704e0..2a26f2ebe2e5fa540d4c9a797dfa7a87dd7f0820 100644
--- a/core/processes/picker.py
+++ b/core/processes/picker.py
@@ -87,42 +87,64 @@ class picker(ProcessABC):
         return nested_massign
 
     def pick_by_lineage(self, signals, how):
+
         idx = signals.index
 
         if how:
-            ma = self._cells["mother_assign_dynamic"]
-            trap = self._cells["trap"]
-            label = self._cells["cell_label"]
-            nested_massign = self.mother_assign_from_dynamic(
-                ma, label, trap, self._cells.ntraps
-            )
-            # mother_bud_mat = self.mother_assign_to_mb_matrix(nested_massign)
-
-            idx = set(
-                [
-                    (tid, i + 1)
-                    for tid, x in enumerate(nested_massign)
-                    for i in range(len(x))
-                ]
-            )
-            mothers, daughters = zip(
-                *[
-                    ((tid, m), (tid, d))
-                    for tid, trapcells in enumerate(nested_massign)
-                    for d, m in enumerate(trapcells, 1)
-                    if m
-                ]
-            )
-            self.mothers = mothers
-            self.daughters = daughters
-
-            mothers = set(mothers)
-            daughters = set(daughters)
+            mothers = set(self.mothers)
+            daughters = set(self.daughters)
             # daughters, mothers = np.where(mother_bud_mat)
+
+            search = lambda a, b: np.where(
+                np.in1d(
+                    np.ravel_multi_index(np.array(a).T, np.array(a).max(0) + 1),
+                    np.ravel_multi_index(np.array(b).T, np.array(a).max(0) + 1),
+                )
+            )
             if how == "mothers":
                 idx = mothers
             elif how == "daughters":
                 idx = daughters
+            elif how == "daughters_w_mothers":
+                present_mothers = idx.intersection(mothers)
+                idx = set(
+                    [
+                        tuple(x)
+                        for m in present_mothers
+                        for x in np.array(self.daughters)[search(self.mothers, m)]
+                    ]
+                )
+            elif how == "mothers_w_daughters":
+                present_daughters = idx.intersection(daughters)
+                idx = set(
+                    [
+                        tuple(x)
+                        for d in present_daughters
+                        for x in np.array(self.mothers)[search(self.daughters, d)]
+                    ]
+                )
+            elif how == "full_families":
+                present_mothers = idx.intersection(mothers)
+                dwm_idx = set(
+                    [
+                        tuple(x)
+                        for m in present_mothers
+                        for x in np.array(self.daughters)[
+                            search(np.array(self.mothers), m)
+                        ]
+                    ]
+                )
+                present_daughters = idx.intersection(daughters)
+                mwd_idx = set(
+                    [
+                        tuple(x)
+                        for d in present_daughters
+                        for x in np.array(self.mothers)[
+                            search(np.array(self.daughters), d)
+                        ]
+                    ]
+                )
+                idx = mwd_idx.union(dwm_idx)
             elif how == "families" or how == "orphans":
                 families = mothers.union(daughters)
                 if how == "families":
@@ -138,9 +160,35 @@ class picker(ProcessABC):
         idx = self.switch_case(signals, condition, thresh)
         return idx
 
+    def get_mothers_daughters(self):
+        ma = self._cells["mother_assign_dynamic"]
+        trap = self._cells["trap"]
+        label = self._cells["cell_label"]
+        nested_massign = self.mother_assign_from_dynamic(
+            ma, label, trap, self._cells.ntraps
+        )
+        # mother_bud_mat = self.mother_assign_to_mb_matrix(nested_massign)
+
+        idx = set(
+            [
+                (tid, i + 1)
+                for tid, x in enumerate(nested_massign)
+                for i in range(len(x))
+            ]
+        )
+        mothers, daughters = zip(
+            *[
+                ((tid, m), (tid, d))
+                for tid, trapcells in enumerate(nested_massign)
+                for d, m in enumerate(trapcells, 1)
+                if m
+            ]
+        )
+        return mothers, daughters
+
     def run(self, signals):
         indices = set(signals.index)
-        daughters, mothers = (None, None)
+        self.mothers, self.daughters = self.get_mothers_daughters()
         for alg, param1, param2 in self.sequence:
             if alg is "lineage":
                 new_indices = getattr(self, "pick_by_" + alg)(signals, param1)
@@ -149,22 +197,25 @@ class picker(ProcessABC):
                     indices = indices.union(set(new_indices))
             else:
                 new_indices = getattr(self, "pick_by_" + alg)(signals, param1, param2)
-                indices = indices.intersection(new_indices)
+            indices = indices.intersection(new_indices)
 
-        daughters, mothers = self.daughters, self.mothers
-        return np.array(daughters), np.array(mothers), np.array(list(indices))
+        mothers, daughters = self.mothers, self.daughters
+        return np.array(mothers), np.array(daughters), np.array(list(indices))
 
     @staticmethod
     def switch_case(
         signals: pd.DataFrame,
         condition: str,
-        threshold: Union[float, int],
+        threshold: Union[float, int, list],
     ):
         threshold_asint = _as_int(threshold, signals.shape[1])
+        if isinstance(threshold, list):
+            thresh_presence = threshold[0]
         case_mgr = {
             "present": signals.notna().sum(axis=1) > threshold_asint,
             "nonstoply_present": signals.apply(max_nonstop_ntps, axis=1)
             > threshold_asint,
+            "growing": signals.diff(axis=1).sum(axis=1) > threshold,
             # "quantile": [np.quantile(signals.values[signals.notna()], threshold)],
         }
         return set(signals.index[case_mgr[condition]])